Corrigendum to LRZ-2019

Tengyuan Liang

1 Summary

We thank Andrea Montanari for pointing out a mistake in our proof. Below Eqn. 18, we use the following claim: If the symmetric PSD matrix satisfies

$$
K=K^{\leq \iota}+K^{>\iota}=\Phi \Lambda \Phi^{\top}+K^{>\iota}
$$

with $\Phi^{\top} \Phi=I_{\binom{n+\iota}{\iota}}$ and Λ being a diagonal matrix, and

$$
K^{>\iota} \succeq \gamma \cdot I_{n}, \quad \text { with } \gamma>0
$$

then for $v=\Phi \alpha \in \mathbb{R}^{n}$ that lies in the span of Φ,

$$
v^{\top} K^{-2} v \leq\left(\lambda_{\min }(\Lambda)\right)^{-2}\|v\|^{2}
$$

Unfortunately, this is not true in general. In the current note, we provide a fix to the claim. First, we will show that (i) the claim is true up to a multiplicative factor if assumed in addition

$$
K^{>\iota} \preceq \kappa \cdot I_{n}, \quad \text { with } \kappa>0 .
$$

(ii) Second, we will prove why the above assumption is true for our problem.

2 Proof of (i)

For convenience, we define $M:=K^{>\iota}$. Recall $K=\Phi \Lambda \Phi^{\top}+M$, and by assumption (which we will prove later)

$$
\gamma \cdot I_{n} \preceq M \preceq \kappa \cdot I_{n} .
$$

Now we have

$$
\begin{aligned}
K^{-1} v & =\left(\Phi \Lambda \Phi^{\top}+M\right)^{-1} \Phi \alpha \\
& =M^{-\frac{1}{2}}\left(M^{-\frac{1}{2}} \Phi \Lambda \Phi^{\top} M^{-\frac{1}{2}}+I_{n}\right)^{-1} M^{-\frac{1}{2}} \Phi \alpha
\end{aligned}
$$

Therefore

$$
\begin{aligned}
v^{\top} K^{-2} v & \leq\left(\lambda_{\min }(M)\right)^{-1}\left\|\left(M^{-\frac{1}{2}} \Phi \Lambda \Phi^{\top} M^{-\frac{1}{2}}+I_{n}\right)^{-1} M^{-\frac{1}{2}} \Phi \alpha\right\|^{2} \\
& \leq \gamma^{-1} \cdot\|\underbrace{\left(M^{-\frac{1}{2}} \Phi \Lambda \Phi^{\top} M^{-\frac{1}{2}}+I_{n}\right)^{-1} M^{-\frac{1}{2}} \Phi \Lambda^{\frac{1}{2}}}_{:=T} \cdot \Lambda^{-\frac{1}{2}} \alpha\|^{2} \\
& \leq \gamma^{-1} \lambda_{\max }\left(T^{\top} T\right) \cdot\left\|\Lambda^{-\frac{1}{2}} \alpha\right\|^{2} .
\end{aligned}
$$

It is clear that if $\lambda_{0}:=\lambda_{\min }\left(M^{-\frac{1}{2}} \Phi \Lambda \Phi^{\top} M^{-\frac{1}{2}}\right)>1$

$$
\lambda_{\max }\left(T^{\top} T\right)=\frac{\lambda_{0}}{\left(1+\lambda_{0}\right)^{2}}<\lambda_{0}^{-1}
$$

To lower bound λ_{0}, we invoke the upper bound on $M \preceq \kappa \cdot I_{n}$

$$
\lambda_{0} \geq \kappa^{-1} \lambda_{\min }(\Lambda) \asymp \frac{n}{d^{\downarrow}} \gg 1 .
$$

Put things together, we have proved that

$$
\begin{aligned}
v^{\top} K^{-2} v & \leq \frac{\kappa}{\gamma}\left(\lambda_{\min }(\Lambda)\right)^{-1}\left\|\Lambda^{-\frac{1}{2}} \alpha\right\|^{2} \\
& =\frac{\kappa}{\gamma}\left(\lambda_{\min }(\Lambda)\right)^{-1} \cdot v^{\top}\left(K^{\leq \iota}\right)^{+} v .
\end{aligned}
$$

Therefore the problem is fixed with a multiplicative factor $\frac{\kappa}{\gamma}$. In the next section, we will show an upper bound on $\frac{\kappa}{\gamma}$. For the problem in LRZ-2019, by means of the restricted lower isometry, we have $\left(\lambda_{\min }(\Lambda)\right)^{-1} \precsim \frac{d^{\iota}}{n}$, and $v^{\top}\left(K^{\leq}\right)^{+} v=O(1)$.

3 Proof of (ii)

In LRZ-2019, we have already proved

$$
K^{>\iota}=K^{(i, 2 i+1]}+K^{>2 \iota+1} \succeq K^{>2 \iota+1}
$$

and $K^{>2 \iota+1}$ is a diagonally dominate matrix that satisfies

$$
\gamma \cdot I_{n} \preceq K^{>2 \iota+1} \preceq 2 \gamma \cdot I_{n} .
$$

with a constant $\gamma>0$.
To establish an upper bound on $\left\|K^{>\iota}\right\|_{\text {op }}$, we only need to control

$$
\left\|K^{(\iota, 2 \iota+1]}\right\|_{\mathrm{op}}
$$

Recall the feature map for the inner product kernel, $\phi_{(\iota, 2 \iota+1)}\left(x_{j}\right) \in \mathbb{R}^{\binom{d+2 \iota+1}{2 \iota+1}-\binom{d \iota \iota}{\iota}}$

$$
K^{(i, 2 i+1]}=\left[\left\langle\phi_{(\iota, 2 \iota+1)}\left(x_{j}\right), \phi_{(\iota, 2 \iota+1)}\left(x_{k}\right)\right\rangle\right]_{1 \leq j, k \leq n} .
$$

Then bounding the operator norm is the same as bounding the following operator norm

$$
\left\|\sum_{j=1}^{n} \phi_{(\iota, 2 \iota+1)}\left(x_{j}\right) \phi_{(\iota, 2 \iota+1)}\left(x_{j}\right)^{\top}\right\|_{\mathrm{op}}
$$

By the matrix Bernstein's inequality, we have with high at least $1-d^{-C}$,

$$
\left\|\sum_{j=1}^{n} \phi_{(\iota, 2 \iota+1)}\left(x_{j}\right) \phi_{(\iota, 2 \iota+1)}\left(x_{j}\right)^{\top}-n \mathbb{E}\left[\phi_{(\iota, 2 \iota+1)}(\mathbf{x}) \phi_{(\iota, 2 \iota+1)}(\mathbf{x})^{\top}\right]\right\|_{\mathrm{op}} \precsim \sqrt{n \cdot \mathbf{V} \log (d)} \vee \mathbf{B} \log (d)
$$

where

$$
\begin{aligned}
& \mathbf{V}=\left\|\mathbb{E}\left[\phi_{(\iota, 2 \iota+1)}(\mathbf{x}) \phi_{(\iota, 2 \iota+1)}(\mathbf{x})^{\top} \phi_{(\iota, 2 \iota+1)}(\mathbf{x}) \phi_{(\iota, 2 \iota+1)}(\mathbf{x})^{\top}\right]\right\|_{\mathrm{op}} \leq \mathbf{B} \cdot d^{-\iota-1}, \\
& \mathbf{B}=\sup _{x}\left\|\phi_{(\iota, 2 \iota+1)}(x) \phi_{(\iota, 2 \iota+1)}(x)^{\top}\right\|_{\mathrm{op}} .
\end{aligned}
$$

Under the assumption $\sup _{x} K(x, x) \leq C, \mathbf{B} \leq C$, we have

$$
\left\|\sum_{j=1}^{n} \phi_{(\iota, 2 \iota+1)}\left(x_{j}\right) \phi_{(\iota, 2 \iota+1)}\left(x_{j}\right)^{\top}-n \mathbb{E}\left[\phi_{(\iota, 2 \iota+1)}(\mathbf{x}) \phi_{(\iota, 2 \iota+1)}(\mathbf{x})^{\top}\right]\right\|_{\mathrm{op}} \precsim \sqrt{\frac{n}{d^{\iota+1}} \log (d)}+\log (d)
$$

and thus

$$
\left\|K^{(\iota, 2 \iota+1]}\right\|_{\mathrm{op}}=\left\|\sum_{j=1}^{n} \phi_{(\iota, 2 \iota+1)}\left(x_{j}\right) \phi_{(\iota, 2 \iota+1)}\left(x_{j}\right)^{\top}\right\|_{\mathrm{op}} \precsim \frac{n}{d^{\iota+1}}+\sqrt{\frac{n}{d^{\iota+1}} \log (d)}+\log (d) \asymp \log (d),
$$

where the last step uses $d^{\iota} \ll n \ll d^{++1}$.
So far, we have proved the

$$
\kappa \precsim \log (d) .
$$

Put things together, the variance bound in LRZ-2019 holds true with the following expression

$$
\log (d) \cdot \frac{d^{l}}{n}+\frac{n}{d^{\iota+1}} .
$$

