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Abstract

In this document, we provide a boost to the upper bound on the Variance, derived in Liang
and Rakhlin [2020]. The boost to the upper bound provides easier interpretation, and further
connects to the population eigenvalues of the covariance matrix.
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In the Theorem 1 of Liang and Rakhlin [2020], the variance upper bound V can be boosted to
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where λi(Σ),1 ≤ i ≤ d are the population eigenvalues sorted in a non-increasing order. All the notations
follow from the original paper.

To see this, let’s only consider the case with α = 0 and β = 1 (this can be done by centering and scaling
the kernel). The full expression in V in Page 1339 of Liang and Rakhlin [2020] reads
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Denote Σ =
∑d
j=1λj (Σ)·uju?j as the eigenvalue decomposition of the population covariance matrix. Take

any 1 ≤ k ≤ d. Denote Σ>k =
∑
j>k λj (Σ) ·uju?j , for this high frequency component we have
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where the last line uses Remark 5.1 in Liang and Rakhlin [2020], t
(r+t)2 ≤ 1

4r for all a, r > 0. This proof is
identical to that in Liang and Rakhlin [2020]. The last step also uses the fact d � n.

Now for the low frequency component, Σ≤k =
∑
j≤k λj (Σ) · uju?j , note that Σ = Σ≤k +Σ>k . Denote P ⊥uj :=

I −uju?j ∈R
d×d the projection matrix to the orthogonal complement of uj , we have
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with the definition v := Xuj ∈Rn, and M := dγI +XP ⊥ujX
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where the last line again uses Remark 5.1 in Liang and Rakhlin [2020]. Therefore recalling d � n
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The proof is now complete by combining Equations (0.5) and (0.12).
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