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Abstract

This paper introduces a new simulation-based inference procedure to model and sample
from multi-dimensional probability distributions given access to i.i.d. samples, circumventing the
usual approaches of explicitly modeling the density function or designing Markov chain Monte
Carlo. Motivated by the seminal work on distance and isomorphism between metric measure
spaces, we propose a new notion called the Reversible Gromov-Monge (RGM) distance and study
how RGM can be used to design new transform samplers to perform simulation-based inference.
Our RGM sampler can also estimate optimal alignments between two heterogeneous metric
measure spaces (X , µ, cX ) and (Y, ν, cY) from empirical data sets, with estimated maps that
approximately push forward one measure µ to the other ν, and vice versa. We study the analytic
properties of the RGM distance and derive that under mild conditions, RGM equals the classic
Gromov-Wasserstein distance. Curiously, drawing a connection to Brenier’s polar factorization,
we show that the RGM sampler induces bias towards strong isomorphism with proper choices of
cX and cY . Statistical rate of convergence, representation, and optimization questions regarding
the induced sampler are studied. Synthetic and real-world examples showcasing the effectiveness
of the RGM sampler are also demonstrated.

Keywords— Gromov-Wasserstein metric, transform sampling, simulation-based inference, generative
models, isomorphism, likelihood-free inference

1 Introduction

One of the central tasks in statistics is to model and sample from a multi-dimensional probability distribution.
Classic statistics approaches this problem by fitting a model to the target distribution and then sampling from
a fitted model via Markov Chain Monte Carlo (MCMC) techniques. Although such model-based methods
are widely used, MCMC sampling often entails several technicalities. Beyond diagnosing whether the chain
mixes, obtaining i.i.d. samples from MCMC methods is complex as one has to control correlations between
successive samples or run parallel chains.

An alternative approach available in statistics, reserved for the one-dimensional case, is usually referred
to as the (inverse) transform sampling. Such an approach circumvents the calling for a parametric or
nonparametric density and directly designs a sampler by transforming a simple uniform distribution. The idea
is simple: one can transform a uniform measure µ = Unif([0, 1]) to any one-dimensional target probability
measure ν leveraging the following monotonic transformation T : [0, 1] → R called the inverse Cumulative
Distribution Function (CDF),

T (x) = inf{y ∈ R : ν((−∞, y]) ≥ x} . (1.1)
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Define the pushforward measure T#µ by T#µ(S) = µ({x : T (x) ∈ S}) for any Borel set S ⊆ R, then one can
easily check that T#µ = ν; namely, with a draw from the one-dimensional uniform distribution x ∼ µ, the
transformed sample T (x) has the target probability distribution ν.

The transform sampling idea can be extended to the multi-dimensional setting: given a target probability
measure ν supported on Y, one can specify a probability measure µ on X , which is easy to sample from
such as a multivariate Gaussian, and then find a measurable map T : X → Y such that T#µ = ν, where the
pushforward measure T#µ is defined analogously to the one-dimensional case above. Such a map T , named
as transport map from µ to ν, transforms i.i.d. samples from µ into i.i.d. samples from ν. Over the past
few years, the generative modeling literature has been actively employing such transform sampling ideas by
identifying T#µ = ν through the following minimization:

min
T∈F
L(T#µ, ν) , (1.2)

where F is a class of maps from X to Y parametrized by neural networks and Lmeasures certain discrepancies
between two distributions. Different choices of L have led to various models such as the Jensen-Shannon
divergence for Generative Adversarial Networks (GANs) [24], the Wasserstein-1 distance for Wasserstein-
GAN [2], and the Maximum Mean Discrepancy (MMD) for MMD-GAN [18, 32]. One caveat is that there can
be infinitely many transport maps from µ to ν; for instance, when µ = ν = Unif([0, 1]), define T : [0, 1]→ [0, 1]
by T (x) = |2x−1|, then the n-fold compositions of T are valid transport maps for all n ∈ N. In other words,
finding a map T satisfying T#µ = ν is an over-identified problem, where (1.2) has infinitely many minimizers.
Though all minimizers are equivalent in terms of transform sampling, not all are equally preferred in light
of Occam’s razor principle: one wishes to select simple, desirable transport maps among the over-identified
set {T : T#µ = ν}.

Inductive biases solve the aforementioned over-identified problem by restricting the search to transport
maps with desirable properties. In this context, there have been meaningful progresses based on optimal
transport (OT) theory [53, 36]. The OT theory aims to identify an optimal transformation T , quantified
by the transportation cost of moving mass from µ to ν; for instance, when µ and ν lie in the same space
Rd, each transport map T is associated with the transport cost C(T ) :=

∫
Rd ‖x− T (x)‖2 dµ (x). Brenier [9]

proved that, under mild regularity conditions, there exists a unique minimizer T ? of C among all transport
maps, namely,

T ? = arg min
T#µ=ν

C(T ) . (1.3)

More importantly, T ? is the gradient of some convex function. On the one hand, Brenier’s result extends
the one-dimensional (inverse) transform sampling to the multi-dimensional case. When d = 1 and µ =
Unif([0, 1]), the inverse CDF map in (1.1) turns out to be exactly T ?; for d > 1, the multi-dimensional
map T ? : Rd → Rd is the gradient of a convex function, generalizing monotonic functions on the real line
to multi-dimensions. On the other hand, Brenier’s result naturally initiates an inductive bias in transform
sampling: instead of searching any transport map, one may find T ?, the optimal one with the smallest cost.
To contrast this with the plain transform sampling (1.2), let us rewrite (1.3) using a suitable Lagrangian
multiplier λ > 0 to enforce the equality constraint T#µ = ν:

min
T∈F

C(T ) + λ · L(T#µ, ν) . (1.4)

Now, we can see that (1.4) incorporates an additional objective function of T—transport cost—in (1.2),
thereby introducing an inductive bias towards the optimal transport map, the minimum of C.

Such an OT-based approach, however, can be inefficient in practice if the target ν is a high-dimensional
embedding of some low-dimensional distribution. For instance, let ν be the distribution of handwritten digit
images from the MNIST data set on R784.1 To use the above OT-based approach, one must choose µ on
R784 and find a map T : R784 → R784. However, the support of ν is intrinsically low-dimensional (roughly

1Images are normalized and fit into a 28× 28 pixel bounding box, hence defined on R28×28 ≡ R784 [30].
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R15 as in [19]), hence other transform samplers with X = R15 yielding T : R15 → R784 are more efficient
than the OT-based method in terms of estimating T and computing T (X) for X ∼ µ.

In this paper, we propose and study a transform sampler, combining the best of both worlds: it introduces
beneficial inductive biases like the OT approach, while operating when X and Y are heterogeneous spaces.
The key to our approach is to utilize a notion of isomorphism and the Gromov-Wasserstein (GW) distance
between µ and ν. Given two cost functions cX : X × X → R and cY : Y × Y → R, the GW distance [38, 13]
is

GW(µ, ν) := inf
γ∈Π(µ,ν)

(∫
X×Y

∫
X×Y

(
cX (x, x′)− cY(y, y′)

)2
dγ (x, y) dγ (x′, y′)

)1/2

, (1.5)

where Π(µ, ν) is the set of couplings between µ and ν. GW aims to match the cost functions defined
on two heterogeneous spaces, intending to identify an isomorphism, namely, a transport map T such that
cX (x, x′) = cY(T (x), T (x′)) for all x, x′ ∈ X . Inspired by these, one can define the following objective
function of T to replace the transport cost C:

Q(T ) :=

∫
X

∫
X

(cX (x, x′)− cY(T (x), T (x′))2 dµ (x) dµ (x′) .

Roughly speaking, the new sampler takes a form of (1.4), but with Q instead of C, thereby introducing an
inductive bias towards isomorphisms (the target when minT Q(T ) = 0). Remark that GW is a Quadratic
Program (QP) in γ, which is known to be computationally hard [11]; similarly, the objective function Q is
quadratic in µ. More importantly, designing and analyzing the plug-in estimation of the quadratic objects
GW(µ, ν) and Q based on finite i.i.d. samples from µ and ν is not obvious.

Main contributions This paper considers computational and statistical questions regarding Gromov-
Wasserstein outlined above, and aims to design a new transform sampler as an approach to model and sample
from multi-dimensional probability distributions given access to i.i.d. samples, circumventing the usual ways
of modeling the density function or MCMC. Our transform sampler can also estimate good alignments
between two heterogeneous metric measure spaces (X , µ, cX ) and (Y, ν, cY) from empirical data sets, with
estimated maps that approximately pushforward one measure µ to the other ν, and vice versa. Towards
reaching these goals, we made the following specific contributions.

• We introduce a new notion, Reversible Gromov-Monge (RGM) distance, on metric measure spaces that
majorizes the usual Gromov-Wasserstein distance. Moreover, we show several analytic properties pos-
sessed by GW naturally carry over to RGM; in particular, RGM induces a valid metric between metric
measure spaces up to an isomorphism. Furthermore, under mild assumptions, we derive that RGM
equals GW. Finally, we illustrate how RGM induces an inductive bias favoring strong isomorphisms
through a new insight from Brenier’s polar factorization [9].

• Our RGM formulation induces a transform sampler, as a relaxation of the usual GW formulation.
Rather than solving a QP which is quadratic in the coupling γ ∈ Π(µ, ν), we decouple the pair as
(Id, F )#µ and (B, Id)#ν with F : X → Y and B : Y → X , respectively, and then bind them later
via the constraint (Id, F )#µ ≈ (B, Id)#ν. Such a decoupling and binding idea will prove suitable for
the statistical estimation problem based on finite i.i.d. samples. We will also show, from an operator
viewpoint, such a decoupling and binding idea can relax our RGM to an infinite-dimensional convex
program in F,B that admits a simple representation theorem, as opposed to the otherwise intractable
infinite-dimensional QP in GW.

• We derive non-asymptotic rates of convergence for the proposed RGM sampler using tools from empiri-
cal processes, for generic classes modeling the measurable maps F and B. Based on our non-asymptotic
results, concrete upper bounds can be easily spelled out in the cases where F and B are parametrized
by deep neural networks. As mentioned earlier, the RGM sampler also promises to identify good
alignments between metric measure spaces, and to learn approximate isomorphism when possible. We
demonstrate such a point using numerical experiments on MNIST.
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Organization The rest of the paper is organized as follows. First, we briefly review other related studies
omitted in the discussion above. Then, in Section 2, preliminary background on optimal transport and
Gromov-Wasserstein distance is outlined. Next, Section 3 summarizes the primary methodology and theory
regarding our proposed Reversible Gromov-Monge sampler. Synthetic and real-world examples showcasing
the effectiveness of the RGM sampler are demonstrated in Section 4 as a proof of concept. The supplementary
material collects details of the results in Sections 3 and 4 along with extensive discussions.

1.1 Related Literature

Inferring the underlying probability distributions from data has been a central problem in statistics and
unsupervised machine learning since the invention of histograms by Pearson a century ago. Classic math-
ematical statistics explicitly models the density function in a parametric or a nonparametric way [47], and
studies the minimax optimality of directly estimating such density functions [51]. It is also unclear how to
proceed to sample from a possibly improper2 density estimator, even with an optimal estimator at hand.
One may employ Markov Chain Monte Carlo (MCMC) techniques for sampling from specific models. How-
ever, on the computational front, it is highly non-trivial how to ensure the mixing properties of MCMC for
a designed sampler [44].

A recent trend in unsupervised machine learning is to learn complex, high-dimensional distributions via
(deep) generative models, either explicitly by parametrizing the sufficient statistics of the exponential families
[17, 28], or implicitly by parametrizing the pushforward map transporting distributions [18, 24], with a focus
on tractability in computation. Surprisingly, though lacking theoretical underpinning and optimality, the
generative models’ approach performs well empirically in large-scale applications where classical statistical
procedures are destined to fail. There has been a growing literature on understanding distribution estimation
with the implicit framework, with more general metrics and target distribution classes, to name a few,
[41, 32, 18] on MMDs, [50, 33] on integral probability metrics, and [40, 3, 34, 48, 4, 56, 31, 12] on generative
adversarial networks. Last but not least, we emphasize that an alternative implicit distribution estimation
approach using the simulated method of moments has been formulated in the econometrics literature since
[37, 42] and [25].

Originally introduced as a tool for comparing objects in computer graphics, analytic properties of the
Gromov-Wasserstein distance have been studied extensively [38, 52]; the most important one is that it defines
a distance between metric measure spaces, namely, metric spaces endowed with probability measures. Since
many real-world data sets can be modeled as metric measure spaces, the GW distance has been utilized
in various problems such as shape correspondence [49], graph matching [58], and protein comparison [22].
Certain statistical aspects of comparing metric measure spaces have been studied in [8, 57].

Computation of the GW distance amounts to a relaxation of the quadratic assignment problem [29]; both
are known to be NP-hard [11] in the worst case. Several approaches have been proposed for the approximate
computation of the GW distance. [38] studies lower bounds on the GW distance that are easier to compute.
[43] adds an entropic regularization term to the GW distance, which leads to a fast iterative algorithm;
[46] further modifies this by imposing a low-rank constraint on couplings. [54] proposes the Sliced Gromov-
Wasserstein distance defined by integrating GW distances over one-dimensional projections. Last but not
least, recent papers [58, 6, 14] study scalable partitioning schemes to approximately compute GW distances.

2 Background

In this section, we provide background on the Optimal Transport (OT) theory and the Gromov-Wasserstein
distance. First, we start with some notations. Let ‖A‖ denote the Frobenius norm of a matrix A and ‖x‖
denote the Euclidean norm of a vector x. Given a set X and a function f : X → R, let ‖f‖∞ = supx∈X |f(x)|
denote the sup norm. For an integer n ∈ N, we define [n] = {1, . . . , n}. For a metric space X , we denote its
metric as dX and write P(X ) to denote the collection of all Borel probability measures on X ; we call X a

2Here we mean that the estimated density is not always non-negative and integrates to one.
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Polish space if it is complete and separable. We call a pair (X , µ) a Polish probability space if X is a Polish
space and µ ∈ P(X ). Given two Polish probability spaces (X , µ) and (Y, ν), the collection of all transport
maps from µ to ν is denoted as T (µ, ν) := {T : X → Y | T#µ = ν}; we call γ ∈ P(X ×Y) a coupling between
µ and ν if γ(A× Y) = µ(A) and γ(X × B) = ν(B) for all Borel subsets A ⊂ X and B ⊂ Y, and we denote
the collection of all such couplings as Π(µ, ν). For a sequence of numbers a(n), b(n) ∈ R, we use a(n) - b(n)
to denote the relationship that a(n)/b(n) ≤ C, ∀n with some universal constant C > 0.

2.1 A Brief Overview of Optimal Transport Theory

A major goal of OT is minimizing the cost associated with the transport map between two Polish probability
spaces, say (X , µ) and (Y, ν). Consider a measurable function c : X × Y → R+; we view c(x, y) as the cost
associated with x ∈ X and y ∈ Y. For each transport map T ∈ T (µ, ν), we interpret c(x, T (x)) as a unit
cost incurred by mapping each x ∈ X to T (x) ∈ Y. We define the average cost incurred by the transport
map T as the integration of all the unit costs with respect to µ, that is,

∫
X c(x, T (x)) dµ (x). Minimizing the

cost over T (µ, ν) is referred to as the Monge problem named after Gaspard Monge. We call T ? an optimal
transport map if T ? is minimizer, that is,

T ? ∈ arg min
T∈T (µ,ν)

∫
X
c(x, T (x)) dµ (x) ,

Another important OT problem is minimizing the cost given by couplings. We define the average
cost incurred by a coupling γ ∈ Π(µ, ν) as the integration of the cost c with respect to γ, namely,∫
X×Y c(x, y) dγ (x, y). Minimizing this cost over Π(µ, ν) is called the Kantorovich problem credited to Leonid

Kantorovich. We call γ? an optimal coupling if

γ? ∈ arg min
γ∈Π(µ,ν)

∫
X×Y

c(x, y) dγ (x, y) ,

The two OT problems are closely related: the Kantorovich problem is a relaxation of the Monge problem.
To see this, for each T ∈ T (µ, ν), define a map (Id, T ) : X → X × Y by (Id, T )(x) = (x, T (x)). One can
verify (Id, T )#µ ∈ Π(µ, ν). Therefore, if we define ΠT := {(Id, T )#µ : T ∈ T (µ, ν)}, then ΠT ⊂ Π(µ, ν) and
thus

inf
T∈T (µ,ν)

∫
X
c(x, T (x)) dµ (x) = inf

γ∈ΠT

∫
X×Y

c(x, y) dγ (x, y) ≥ inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y) dγ (x, y) ,

where the first equality follows from change-of-variables. In other words, two OT problems share the same
objective function as a function of couplings; however, the Kantorovich problem has a larger constraint set.

Unlike the Monge problem, the Kantorovich problem has favorable properties. First, the objective
function is linear in γ. Moreover, Π(µ, ν) is compact in the weak topology of Borel probability measures
defined on X ×Y. This suggests that we can view the Kantorovich problem as an infinite-dimensional linear
program.

Besides seeking optimal transport maps or couplings, another interesting aspect of OT problems is that
the least possible cost can endow a metric structure among Polish probability spaces. If X = Y and c = d2

X ,
the square root of the solution of the Kantorovich problem defines a distance between µ and ν, known as
the Wasserstein distance.

Definition 1. Given a Polish space X , we call

W2(µ, ν) = inf
γ∈Π(µ,ν)

(∫
X×X

d2
X (x, y) dγ (x, y)

)1/2

the Wasserstein-2 distance3 between µ, ν ∈ P(X ).

3One can define the Wasserstein-p distance by replacing the exponent 2 above with p ∈ [1,∞].
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2.2 Gromov-Wasserstein and Gromov-Monge Distances

Although OT problems can be defined between arbitrary Polish probability spaces, in practice, it is unclear
how to design a function c : X × Y → R+ to represent meaningful cost associated with x ∈ X and y ∈ Y in
two heterogeneous spaces. For instance, if X = Rp and Y = Rq with p 6= q, there is no simple choice for a
cost function c over Rp × Rq. As a result, classic OT theory (including Brenier’s result) cannot be directly
used for comparing heterogeneous Polish probability spaces.

Mémoli’s pioneering work [38] resolved this issue by considering a quadratic objective function of γ:∫
X×Y

c(x, y) dγ (x, y)⇒
∫
X×Y

∫
X×Y

(cX (x, x′)− cY(y, y′))2 dγ (x, y) dγ (x′, y′) ,

where cX and cY are defined over X × X and Y × Y, respectively. For instance, one can specify cX = dX
and cY = dY . Rather than considering a unit cost corresponding to each pair (x, y) ∈ X × Y, we associate
two pairs (x, y), (x′, y′) ∈ X × Y with the discrepancy of intra-space quantities cX (x, x′) and cY(y, y′). In
summary, by switching from the integration dγ to the double integration dγ dγ, we no longer need an
otherwise inter-space quantity c : X × Y → R+. Therefore, we can always define this objective function
whenever we have proper cX and cY in each individual space, leading to the following definition.

Definition 2. A triple (X , µ, cX ) is called a network space if (X , µ) is a Polish probability space such that
supp(µ) = X and cX : X ×X → R is continuous. The Gromov-Wasserstein distance between network spaces
(X , µ, cX ) and (Y, ν, cY) is defined as

GW(µ, ν) = inf
γ∈Π(µ,ν)

(∫
X×Y

∫
X×Y

(cX (x, x′)− cY(y, y′))2 dγ (x, y) dγ (x′, y′)

)1/2

.

Remark. On top of the network space definition introduced in [13], we impose continuity of cX for a cleaner
analysis. A network space (X , µ, cX ) is called a metric measure space if cX = dX as introduced in [38] and
[52]. In short, a network space is a generalization of a metric measure space.

Like the Wasserstein distance, the GW distance has metric properties; it satisfies symmetry and the
triangle inequality, and GW(µ, ν) = 0 if (X , µ, cX ) = (Y, ν, cY). However, the converse of this last statement
does not hold in general: for its validity, a suitable equivalence relation needs to be defined on the collection
of network spaces.

Definition 3. Network spaces (X , µ, cX ) and (Y, ν, cY) are strongly isomorphic if there exists T ∈ T (µ, ν)
such that T : X → Y is bijective and cX (x, x′) = cY(T (x), T (x′)) for all x, x′ ∈ X . In this case, we write
(X , µ, cX ) ∼= (Y, ν, cY) and such a transport map T is called a strong isomorphism.

One can easily check that ∼= is indeed an equivalence relation on the collection of network spaces. The
following theorem states that the GW distance satisfies all metric axioms on the quotient space—under the
equivalence relation ∼=—of metric measure spaces.

Theorem 1 (Lemma 1.10 of [52]). LetM be the collection of all network spaces (X , µ, cX ) such that cX = dX .
Also, let M/∼= be the collection of all equivalence classes of M induced by ∼=. Then, GW satisfies the three
metric axioms on M/∼=.

Recall that the Monge problem is a restricted version of the Kantorovich problem with an additional
constraint that couplings are given by a transport map; replacing Π(µ, ν) in the Kantorovich problem with
ΠT yields the Monge problem. Imposing the same constraint on the definition of GW leads to the Gromov-
Monge distance.

Definition 4. The Gromov-Monge distance between network spaces (X , µ, cX ) and (Y, ν, cY) is defined as

GM(µ, ν) = inf
T∈T (µ,ν)

(∫
X

∫
X

(cX (x, x′)− cY(T (x), T (x′)))2 dµ (x) dµ (x′)

)1/2

.
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Loosely speaking, computing GM amounts to finding a transport map T such that cX (x, x′) best matches
cY(T (x), T (x′)) on average; we can view such a map T as a surrogate for an isomorphism. See Section 2.4
of [39] for more details of GM.

3 Summary of Results

Inspired by the Gromov-Wasserstein and Gromov-Monge distances, we propose a new metric—the reversible
Gromov-Monge distance—between network spaces in this paper. Our formulation seeks a pair of transport
maps F ∈ T (µ, ν) and B ∈ T (ν, µ) best approximating isomorphic relations between network spaces. We
propose a novel transform sampling method that uses F as a push-forward map to obtain i.i.d. samples from
a target distribution ν. We present two optimization formulations solving for such a pair (F,B) in order:
a potentially non-convex formulation that employs the standard gradient descent method to optimize, and
an infinite-dimensional convex formulation where global optima can be found efficiently. For the former, we
analyze the statistical rate of convergence for generic classes F ×B parametrizing (F,B). For the latter, we
derive a new representer theorem on a suitable reproducing kernel Hilbert space (RKHS).

3.1 Metric Properties of Reversible Gromov-Monge

Our formulation is based on the following observation: for a coupling γ such that γ = (Id, F )#µ = (B, Id)#ν,
which presents a binding constraint, we can simplify the objective function of GW as∫

X×Y
(cX (x,B(y))− cY(F (x), y))2 dµ⊗ ν ,

where dµ⊗ ν := dµ (x) dν (y) denotes the product measure of µ and ν. Imposing the binding constraint on
the definition of GW leads to the following definition.

Definition 5. For network spaces (X , µ, cX ) and (Y, ν, cY), we write (F,B) ∈ I(µ, ν) if measurable maps
F : X → Y and B : Y → X satisfy the binding constraint (Id, F )#µ = (B, Id)#ν. We define the reversible
Gromov-Monge (RGM) distance between (X , µ, cX ) and (Y, ν, cY) as

RGM(µ, ν) := inf
(F,B)∈I(µ,ν)

(∫
X×Y

(cX (x,B(y))− cY(F (x), y))2 dµ⊗ ν
)1/2

. (3.1)

Remark. A few remarks are in place for the binding constraint. If (Id, F )#µ = (B, Id)#ν, then F#µ = ν
and B#ν = µ follow due to marginal conditions. However, the converse is not true in general. To see
this, let µ = ν = Unif([0, 1]), then F#µ = ν and B#ν = µ hold for F (x) = B(x) = |2x − 1|. However,
(Id, F )#µ 6= (B, Id)#ν because (Id, F )#µ is a uniform measure on {(x, |2x − 1|) : x ∈ [0, 1]}, whereas
(B, Id)#ν is a uniform measure on {(|2y − 1|, y) : y ∈ [0, 1]}.

Roughly speaking, computing RGM consists in finding a pair (F,B) ∈ I(µ, ν) such that cX (x,B(y)) best
matches cY(F (x), y) on average. Like a strong isomorphism, we can view such a pair as jointly capturing
an isomorphic relation of (X , µ, cX ) and (Y, ν, cY). We will use this observation later to build a transform
sampling method.

We will prove that RGM possesses metric properties similar to the Gromov-Wasserstein. Motivated by
Theorem 1, we derive the following result.

Theorem 2. Let h : R+ → R be a continuous and strictly monotone function and N h be a collection of all
network spaces (X , µ, cX ) such that cX = h(dX ). Then RGM satisfies the three metric axioms on N h/∼=, the
collection of all equivalence classes of N h induced by ∼=.

Remark. Suppose X is a Euclidean space and dX is the standard Euclidean distance. If h(x) = exp
(
−αx2

)
with α > 0, then h(dX ) is the radial basis function (RBF) kernel on X ; we will use this in numerical
experiments.

7



Readers may wonder about the generic relations among three distances GW, GM, and RGM, which will
be established in the next proposition.

Proposition 1. For network spaces (X , µ, cX ) and (Y, ν, cY) as in Definition 2,

GW(µ, ν) ≤ GM(µ, ν) ≤ RGM(µ, ν) . (3.2)

Interestingly, under mild conditions, the above inequalities in Proposition 1 hold as equality, thus showing
that RGM provides the exact metric as GW. The proof is inspired by a construction in [10, 9].

Theorem 3. Let (X , µ, cX ) and (Y, ν, cY) be two network spaces, where X and Y are closed subsets of Rd
with d ≥ 2. Assume that cX and cY are bounded and µ({x}) = ν({y}) = 0 for any (x, y) ∈ X × Y. Then,
GW(µ, ν) = GM(µ, ν) = RGM(µ, ν).

We defer the proof details of Theorem 2 and Proposition 1 to Appendix A.1, and Theorem 3 to Appendix
A.2.

Finally, we conclude this section by pointing out a connection between inductive biases in RGMs and
Brenier’s polar factorization [9]. Given two Polish probability spaces (X , µ) and (Y, ν), there exist cost
functions cX and cY (that depend on µ, ν) such that the resulting network spaces (X , µ, cX ) and (Y, ν, cY)
are strongly isomorphic. More importantly, among the infinitely many F : X → Y, B : Y → X ’s such that
(Id, F )#µ = (B, Id)#ν hold valid for transform sampling, the optimal pair (F ?, B?) minimizing the RGM
term (3.1) achieves the strong isomorphism

RGM(µ, ν) =

∫
X×Y

(cX (x,B?(y))− cY(F ?(x), y))2 dµ⊗ ν = 0 , (3.3)

and thus cX (x,B?(y)) = cY(F ?(x), y) almost surely. In plain language, the RGM introduces an inductive
bias favoring strong isomorphisms, in the same spirit as the Wasserstein-2 metric favors the transport map
with the optimal cost seen in the introduction. The detailed discussions are deferred to Appendix A.3.

3.2 Transform Sampling via RGM

With the proposed notion of RGM, we design a transform sampling method in this section. The transform
sampler is based on finding a minimizing pair (F,B) of RGM, which can capture isomorphic relations between
network spaces. To implement this method, we need to estimate (F,B) using only i.i.d. samples from µ and
ν. Leveraging the Lagrangian form, we derive a minimization problem that can be implemented based on
finite samples.

First, we rewrite the population minimization problem with the binding constraint as follows,

min
F : X→Y
B : Y→X

∫
X×Y

(cX (x,B(y))− cY(F (x), y))2 dµ⊗ ν

s.t. LX×Y((Id, F )#µ, (B, Id)#ν) = 0 .

(3.4)

Here, LX×Y is a suitable discrepancy measure on P(X × Y) so that the constraint of (3.4) is a surrogate
for the original constraint (Id, F )#µ = (B, Id)#ν. In practice, we do not require that LX×Y = 0 implies
(Id, F )#µ = (B, Id)#ν; in fact, the former constraint can be a relaxation of the latter. The choice of LX×Y
will be specified later. To solve this minimization problem, we propose utilizing the Lagrangian:

min
F : X→Y
B : Y→X

∫
X×Y

(cX (x,B(y))− cY(F (x), y))2 dµ⊗ ν + λ · LX×Y((Id, F )#µ, (B, Id)#ν) .

Given i.i.d. samples {xi}mi=1 and {yj}nj=1 from µ and ν, respectively, we replace the population objective
with its empirical estimates:

min
F : X→Y
B : Y→X

1

mn

m∑
i=1

n∑
j=1

(cX (xi, B(yj))− cY(F (xi), yj))
2 + λ · LX×Y((Id, F )#µ̂m, (B, Id)#ν̂n) ,
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where µ̂m and ν̂n are the empirical measures based on {xi}mi=1 and {yj}nj=1, respectively. Empirically, we
find that adding the following extra terms often enhances empirical results:

min
F : X→Y
B : Y→X

1

mn

m∑
i=1

n∑
j=1

(cX (xi, B(yj))− cY(F (xi), yj))
2 + λ1 · LX×Y((Id, F )#µ̂m, (B, Id)#ν̂n)

+ λ2 · LX (µ̂m, B#ν̂n) + λ3 · LY(F#µ̂m, ν̂n) .

Like LX×Y , we utilize suitable discrepancy measures LX and LY so that these additional terms help matching
the marginals of (Id, F )#µ̂m and (B, Id)#ν̂n.

Lastly, we discuss the choice of LX ,LY , and LX×Y . We use the square of Maximum Mean Discrepancy
(MMD) as the leading example.4 MMD between two measures is a distance between their embeddings in
some reproducing kernel Hilbert space (RKHS), which is indeed a metric under mild conditions [41]. Also,
MMD is representable via the reproducing kernel of the RKHS, hence one may simply choose a kernel
function to define it. Concretely, for any kernel KX on X , the square of MMD between µ̂m and B#ν̂n is

1

m2

∑
i,i′

KX (xi, xi′) +
1

n2

∑
j,j′

KX (B(yj), B(yj′))−
2

mn

∑
i,j

KX (xi, B(yj)) .

To utilize such a convenient closed form, we specify LX ,LY ,LX×Y as the square of corresponding MMDs
by choosing kernels KX ,KY ,KX×Y on X ,Y,X ×Y. For the kernel KX×Y on the product space, we use the
tensor product kernel KX ⊗KY given as

KX ⊗KY((x, y), (x′, y′)) = KX (x, x′)KY(y, y′) .

The tensor product notation is employed since the kernel on the product space inherits the feature map as
the tensor product of two individual feature maps w.r.t. KX and KY .

Denoting the MMD associated with a kernel K as MMDK , we obtain the following minimization problem:

min
F : X→Y
B : Y→X

1

mn

m∑
i=1

n∑
j=1

(cX (xi, B(yj))− cY(F (xi), yj))
2

+ λ1 ·MMD2
KX⊗KY ((Id, F )#µ̂m, (B, Id)#ν̂n)

+ λ2 ·MMD2
KX (µ̂m, B#ν̂n) + λ3 ·MMD2

KY (F#µ̂m, ν̂n) .

(3.5)

Once we solve the problem above, the solution F̂ : X → Y will serve as an approximate isomorphism
and facilitate transform sampling of the target ν from a known distribution µ. The map B̂ possesses similar
properties as F̂ , whereas the map F̂ is of our primary interest for sampling purposes. The reverse map
B̂ : Y → X also embeds point clouds in Y into X , with approximate isomorphism properties in the sense of
Gromov-Monge.

3.3 Statistical Rate of Convergence

Like other transform sampling approaches for generative models, we consider (3.5) using vector-valued func-
tion classes F and B parametrized by neural networks, and then optimize using a gradient descent algorithm.
We emphasize this minimization problem is much simpler than adversarial formulations as in GANs: varia-
tional problems of GANs consist of minimization over a class of generators and maximization over a class of
discriminators, which requires complex saddle-point dynamics [15, 35]. In contrast, our RGM only solves a
single minimization problem in network parameters. Although generally non-convex in nature, the parameter
minimization problem in neural networks can often be efficiently optimized by stochastic gradient descent,
and can even provably achieve the global optima if the loss satisfies certain Polyak- Lojasiewicz conditions
[5].

4This is merely a proof of concept. One may use other quantities in practice, described in Section 4.
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We investigate the statistical rate of convergence for this minimization problem, assuming the empirical
problem (3.5) can be solved accurately. First, define

C(µ, ν, F,B) :=

∫
(cX (x,B(y))− cY(F (x), y))2 dµ⊗ ν

+ λ1 ·MMD2
KX⊗KY ((Id, F )#µ, (B, Id)#ν)

+ λ2 ·MMD2
KX (µ,B#ν) + λ3 ·MMD2

KY (F#µ, ν) .

(3.6)

Then, the objective function of (3.5) is a plug-in estimator C(µ̂m, ν̂n, F,B). We consider solving (3.5)
over the transformation class F × B given as follows, for which we will state our non-asymptotic results
in full generality. From now on, let X and Y be subsets of Euclidean spaces of dimensions dim(X ) and
dim(Y), respectively. F (resp. B) is a collection of vector-valued measurable functions from X to Y (resp.
from Y to X ). For each F ∈ F and k ∈ [dim(Y)], we write Fk(x) to denote the k-th coordinate of F (x).
Accordingly, we define Fk = {Fk : X → R | F ∈ F}, namely, a collection of real-valued measurable
functions defined on X that are given as the k-th coordinate of F ∈ F . For ` ∈ [dim(X )], we define B` and
B` = {B` : Y → R | B ∈ B} analogously.

Then, solving (3.5) over F ×B is written as min(F,B)∈F×B C(µ̂m, ν̂n, F,B). We prove that the empirical
solution leads to an approximate infimum of (F,B) 7→ C(µ, ν, F,B) evaluated with the population measures
µ, ν, with sufficiently large sample sizes m and n.

Overview of assumptions Before stating the next theorem, we present an overview of the assump-
tions. The complete statement of the assumptions and key definitions are designated to Sections B-C in the
supplementary material due to space constraints. Assumptions 1 and 4 require the boundedness and Lips-
chitzness of the cost functions cX and cY . Similarly, boundedness and Lipschitzness of the kernel functions
KX ,KY corresponding to the MMD term are stated in Assumptions 2 and 5, respectively. The last two as-
sumptions are imposed on the set of transformations F : X → Y and B : Y → X : Assumption 3 requires the
transformation class is bounded, and Assumption 6 states that the classes should contain non-trivial maps.
We shall employ a notion of combinatorial dimension to measure the complexity of real-valued function
classes—the pseudo-dimension—formally stated in Definition 7.

Theorem 4. Let (F̂ , B̂) be a solution to the empirical RGM problem

(F̂ , B̂) ∈ arg min
(F,B)∈F×B

C(µ̂m, ν̂n, F,B) ,

with C : P(X )×P(Y)×F ×B → R defined in (3.6). Under Assumptions 1-6, the following inequality holds
with probability 1− δ on {xi}mi=1 and {yj}nj=1

C(µ, ν, F̂ , B̂)− inf
(F,B)∈F×B

C(µ, ν, F,B) -M(F ,B,m, n, δ) . (3.7)

Here, M(F ,B,m, n, δ) denotes a complexity measure of (F ,B) given in terms of pseudo-dimensions (Pdim)
of Fk and B` defined in Definition 7:

M(F ,B,m, n, δ) :=

√
log
(
m∨n
δ

)
m ∧ n

+

√√√√√ log(m ∨ n)

m ∧ n

dim(Y)∑
k=1

Pdim(Fk) +

dim(X )∑
`=1

Pdim(B`)

 .

We provide required assumptions and the full proof of Theorem 4 in Section B along with the definition
of the pseudo-dimension (Definition 7). When F and B are parametrized by neural network classes (the ones
we will use for numerical demonstrations in Section 4), tight pseudo-dimension bounds established in [1, 26]
can be plugged in Theorem 4 for concrete non-asymptotic rates.
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3.4 Convex Formulation and Representer Theorem

As the last bit of our contributions, we study a convex formulation of solving (3.5) by relaxing and lifting it to
an infinite-dimensional space. There are two reasons behind our convex formulation: first, as a computational
alternative to the possibly non-convex optimization; second, to point out a connection with the Nadaraya-
Watson estimator in classic nonparametric statistics. The crux lies in relaxing optimizing over the map
F : X → Y to optimizing over its induced (dual) linear operator F : L2

Y → L2
X that maps functions on Y

to functions on X , where L2
X is the collection of real-valued measurable functions f defined on X such that∫

X f
2 dπX <∞ given a Borel measure πX on X ; similarly, define L2

Y given a Borel measure πY on Y. Then,
for a measurable map F : X → Y, we can define F : L2

Y → L2
X by letting F(g) = g ◦ F for all g ∈ L2

Y .
Similarly, we define B : L2

X → L2
Y for each measurable map B : Y → X . We will see F and B are well-defined

bounded linear operators in Section C under a mild assumption.
To state the representer theorem, consider (3.5) with cX = KX and cY = KY , same as kernel functions

specified in MMD terms. We show that this problem can be reduced to a finite-dimensional convex opti-
mization by proving a representer theorem. Since finite-dimensional convex optimization can be optimized
globally with provable guarantees, such a formulation can be solved numerically in an efficient way.

Let us lay out more details to state the result. Due to Mercer’s theorem, let {φk ∈ L2
X }k∈N and

{ψ` ∈ L2
Y}`∈N be countable orthonormal bases of L2

X and L2
Y where the kernels admit the following spectral

decompositions:

KX (x, x′) =
∑
k

λkφk(x)φk(x′) , KY(y, y′) =
∑
`

γ`ψ`(y)ψ`(y
′) , (3.8)

with positive eigenvalues λk, γ` > 0. Since F : L2
Y → L2

X defines a bounded linear operator, one can represent
F (correspondingly B) under the orthonormal bases

F[ψ`] =

∞∑
k=1

Fk`φk , B[φk] =

∞∑
`=1

B`kψ` . (3.9)

Here, [Fk`] is a semi-infinite matrix with each column describing the L2
X representation of F[ψ`] under the

basis {φk ∈ L2
X }k∈N. With a slight abuse of notation, we will write F and B to denote these matrices [Fk`]

and [B`k]. Then, we will prove in Section C that the objective function in (3.5) with cX = KX and cY = KY
is

Ω(F,B) :=
1

mn

∑
i,j

(Ψ>yjBΛΦxi − Φ>xiFΓΨyj )
2

+ λ1 ·

(
1

m2

∑
i,i′

Φ>xiΛΦx′iΦ
>
xiFΓF>Φxi′ +

1

n2

∑
j,j′

Ψ>yjΓΨyj′Ψ
>
yjBΛB>Ψyj′

− 2

mn

∑
i,j

Ψ>yjBΛΦxiΦ
>
xiFΓΨyj

)

+ λ2 ·

 1

m2

∑
i,i′

Φ>xiΛΦx′i +
1

n2

∑
j,j′

Ψ>yjBΛB>Ψyj′ −
2

mn

∑
i,j

Ψ>yjBΛΦxi


+ λ3 ·

 1

m2

∑
i,i′

Φ>xiFΓF>Φxi′ +
1

n2

∑
j,j′

Ψ>yjΓΨyj′ −
2

mn

∑
i,j

Φ>xiFΓΨyj

 .

Here, F and B are the matrices denoting the operators induced by F andB, respectively, Φx = [· · · , φk(x), · · · ]> ∈
R∞ and Ψy = [· · · , ψ`(y), · · · ]> ∈ R∞ for any x ∈ X and y ∈ Y, and Λ = diag(λ1, λ2, . . . ) and Γ =
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diag(γ1, γ2, . . . ) are diagonal matrices. Hence, (3.5) can be lifted to an infinite-dimensional optimization
problem

min
(F,B)∈C

Ω(F,B) , (3.10)

where C denotes the constraint set implying that F and B are matrices corresponding to bounded linear
operators induced by some maps F : X → Y and B : Y → X .

We will relax this problem by removing the constraint set C, namely, by considering all matrices in
R∞×∞ as the decision variables,

min
F,B∈R∞×∞

Ω(F,B) . (3.11)

In other words, this relaxed problem minimizes Ω over any pair of infinite-dimensional matrices. The next
result, which we refer to as the representer theorem, shows that (3.11) boils down to a finite-dimensional
convex program.

Theorem 5. Consider the optimization (3.10) under the assumptions in Proposition 10. Then, for any
minimizer (F?,B?) to the relaxed problem (3.11), we can find finite-dimensional matrices F?m,n ∈ Rm×n and
B?n,m ∈ Rn×m such that

F? = ΛΦmF?m,nΨ>n , B? = ΓΨnB
?
n,mΦ>m ,

where Λ = diag(λ1, λ2, . . . ), Γ = diag(γ1, γ2, . . . ), and Φm ∈ R∞×m and Ψn ∈ R∞×n are matrices whose
elements are φk(xi) and ψ`(yj), as defined in (3.8). In this case, Ω(F?,B?) can be rewritten as ω(F?m,n,B

?
n,m)

for some convex function ω defined over Rm×n × Rn×m. Hence, by minimizing ω over Rm×n × Rn×m, we
obtain a relaxation of (3.11), that is,

min
F,B∈R∞×∞

Ω(F,B) ≥ min
Fm,n∈Rm×n

Bn,m∈Rn×m

ω(Fm,n,Bn,m) .

In particular, the RHS is a finite-dimensional convex optimization. Lastly, this relaxation is tight, that is,

min
F,B∈R∞×∞

Ω(F,B) = min
Fm,n∈Rm×n

Bn,m∈Rn×m

ω(Fm,n,Bn,m) ,

if kernel matrices KX and KY whose elements are KX (xi, xi′) and KY(yj , yj′), are positive definite.

Remark. Looking inside the proof of Theorem 5, we know the solution to the infinite-dimensional opti-
mization is an operator taking form of F? = ΛΦmF?m,nΨ>n , with a finite-dimensional matrix F?m,n ∈ Rm×n.
Therefore, for any g ∈ L2

Y , we can deduce

F?[g](x) = KX (x,Xm)︸ ︷︷ ︸
1×m

F?m,n︸︷︷︸
m×n

g(Yn)︸ ︷︷ ︸
n×1

, (3.12)

where KX (x,Xm) maps each x ∈ X to a row vector whose i-th element is KX (x, xi) and g(Yn) denotes a
column vector whose j-th element is g(yj).

Now let’s draw a connection between the classic Nadaraya-Watson estimator and (3.12). For now consider
a special case: (xi, yi)’s are paired with m = n. In such a case, Nadaraya-Watson estimator takes the form∑

i,j

KX (x, xi) · 1
mδi=j · g(yj) ; (3.13)

Namely, for a new point x, the corresponding function value g(y) evaluated on its coupled y = F (x) is
a weighted average of g(yj)’s according to the affinity KX (x, xi). Our solution (3.12) extends the above
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nonparametric smoothing idea to the decoupled data case, where the coupling weights F?m,n is based on a
solution to a convex program, with

(3.12) =
∑
i,j

KX (x, xi) · F?m,n[i, j] · g(yj) . (3.14)

Lastly, we draw another connection to the Monte-Carlo integration. One downstream task after learning
the distribution ν is to perform numerical integration of g ∈ L2

Y under the measure ν ∈ P(Y). In our
transform sampling framework, this amounts to evaluating Ey∼F?#µ[g(y)] = Ex∼µ[g◦F ?(x)]. The integration,
casted in the induced operator form, has the expression

E
x∼µ

[
F?[g](x)

]
= E
x∼µ

[
KX (x,Xm)F?m,n︸ ︷︷ ︸

=:W (x)∈Rn

g(Yn)
]

= E
x∼µ

[ n∑
j=1

Wj(x)g(yj)
]

(3.15)

where W (x) can be interpreted as the importance weights in the Monte-Carlo integration. We conclude with
one more remark: if plug in instead x ∼ µ̂m in (3.15), one can verify that under mild conditions,

E
x∼µ̂m

[
F?[g](x)

]
=

1

n

n∑
j=1

g(yj) . (3.16)

That is, with the empirical measure as input, (3.15) outputs the simple sample average.

4 Experiments

This section examines the empirical performance of the reversible Gromov-Monge sampler. Following Section
3.3, we find a minimum (F̂ , B̂) of (3.5) over a suitable class F×B via gradient descent; we inspect the quality

of transform sampling (F̂#µ ≈ ν) and space isomorphism. Complete technical details of the experiments are
deferred to Section F.

Gaussian distributions Consider two strongly isomorphic Gaussian distributions on X = Y = R2: the
base measure µ = N(0, I2) and the target distribution ν = N(0,Σ), where I2 is the identity matrix and the
entries of Σ are Σ11 = Σ22 = 1 and Σ12 = Σ21 = 0.7. We let cX (x, x′) = x>x′ and cY(y, y′) = y>Σ−1y′,
then two network spaces are strongly isomorphic by design; indeed, any pair (F,B) given by F (x) = Σ1/2Qx
and B(y) = Q>Σ−1/2y for Q ∈ O(2), where O(2) is the orthogonal group, yields cX (x,B(y)) = cY(F (x), y)
for all x, y ∈ R2, hence F and B are strong isomorphisms. We aim at obtaining such a pair of (linear)
isomorphisms by letting F = B = {x 7→ Wx : W ∈ R2×2}, that is, the collection of all linear maps from
R2 to R2. We set KX = KY as a degree-2 polynomial kernel that maps (x, y) to (x>y + 1)2; the resulting
MMD compares distributions by matching the first two moments, which is sufficient to distinguish Gaussian
distributions. The resulting linear maps are given by F̂ (x) = Fx and B̂(y) = By for some F,B ∈ R2×2

satisfying

FF> =

(
1.035 0.751
0.751 1.094

)
, BΣB> =

(
0.940 0.001
0.001 0.944

)
, FB =

(
0.966 0.029
−0.020 1.029

)
.

Since FF> ≈ Σ, BΣB> ≈ I2, and FB ≈ I2, the pair (F̂ , B̂) can be seen as an instance of the pair of strong

isomorphisms described above. Figure 1 illustrates that F̂ is a strong isomorphism (Definition 3): (a) shows

that F̂#µ ≈ ν, that is, F̂ is roughly a transport map, and (b) implies that cX (x, x′) ≈ cY(F̂ (x), F̂ (x′)) holds.
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Figure 1: Gaussian experiment: m = n = 1000 and λ1 = λ2 = λ3 = 1. (a) shows {ỹj}400
j=1 versus

{F̂ (x̃i)}400
i=1, where {ỹj}400

j=1 and {x̃i}400
i=1 are i.i.d. from ν = N(0,Σ) and µ = N(0, I2), respectively;

they are new samples independent from {yj}1000
j=1 and {xi}1000

i=1 used in (3.5). (b) shows the points

{(cX (x̃i, x̃i′), cY(F̂ (x̃i), F̂ (x̃i′)))}40
i,i′=1 and a straight line y = x.

MNIST Next, let ν be a distribution of images corresponding to four digits (2, 4, 6, 7) from the MNIST
data set, which is supported on R784. Recall from Section 1 that the support Y of ν is low-dimensional [19],
hence choosing X = Rd with d � 784 is reasonable. Here, for visualization, we try an extreme embedding
task with d = 2 and µ = N(0, I2), that is, generate MNIST images by transforming two-dimensional Gaussian
samples.

Unlike the Gaussian example where we design the cost functions in advance to make the two spaces
strongly isomorphic, specifying them can be more complicated in general cases, which might affect the
quality of the RGM sampler. Here, we briefly discuss some of the most commonly used cost functions: given
a fixed exponent p ∈ N or constant α > 0,

(x, y) 7→ ‖x− y‖p︸ ︷︷ ︸
distance-based

or exp
(
−α‖x− y‖2

)︸ ︷︷ ︸
RBF kernel

.

Clearly, ‖x − y‖p is the most straightforward choice in Euclidean cases; p = 1 and p = 2 are indeed widely
used in the literature [43]. The RBF kernel, also referred to as the heat kernel, is a common choice in the
object matching literature [49]. In this MNIST example, we have found that these cost functions provide
reasonable performance once they are scaled properly. Here, we will present the results based on the RBF
kernel. Concretely, first define the RBF kernel Kd(x, y) = exp

(
−‖x− y‖2/d

)
for d ∈ N and x, y ∈ Rd; here,

the constant (1/d) serves as a scaling factor. Then, we define the cost functions as cX = (K2−mX )/sdX and
cY = (K784 −mY)/sdY , where mX and sdX are the median and the standard error of {KX (xi, xi′)}mi,i′=1,
respectively; mY and sdY are defined analogously. This additional standardization process helps aligning
the cost functions.

In the same vein, KX and KY must be properly specified; comparing the first two moments using the
degree-2 polynomial kernel is no longer sufficient as the target distribution is non-Gaussian. We suggest
using RBF kernels for the MMD terms as well; let KX = K2 and KY = K784. The MMD induced by the
RBF kernel indeed defines a metric between distributions under mild assumptions [41], which allows the
resulting MMD terms to represent the original constraint of the RGM distance as mentioned in Section 3.2.

For the function classes F and B, we need richer classes instead of the linear maps used in the Gaussian
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case. To this end, we will use fully connected neural networks with three hidden layers, each of which
consists of 50 neurons. Lastly, we let m = n = 20000 and λ1 = λ2 = λ3 = 100. Figure 2(a) shows the images

generated by applying the resulting map F̂ to new i.i.d. samples from µ = N(0, I2). Though not perfect, we
see that recognizable images can be generated by transforming two-dimensional Gaussian samples, efficient
in computation.5 Meanwhile, the map B̂ shows how the MNIST images can be embedded in R2. Figure

(a) MMD (R2) (b) Sinkhorn (R4) (c) Original

Figure 2: (a) and (b) are generated by transforming new i.i.d. samples from µ using F̂ : (a) from
µ = N(0, I2) with MMDs and (b) from µ = N(0, I4) with Sinkhorn divergences. (c) shows real
MNIST images.

3(a) shows {B̂(ỹj)}500
j=1, where {ỹj}500

j=1 are i.i.d. from ν (125 × 4 digits), independent from {yj}20000
j=1 used in

(3.5). We see that each digit forms a local cluster in R2, each of which is roughly representable according to
the range of the angular coordinate. Lastly, though not perfect as in Figure 1(b) (strongly isomorphic case),

Figure 3(b) shows that B̂ leads to a reasonable alignment of cX (B̂(y), B̂(y′)) versus cY(y, y′).
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Figure 3: (a) is generated by applying B̂ to 500 out-of-sample MNIST images, i.i.d. {ỹj}500
j=1 from

ν. (b) shows the points {(cX (B̂(ỹj), B̂(ỹj′)), cY(ỹj , ỹj′))}50
j,j′=1 and a straight line y = x.

5Computational cost for obtaining F̂ : R2 → R784 and computing F̂ (X) from X ∼ µ is far less than that of the
OT-based sampler as explained in Section 1.
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We clarify that the current experiment with µ = N(0, I2) is a proof of concept. Suppose one aims
to obtain images comparable to those from dedicated MNIST generators. In that case, exhaustive tests
should be done for tuning each component of the RGM sampler, which is beyond the scope of this paper.
Instead, we highlight that the RGM sampler with a simple modification can indeed generate significantly
improved images seen in Figure 2(b). These images are generated from the following settings that are fully
introduced in Section F: (X , µ, cX ) = (R4, N(0, I4),K4) and MMD terms in (3.5) are replaced by Sinkhorn
divergences [23]. As such, the RGM sampler is amendable to other more general choices of LX×Y in its
practical implementation.

5 Discussions

In this work, we proposed the Reversible Gromov-Monge (RGM) sampler, a new variant of transform sam-
pling based on the RGM distance operating between distributions on heterogeneous spaces. We discuss the
following important aspects of the RGM sampler.

Inductive bias Inductive bias alleviates the over-identified issue in transform sampling, as seen in Sec-
tion 1. RGM sampler induces a bias towards finding approximate isomorphisms: namely among all possible
(F,B) ∈ I(µ, ν), RGM sampler favors the ones that cX (x,B(y)) best matches cY(F (x), y) on average. In
particular, if the user of the RGM sampler specifies suitable cX , cY such that the resulting network spaces are
strongly isomorphic, the RGM sampler will identify a strong isomorphism, providing a beneficial inductive
bias to transform sampling. Intriguingly, borrowing insights from Brenier’s polar factorization [9], we can
always find cX , cY making two Polish spaces strongly isomorphic under mild conditions. Details are provided
in Section A.3.

Optimization We have introduced two optimization methods for computing RGM given finite samples
and proved their properties. As explained in Section 3.3, minimization via the gradient descent algorithm is
easy to implement and less complicated than the min-max optimization of GAN-type samplers. Nevertheless,
it is unclear whether one can derive global convergence results from this minimization. In general, different
optimization algorithms of transform samplers might output maps that favor distinctive inductive biases.
Such a phenomenon is an important research direction in the optimization literature.
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[49] Solomon, J., Peyré, G., Kim, V. G., and Sra, S. (2016). Entropic metric alignment for correspondence
problems. ACM Trans. Graph., 35(4).

[50] Sriperumbudur, B. K., Fukumizu, K., Gretton, A., Schölkopf, B., and Lanckriet, G. R. (2012). On the
empirical estimation of integral probability metrics. Electron. J. Stat., 6:1550–1599.

[51] Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regression. Ann. Statist.,
10(4):1040–1053.

[52] Sturm, K.-T. (2012). The space of spaces: curvature bounds and gradient flows on the space of metric
measure spaces. arXiv preprint arXiv:1208.0434.

[53] Taghvaei, A. and Jalali, A. (2019). 2-Wasserstein Approximation via Restricted Convex Potentials with
Application to Improved Training for GANs. arXiv preprint arXiv:1902.07197.

[54] Titouan, V., Flamary, R., Courty, N., Tavenard, R., and Chapel, L. (2019). Sliced gromov-wasserstein.
In Advances in Neural Information Processing Systems, volume 32.

[55] Wainwright, M. J. (2019). High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
University Press.

[56] Weed, J. and Berthet, Q. (2019). Estimation of smooth densities in wasserstein distance. arXiv preprint
arXiv:1902.01778.

[57] Weitkamp, C. A., Proksch, K., Tameling, C., and Munk, A. (2020). Gromov-wasserstein distance based
object matching: asymptotic inference. arXiv preprint arXiv:2006.12287.

[58] Xu, H., Luo, D., and Carin, L. (2019). Scalable gromov-wasserstein learning for graph partitioning and
matching. In Advances in Neural Information Processing Systems, volume 32.

19



SUPPLEMENTARY MATERIAL

This supplementary material collects details of Sections 3 and 4 along with relevant discussions and techni-
calities.

• Section A studies analytic properties of the RGM distance along with the details of the inductive bias
of the RGM sampler based on Brenier’s polar factorization.

• Section B derives the non-asymptotic rate of convergence by analyzing the statistical properties of the
RGM sampler.

• Section C discusses a further relaxation of the RGM into an infinite-dimensional convex program that
relies on a new representer theorem.

• Section D contains the proofs of the results in B and auxiliary lemmas.

• Section E discusses computational aspects of the RGM distance.

• Section F provides the implementation details of the experiments in Section 4.

A Analytic Properties and Inductive Biases Based on Polar Fac-
torization

A.1 Metric Properties and Some Basic Properties

In this section, we derive metric properties of the proposed RGM distance. First, observe that our RGM is
symmetric while the original GM is not. Next, we prove a triangle inequality using a gluing technique, as in
OT.

Proposition 2. RGM satisfies the triangle inequality, that is,

RGM(µX , µZ) ≤ RGM(µX , µY) + RGM(µY , µZ)

holds for three network spaces (X , µX , cX ), (Y, µY , cY), and (Z, µZ , cZ).

Proof of Proposition 2. Recall that

RGM(µX , µZ) = inf
(F,B)∈I(µX ,µZ)

CXZ(F,B) ,

where

CXZ(F,B) =

(∫
(cX (x,B(z))− cZ(F (x), z))2 dµX ⊗ µZ (x, z)

)1/2

.

First, (FZ ◦ FY , BX ◦BY) ∈ I(µX , µZ) holds for (FY , BX ) ∈ I(µX , µY) and (FZ , BY) ∈ I(µY , µZ) since

(Id, FZ ◦ FY)#µX = (Id, FZ)#(Id, FY)#µX

= (Id, FZ)#(BX , Id)#µY (∵ (FY , BX ) ∈ I(µX , µY))

= (BX , Id)#(Id, FZ)#µY

= (BX , Id)#(BY , Id)#µZ (∵ (FZ , BY) ∈ I(µY , µZ))

= (BX ◦BY , Id)#µZ .

X Z

Y

F

FY

B

BY

FZ

BX
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Moreover, in this case, we have

CXZ(FZ ◦ FY , BX ◦BY) ≤ CXY(FY , BX ) + CYZ(FZ , BY)

since

CXZ(FZ ◦ FY , BX ◦BY)

=

(∫
[cX (x,BX ◦BY(z))− cZ(FZ ◦ FY(x), z)]

2
dµX ⊗ µZ (x, z)

)1/2

≤
(∫ ∫

[cY(x,BX ◦BY(z))− cY(FY(x), BY(z))]
2

dµZ (z) dµX (x)

)1/2

+

(∫ ∫
[cY(FY(x), BY(z))− cZ(FZ ◦ FY(x), z)]

2
dµX (x) dµZ (z)

)1/2

=

(∫ ∫
[cY(x,BX (y))− cY(FY(x), y)]

2
dµY (y) dµX (x)

)1/2

(∵ (BY)#µZ = µY)

+

(∫ ∫
[cY(y,BY(z))− cZ(FZ(y), z)]

2
dµY (y) dµZ (z)

)1/2

(∵ (FY)#µX = µY)

= CXY(FY , BX ) + CYZ(FZ , BY) .

Hence,

RGM(µX , µZ) = inf
(F,B)∈I(µX ,µZ)

CXZ(F,B)

≤ inf
(FY ,BX )∈I(µX ,µY)
(FZ ,BY)∈I(µY ,µZ)

CXZ(FZ ◦ FY , BX ◦BY)

≤ inf
(FY ,BX )∈I(µX ,µY)

CXY(FY , BX ) + inf
(FZ ,BY)∈I(µY ,µZ)

CYZ(FZ , BY)

= RGM(µX , µY) + RGM(µY , µZ) .

Next, we study whether RGM(µ, ν) = 0 holds if and only if (X , µ, cX ) ∼= (Y, ν, cY). Here the equivalence
relation induced by ∼= can be read from Definition 3. As in the Gromov-Wasserstein distance, in general, we
can only assert the if part without further conditions. The following proposition states that RGM(µ, ν) = 0 if
and only if (X , µ, cX ) ∼= (Y, ν, cY) under some additional conditions on cX and cY , thereby implying Theorem
2.

Proposition 3. Let (X , µ, cX ) and (Y, ν, cY) be two network spaces. If (X , µ, cX ) ∼= (Y, ν, cY), then
RGM(µ, ν) = 0. The converse is true if there exists a continuous and strictly monotone function h : R+ → R
such that cX = h(dX ) and cY = h(dY).

Proof of Proposition 3. Suppose RGM(µ, ν) = 0. Due to the inequality GW(µ, ν) ≤ RGM(µ, ν), we have
GW(µ, ν) = 0, that is,

inf
γ∈Π(µ,ν)

(∫
X×Y

∫
X×Y

(h(dX (x, x′))− h(dY(y, y′)))2 dγ (x, y) dγ (x′, y′)

)1/2

= 0 .

Since there exists a coupling γ? that achieves the minimum of GW due to Theorem 2.2 of [13], we conclude

h(dX (x, x′)) = h(dY(y, y′))
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holds γ? ⊗ γ? almost surely on (X × Y)2. Since h is strictly monotone, this means

dX (x, x′) = dY(y, y′)

holds γ? ⊗ γ? almost surely on (X × Y)2. Therefore,

inf
γ∈Π(µ,ν)

(∫
X×Y

∫
X×Y

(dX (x, x′)− dY(y, y′))2 dγ (x, y) dγ (x′, y′)

)1/2

≥
(∫
X×Y

∫
X×Y

(dX (x, x′)− dY(y, y′))2 dγ? (x, y) dγ? (x′, y′)

)1/2

= 0 .

Theorem 1 implies that metric measure spaces (X , µ, dX ) and (Y, ν, dY) are strongly isomorphic. Since
cX = h(dX ) and cY = h(dY), it follows easily that (X , µ, cX ) and (Y, ν, cY) are strongly isomorphic as well.

To prove the if part, suppose (X , µ, cX ) and (Y, ν, cY) are strongly isomorphic and consider a strong
isomorphism T . Then, (T, T−1) ∈ I(µ, ν) holds since (Id, T )#µ = (T−1, Id)#T#µ = (T−1, Id)#ν. Also, by
definition of T , we have cX (x, T−1(y)) = cY(T (x), T ◦ T−1(y)) = cY(T (x), y) for all (x, y) ∈ X × Y, thus

RGM(µ, ν) ≤
∫
X×Y

(cX (x, T−1(y))− cY(T (x), y))2 dµ⊗ ν = 0 .

We conclude this section with a few more properties and examples. We first complete the proof of
Proposition 1, which characterizes the relations among three distances: GW, GM, and RGM.

Proof of Proposition 1. Define

Q(γ) =

∫
X×Y

∫
X×Y

(cX (x, x′)− cY(y, y′))2 dγ (x, y) dγ (x′, y′) (A.1)

for all γ ∈ Π(µ, ν) so that
GW(µ, ν)2 = inf

γ∈Π(µ,ν)
Q(γ) .

Recall that ΠT = {(Id, T )#µ : T ∈ T (µ, ν)} ⊂ Π(µ, ν). Hence, as noted in Section 2,

GM(µ, ν)2 = inf
γ∈ΠT

Q(γ) .

Define Π′ = {γ ∈ Π(µ, ν) : γ = (Id, F )#µ = (B, Id)#ν ∃(F,B) ∈ I(ν, µ)}, then one can check

RGM(µ, ν)2 = inf
γ∈Π′

Q(γ)

using change-of-variables. Note that Π′ may be rewritten as {γ ∈ ΠT : γ = (B, Id)#ν ∃B ∈ T (ν, µ)}. Hence,
Π′ ⊆ ΠT ⊆ Π(µ, ν), thus we conclude GW(µ, ν) ≤ GM(µ, ν) ≤ RGM(µ, ν).

In short, Proposition 1 shows that RGM, GM, and GW are minimization problems of a common objective
function Q over different constraint sets of couplings, namely, Π′ ⊆ ΠT ⊆ Π(µ, ν), respectively.

Next, we discuss the binding constraint (Id, F )#µ = (B, Id)#ν, or equivalently, the feasible set I(µ, ν).
One should notice that I(µ, ν) might be empty, for instance, if µ and ν are discrete and their supports have
different cardinality; say, µ = δx and ν = (δy1 + δy2)/2, namely, Dirac measures supported on x ∈ X and
y1, y2 ∈ Y, then even T (µ, ν) is empty, meaning that the Monge problem is infeasible and so is RGM. On the
flip side, the following lemma gives a sufficient condition for (F,B) ∈ I(µ, ν) which can be useful in practice.
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Lemma 1. Let (F,B) ∈ T (µ, ν)× T (ν, µ). If F ◦B = Id or B ◦ F = Id holds, then (F,B) ∈ I(µ, ν).

Proof. Without loss of generality, assume B ◦ F = Id. Then,

(Id, F )#µ = (B ◦ F, F )#µ = (B, Id)#(F#µ) = (B, Id)#ν .

Hence, (F,B) ∈ I(µ, ν).

The following example illustrates that this condition can be used to find a pair (F,B) ∈ I(µ, ν) when µ
and ν are Gaussian distributions.

Example 1. Given p < q, suppose µ = N(0, Ip) and ν = N(0,Σ), where Ip ∈ Rp×p is the identity matrix
and Σ ∈ Rq×q is of rank p. Then, we can find a rank-p matrix A ∈ Rq×p such that Σ = AA>. Let F (x) = Ax
and B(y) = A†y, then one can easily check F#µ = ν, B#ν = µ, and B ◦ F = Id. Hence, (F,B) ∈ I(µ, ν).

Lastly, we provide a simple example that shows that properly chosen cost functions give a strong iso-
morphism between two Gaussian distributions.

Example 2. Consider two Gaussian distributions on Rd, say µ = N(0,Σ1) and ν = N(0,Σ2). Assume Σ1

and Σ2 are invertible. Then two network spaces (Rd, µ, cX ) and (Rd, ν, cY) are strongly isomorphic if cX and
cY are Mahalanobis distances, that is,

cX (x, x′) =

√
(x− x′)>Σ−1

1 (x− x′) , cY(y, y′) =

√
(y − y′)>Σ−1

2 (y − y′) .

To see this, let T = Σ
1/2
2 Σ

−1/2
1 , where Σ

1/2
1 and Σ

1/2
2 are the square roots of Σ1 and Σ2, respectively.

Obviously, a linear map T satisfies T ∈ T (µ, ν) and cX (x, x′) = cY(Tx, Tx′) for all x, x′ ∈ Rd. According
to Definition 3, a linear map T is a strong isomorphism. Proposition 3 implies RGM(µ, ν) = 0. Notice that
the same results hold for cX (x, x′) = x>Σ−1

1 x′ and cY(y, y′) = y>Σ−1
2 y′ as well.

A.2 Analysis of GW = RGM in Non-atomic Cases

We have seen in Proposition 1 that GW ≤ GM ≤ RGM holds in general. This section shows that these
inequalities become equalities under mild conditions. The key idea is that Π′ is dense in Π(µ, ν) with respect
to the weak topology if µ and ν have no atoms. It is already studied in the optimal transport literature
that ΠT is dense in Π(µ, ν) under certain conditions, which has been used to show that the Monge and the
Kantorovich problems have the same infimum, for instance, see Theorem 1.1 of [10]. The following lemma
shows the denseness of Π′ in Π(µ, ν) in a similar fashion.

Lemma 2. Let (X , µ) and (Y, ν) be two Polish probability spaces, where X and Y are closed subsets of Rd
with d ≥ 2. Suppose that µ({x}) = ν({y}) = 0 for any (x, y) ∈ X × Y. Then, for any γ ∈ Π(µ, ν), we can
find a sequence (γn)n∈N in Π′ converging weakly to γ.

Proof. Fix a γ ∈ Π(µ, ν). Our goal is to construct a sequence (Fn, Bn)n∈N in I(µ, ν) such that a sequence
(γn)n∈N, defined by γn = (Id, Fn)#µ = (Bn, Id)#ν, converges weakly to γ.

The first step is to establish equivalence of the two Polish probability spaces (γ,X × Y) and ([0, 1]d, λ),
where λ is the Lebesgue measure on Rd restricted to [0, 1]d. To this end, we invoke Theorem 16 in Chapter
15 of [45], which states that any Polish probability space that has no atoms is equivalent to ([0, 1], λ1), where
λ1 is the Lebesgue measure on R restricted to [0, 1]. Note that γ has no atoms, namely, γ({(x, y)}) = 0
for any (x, y) ∈ X × Y; also, λ has no atoms. Therefore, (γ,X × Y) and ([0, 1]d, λ) are equivalent as both
of them are equivalent to a common space ([0, 1], λ1).6 More precisely, this equivalence implies that there
exist maps T1 : [0, 1]d → Rd and T2 : [0, 1]d → Rd such that (T1, T2)#λ = γ. Accordingly, (T1)#λ = µ and
(T2)#λ = ν as γ ∈ Π(µ, ν).

6For the precise definition of this equivalence and related details, see Chapter 15 of [45]. Here, we only provide
and paraphrase some results from this chapter that are relevant to the proof.
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Next, we approximate T1 and T2 by bijective transport maps. Theorem 2.1 of [10] shows that we can
find a sequence (Tn1 , T

n
2 )n∈N such that Tn1 : [0, 1]d → X and Tn2 : [0, 1]d → Y are bijective diffeomorphisms

satisfying (Tn1 )#λ = µ and (Tn2 )#λ = ν, respectively, and

lim
n→∞

∫
[0,1]d

‖Tn1 (z)− T1(z)‖dλ(z) = lim
n→∞

∫
[0,1]d

‖Tn2 (z)− T2(z)‖ dλ(z) = 0 . (A.2)

For each n ∈ N, define Fn = Tn2 ◦ (Tn1 )
−1

and Bn = Tn1 ◦ (Tn2 )
−1

, then (Fn, Bn) ∈ I(µ, ν) by Lemma 1; hence
γn := (Id, Fn)#µ = (Bn, Id)#ν ∈ Π′.

Lastly, we prove that (γn)n∈N converges weakly to γ. It suffices to show that∫
X×Y

f(x, y) dγ (x, y) = lim
n→∞

∫
X×Y

f(x, y) dγn (x, y) (A.3)

for all bounded and Lipschitz functions f on X × Y. As (T1, T2)#λ = γ,∫
X×Y

f(x, y) dγ (x, y) =

∫
X×Y

f(x, y) d(T1, T2)#λ (x, y) =

∫
[0,1]d

f(T1(z), T2(z)) dλ(z) .

By construction, γn = (Id, Fn)#(Tn1 )#λ = (Tn1 , T
n
2 )#λ, hence∫

X×Y
f(x, y) dγn (x, y) =

∫
X×Y

f(x, y) d(Tn1 , T
n
2 )#λ (x, y) =

∫
[0,1]d

f(Tn1 (z), Tn2 (z)) dλ(z) .

If f is Lipschitz with constant L,∣∣∣∣∫
X×Y

f(x, y) dγn (x, y)−
∫
X×Y

f(x, y) dγ (x, y)

∣∣∣∣
≤
∫

[0,1]d
|f(Tn1 (z), Tn2 (z))− f(T1(z), T2(z))|dλ(z)

≤ L ·
∫

[0,1]d
(‖Tn1 (z)− T1(z)‖+ ‖Tn2 (z)− T2(z)‖) dλ(z) ,

where the last inequality is due to Lipschitzness. Due to (A.2), we have (A.3).

Using Lemma 2, we are now ready establish the following result showing GW = RGM under mild
conditions.

Proof of Theorem 3. Recall that Q is the objective function of couplings defined in (A.1). As cX and cY are
bounded, one can verify that Q is continuous on Π(µ, ν) with respect to the weak topology, for instance,
see Lemma 2.3 of [13]. By Theorem 2.2 of [13], there exists an optimal coupling γ∗ ∈ Π(µ, ν) such that
GW(µ, ν) = Q(γ∗). By Lemma 2, we can find a sequence (γn)n∈N in Π′(µ, ν) converging weakly to γ∗.
Accordingly,

GW(µ, ν) = Q(γ∗) = lim
n→∞

Q(γn) ≥ RGM(µ, ν) .

As GW(µ, ν) ≤ RGM(µ, ν) by Proposition 1, we have GW(µ, ν) = RGM(µ, ν).

Remark. Roughly speaking, the fact that Π′ is dense in Π(µ, ν) implies that the binding constraint of the
RGM distance is in fact, a mild restriction on the set of couplings Π(µ, ν). In other words, restricting to
couplings Π′ does not incur a loss of information in terms of minimizing the quadratic objective function Q.
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A.3 Inductive Bias of RGM and Brenier’s Polar Factorization

As mentioned in Section 5, given two Polish probability spaces (X , µ) and (Y, ν), we prove that there is a
pair of cost functions cX and cY such that the resulting network spaces (X , µ, cX ) and (Y, ν, cY) are strongly
isomorphic. More importantly, we discuss how these costs give rise to a specific strong isomorphism based
on Brenier’s polar factorization, providing a deeper insight into the inductive bias of the RGM sampler.

Preliminaries Throughout this section, we focus on Borel probability measures on Rd that are absolutely
continuous with respect to the d-dimensional Lebesgue measure and have finite second moments; Pac2 (Rd)
denotes the collection of such measures. We can always find a unique optimal transport map—given as
the gradient of a convex function—between any two elements in Pac2 (Rd); this is Brenier’s theorem briefly
mentioned in Section 1, which we formally state as follows.

Theorem 6 (Brenier’s Theorem). Given λ, ρ ∈ Pac2 (Rd), we can find a convex function ψ : Rd → R such
that ∇ψ and (∇ψ)−1 are unique optimal transport maps between them:

∇ψ = arg min
T#λ=ρ

∫
Rd
‖x− T (x)‖2 dλ(x) and (∇ψ)−1 = arg min

T#ρ=λ

∫
Rd
‖x− T (x)‖2 dρ(x) .

Remark. The proof of Brenier’s theorem requires intricate convex analysis techniques. It is helpful to con-
sider a simple case—where both λ and ρ are Gaussian—to better understand the main message of Brenier’s
theorem. Suppose λ = N (0, Id) and ρ = N (0,Σ)—assuming Σ is invertible—and focus on linear transport
maps, that is, T ∈ Rd×d such that TT> = Σ the transport cost boils down to

E
x∼N (0,Id)

‖(Id − T )x‖2 = tr((Id − T )(Id − T )>) = tr(Id)− 2tr(T ) + tr(Σ) .

Therefore, the transport cost is minimized by a linear transport map T that maximizes its trace under the
constraint TT> = Σ. Using linear algebra techniques, one can verify that Σ1/2, the unique square root
of Σ, is the optimal linear transport map;7 we can indeed see that it is the gradient of a convex function
x 7→ 1

2x
>Σ1/2x. Last but not least, notice that any admissible linear transport map T ∈ Rd×d, that satisfies

TT> = Σ, can be decomposed as T = Σ1/2S for some S ∈ O(d), where O(d) is the orthogonal group in
dimension d. The last fact is called the matrix factorization theorem, which will be elaborated in A.3.2 to
shed light on Brenier’s polar factorization, as done here to example Brenier’s theorem.

A.3.1 Designing Cost Functions for Strong Isomorphism

We have already seen in Example 2 that Mahalanobis distances make two Gaussian distributions strongly
isomorphic. Though this constructive example seems to be a special case, it indicates a fundamental principle
that carries over to general cases. We will elaborate on the general constructive principle in this section by
referring to a common space Polish probability space (Z, λ) to design cost functions. Figure 4(a) visualizes
Example 2 along with an additional base measure λ := N (0, Id); as we have remarked after Theorem 6,

linear maps Σ
1/2
1 and Σ

1/2
2 are the optimal transport maps from λ to µ and ν, respectively.

Letting cZ be the Euclidean distance, notice that we may rewrite the Mahalanobis distances in Example
2 as

cX (x, x′) = cZ(Σ
−1/2
1 x,Σ

−1/2
1 x′) ,

cY(y, y′) = cZ(Σ
−1/2
2 y,Σ

−1/2
2 y′) .

This shows that cX and cY are derived by properly combining the base distance cZ with the optimal

transport maps Σ
−1/2
1 and Σ

−1/2
2 , respectively. Also, in this case, Σ

1/2
2 Σ

−1/2
1 , a composition of the two

optimal transport maps, gives rise to a strong isomorphism under these cost functions.

7Though this argument is designed to show that Σ1/2 is optimal among linear transport maps to get insights, it
can be shown that Σ1/2 is, in fact, optimal among all admissible transport maps.
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N (0,Σ1) N (0,Σ2)

N (0, Id)

Σ
1/2
2 Σ

−1/2
1

Σ
−1/2
1

Σ
1/2
2Σ

1/2
1

(a) Example 2

(X , µ) (Y, ν)

(Z, λ)

∇ψ2◦(∇ψ1)−1

(∇ψ1)−1

∇ψ2∇ψ1

(b) Any µ, ν ∈ Pac
2 (Rd)

Figure 4: Optimal transport maps by Brenier’s theorem

The aforementioned procedure is indeed applicable to any µ, ν ∈ Pac2 (Rd). As visualized in Figure 4(b),

simply replace the linear maps Σ
1/2
1 and Σ

1/2
2 with the optimal transport maps ∇ψ1 and ∇ψ2 from any

suitable base measure λ ∈ Pac2 (Rd), respectively, by Brenier’s theorem. Then, for any suitable base distance
cZ , define

cX (x, x′) = cZ((∇ψ1)−1(x), (∇ψ1)−1(x′)) ,

cY(y, y′) = cZ((∇ψ2)−1(y), (∇ψ2)−1(y′)) .
(A.4)

Then, the network spaces (X , µ, cX ) and (Y, ν, cY),8 where X = supp(µ) and Y = supp(ν), are strongly
isomorphic; also, ∇ψ2 ◦ (∇ψ1)−1 is a strong isomorphism. Notice that we have derived this fundamental
result by simply rethinking Example 2 via Brenier’s theorem and generalizing the diagram in Figure 4. We
reiterate that the principle behind the isomorphic Gaussian example is fundamental and generalizable to
generic measures in Pac2 (Rd); it is certainly not just a toy example.

A.3.2 Identifying Strong Isomorphism

In the previous section, we have seen how to define suitable cost functions cX and cY that make µ, ν ∈ Pac2 (Rd)
strongly isomorphic. As pointed out in Section 5, the RGM sampler brings in an inductive bias towards
a strong isomorphism; indeed, we have shown that ∇ψ2 ◦ (∇ψ1)−1 is a strong isomorphism under the cost
functions in (A.4), leading to RGM(µ, ν) = 0. In this section, we look at these results from a different angle
using an insight from Brenier’s polar factorization, highlighting unseen aspects of the inductive bias.

We start from Figure 4(b): fix µ, ν ∈ Pac2 (Rd) and let X = supp(µ) and Y = supp(ν). Also, let λ be the
Lebesgue measure on Z = [0, 1]d. Recall that the key ingredients of the diagram were optimal transport maps
∇ψ1 and ∇ψ2 from the base measure. It turns out that we may replace them with other transport maps—
possibly not optimal—from the base measure. This observation comes from Brenier’s polar factorization [9],
which we paraphrase as follows:

Theorem 7 (Brenier’s Polar Factorization). For any transport map T1 from λ to µ, we can find a unique
map s1 : Z → Z such that (s1)#λ = λ and T1 = ∇ψ1 ◦ s1.

In other words, any transport map from λ to µ is factorized into a composition of the unique optimal
transport map ∇ψ1 and a (Lebesgue) measure-preserving map s1 : Z → Z. Let S(Z) be the collection of
all measure-preserving maps from Z to Z, then Brenier’s polar factorization essentially shows a one-to-one
correspondence between T (λ, µ) and S(Z). Analogously, this implies a one-to-one correspondence between
T (λ, ν) and S(Z).

Remark (Matrix polar factorization). To get insights into this sophisticated result, let us pause and go back
to the remark below Theorem 6, where we have mentioned that in the Gaussian case, any linear transport

8Technically, one need to check continuity of cX and cY . If µ and ν have smooth densities, it is known that ∇ψ1

and ∇ψ2 are sufficiently smooth, hence continuity is guaranteed.
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map is decomposed as T = Σ1/2S, the multiplication of the optimal transport map Σ1/2 and an orthogonal
matrix S ∈ O(d),9 which exactly correspond to ∇ψ1 and s1 in Theorem 7, respectively. In other words,
Brenier’s Polar Factorization is a generalization of the matrix factorization that we have discussed earlier
by restricting to the Gaussian case and linear transport maps.

As mentioned earlier, we now replace the two arrows—the optimal transport maps ∇ψ1 and ∇ψ2 from
the base measure—in Figure 4(b) with any transport maps, namely, ∇ψ1 ◦ s1 and ∇ψ2 ◦ s2, respectively, for
any s1, s2 ∈ S(Z). One technicality here is that we restrict our focus to bijective s1 and s2 to use invertibility
to reverse the arrows.10 Then, we can also define a transport map ∇ψ2 ◦ s2 ◦ (∇ψ1 ◦ s1)−1 from X to Y
by chaining the transport maps µ → λ and λ → ν as in Figure 4(b). These changes are shown in the new
diagram Figure 5.

(X , µ) (Y, ν)

(Z, λ)

∇ψ2◦s2◦(∇ψ1◦s1)−1

(∇ψ1◦s1)−1

∇ψ2◦s2∇ψ1◦s1

Figure 5: Generalization of Figure 4(b) via Brenier’s polar factorization.

Now, let us go back to transform sampling. The arrow from µ to ν in Figure 5 in fact shows that there
are many transport maps from µ to ν, that is,

F = {∇ψ2 ◦ s2 ◦ (∇ψ1 ◦ s1)−1 : bijective s1, s2 ∈ S(Z)} ⊂ T (µ, ν) .

Though F is a collection of transport maps constructed in a certain way, that is, chaining µ → λ and
λ → ν, it still consists of infinitely many transport maps, reiterating that transform sampling is indeed
over-identified. We show how the RGM sampler induces an inductive bias in this case, thereby choosing a
strong isomorphism from the collection F .

Consider the cost functions cX and cY defined by (A.4) with a suitable distance cZ . As transport maps
in F are invertible, by Lemma 1,

I ′ := {(F, F−1) : F ∈ F} ⊂ I(µ, ν).

Recall that computing the RGM distance amounts to finding (F,B) such that cX (x,B(y)) best matches
cY(F (x), y) on average. For (F,B) ∈ I ′, by (A.4), we have

cX (x,B(y)) = cZ((∇ψ1)−1(x), s1 ◦ s−1
2 ◦ (∇ψ2)−1(y)) ,

cY(F (x), y) = cZ(s2 ◦ s−1
1 ◦ (∇ψ1)−1(x), (∇ψ2)−1(y)) .

Therefore, cX (x,B(y)) = cY(F (x), y) indeed holds provided s1 = s2, which amounts to a pair (F,B) =
(∇ψ2 ◦ (∇ψ1)−1,∇ψ1 ◦ (∇ψ2)−1) ∈ I ′. In other words, among infinitely many possible elements in F
characterized by s1 and s2, the RGM sampler with cost functions in (A.4) favors ∇ψ2 ◦ (∇ψ1)−1, the strong
isomorphism under these cost functions as visualized in Figure 4(b). In summary,

• we can characterize a collection F of transport maps by pairs of bijective measure-preserving maps
(s1, s2) via Brenier’s polar factorization,

• the RGM sampler with cost functions in (A.4) finds the one in F satisfying the rearrangement corre-
spondance s1 = s2, which is exactly the strong isomorphism (inductive bias).

9Note that S ∈ O(d) transports N (0, Id) to itself.
10Elements of S(Z) may not be invertible in general. That said, a subset of S(Z) consisting of bijective measure-

preserving maps is dense in S(Z) as discussed in [10].
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B Statistical Theory

This section serves to prove Theorem 4. Without loss of generality, we assume λ1 = λ2 = λ3 = 1 in
C(µ, ν, F,B) since the proof is essentially identical with any constants λi, 1 ≤ i ≤ 3. For convenience, we
denote

C0(F,B) =

∫
(cX (x,B(y))− cY(F (x), y))2 dµ⊗ ν ,

M(F,B) = MMD2
KY (F#µ, ν) + MMD2

KX (µ,B#ν) + MMD2
KX⊗KY ((Id, F )#µ, (B, Id)#ν)

and therefore C(µ, ν, F,B) = C0(F,B) +M(F,B). Similarly, define the empirical counterparts as

Ĉ0(F,B) =
1

mn

m∑
i=1

n∑
j=1

(cX (xi, B(yj))− cY(F (xi), yj))
2 ,

M̂(F,B) = MMD2
KY (F#µ̂m, ν̂n) + MMD2

KX (µ̂m, B#ν̂n) + MMD2
KX⊗KY ((Id, F )#µ̂m, (B, Id)#ν̂n)

and thus C(µ̂m, ν̂n, F,B) = Ĉ0(F,B) + M̂(F,B).

Our goal is to give an upper bound on C(µ, ν, F̂ , B̂)− inf(F,B)∈F×B C(µ, ν, F,B). To this end, first recall
that

C(µ̂m, ν̂n, F̂ , B̂) ≤ C(µ̂m, ν̂n, F,B)

holds for any F ∈ F and B ∈ B by definition of F̂ and B̂ given in Theorem 4. Therefore,

C(µ, ν, F̂ , B̂)− C(µ, ν, F,B) ≤ C(µ, ν, F̂ , B̂)− C(µ̂m, ν̂n, F̂ , B̂) + C(µ̂m, ν̂n, F,B)− C(µ, ν, F,B) .

The RHS can be decomposed as

C0(F̂ , B̂)− Ĉ0(F̂ , B̂) +M(F̂ , B̂)− M̂(F̂ , B̂) + Ĉ0(F,B)− C0(F,B) + M̂(F,B)−M(F,B) .

To further control the expression, we will first derive probabilistic bounds on |Ĉ0(F,B) − C0(F,B)| and

|M̂(F,B)−M(F,B)| that hold for a fixed (F,B) ∈ F ×B via standard concentration inequalities. Later, we

will establish uniform probabilistic bounds on sup(F,B)∈F×B |Ĉ0(F,B)−C0(F,B)| and sup(F,B)∈F×B |M̂(F,B)−
M(F,B)|, using tools from empirical process theory.

B.1 Concentration Inequalities

We utilize the McDiarmid’s inequality to derive bounds on |Ĉ0(F,B)−C0(F,B)| and |M̂(F,B)−M(F,B)|.
To give a bound on the former, we make the following boundedness assumption.

Assumption 1. cX (·, ·), cY(·, ·) is uniformly bounded, that is, there exists a constant H > 0 such that

sup
(x,x′)∈X×X

cX (x, x′), sup
(y,y′)∈Y×Y

cY(y, y′) ≤
√
H

4
.

Proposition 4. Under Assumption 1, for any pair (F,B) ∈ F × B and δ > 0,

|Ĉ0(F,B)− C0(F,B)| -

√
log
(
m∨n
δ

)
m ∧ n

holds with probability at least 1− 4δ.

To derive a similar bound on |M̂(F,B)−M(F,B)|, we assume that kernels are bounded.
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Assumption 2. There exists K > 0 such that

sup
x∈X
|KX (x, x)| , sup

y∈Y
|KY(y, y)| ≤ K .

Proposition 5. Under Assumption 2, for any pair (F,B) ∈ F × B and δ > 0,

|M̂(F,B)−M(F,B)| -
√

log(1/δ)

m
+

√
log(1/δ)

n

holds with probability at least 1− 6δ.

B.2 Uniform Deviations

We now derive uniform deviation bounds for

sup
(F,B)∈F×B

|Ĉ0(F,B)− C0(F,B)| , sup
(F,B)∈F×B

|M̂(F,B)−M(F,B)| .

For the former, we use the notion of uniform covering numbers defined below.

Definition 6 (Uniform Covering Number). Let G be a collection of real-valued functions defined on a set
Z. Given m points z1, . . . , zm ∈ Z and any δ > 0, we define N∞(δ,G, {zi}mi=1) to be the δ-covering number
of G under the pseudometric d induced by points z1, . . . , zm:

d(g, g′) := max
i∈[m]

|g(zi)− g′(zi)| .

Also, we define the uniform δ-covering number of G as follows:

N∞(δ,G,m) := sup {N∞(δ,G, {zi}mi=1) : z1, . . . , zm ∈ Z} .

Here, the supremum is taken over all possible combinations of m points in Z.

Also, we make the following assumptions.

Assumption 3. Fk and B` (see Section 3.3) consist of uniformly bounded functions, that is, there exists a
constant b > 0 such that

max
k∈[dim(Y)]

sup
Fk∈Fk

‖Fk‖∞ , max
`∈[dim(X )]

sup
B`∈B`

‖B`‖∞ ≤ b .

Assumption 4. There exists a constant L > 0 such that

|cX (x, x1)− cX (x, x2)| ≤ L‖x1 − x2‖ , |cY(y1, y)− cY(y2, y)| ≤ L‖y1 − y2‖ .

This Lipschitzness assumption ensures the smoothness of a map (F,B) 7→ |Ĉ0(F,B) − C0(F,B)| over
F × B, which allows us to utilize the uniform covering numbers.

Proposition 6. Under Assumptions 1, 3, 4, for any ε > 0 and δ > 0,

sup
(F,B)∈F×B

|Ĉ0(F,B)− C0(F,B)|

-

√
log
(
m∨n
δ

)
m ∧ n

+ ε+

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`, n)

m ∧ n

holds with probability at least 1− 2δ.
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Now, the remaining task is to choose ε carefully in Proposition 6 for a concrete upper bound. To this
end, we utilize the pseudo-dimension defined below.

Definition 7 (Pseudo-Dimension). Let G be a collection of real-valued functions defined on a set Z. Given
a subset S := {z1, . . . , zm} ⊂ Z, we say S is pseudo-shattered by G if there are r1, . . . , rm ∈ R such that for
each b ∈ {0, 1}m we can find gb ∈ G satisfying sign(gb(zi) − ri) = bi for all i ∈ [m]. We define the pseudo-
dimension of G, denoted as Pdim(G), as the maximum cardinality of a subset S ⊂ Z that is pseudo-shattered
by G.

Using a well-established relation of the uniform covering number and the pseudo-dimension (Lemma 5),
we can simplify Proposition 6 as follows.

Corollary 1. Under Assumptions 1, 3, 4, for any δ > 0,

sup
(F,B)∈F×B

|Ĉ0(F,B)− C0(F,B)|

-

√
log
(
m∨n
δ

)
m ∧ n

+

√√√√√ log(m ∨ n)

m ∧ n

dim(Y)∑
k=1

Pdim(Fk) +

dim(X )∑
`=1

Pdim(B`)


holds with probability at least 1− 2δ.

To derive an upper bound on sup(F,B)∈F×B |M̂(F,B) −M(F,B)|, we first introduce Rademacher com-
plexities defined below.

Definition 8 (Rademacher Complexity). Let (Z, ρ) be a probability space and G be a collection of measurable
functions defined on Z. We define the Rademacher complexity of G with respect to m samples from ρ as
follows:

Rm(G, ρ) = E
zi

iid∼ρ
E
εi

sup
g∈G

∣∣∣∣∣ 1

m

m∑
i=1

εig(zi)

∣∣∣∣∣ ,
Here, z1, . . . , zm are i.i.d. samples from ρ and ε1, . . . , εm are i.i.d. Rademacher random variables such that
(z1, . . . , zm) and (ε1, . . . , εm) are independent.

Proposition 7. Denote a closed unit ball of any RKHS H as H(1). Also, let (Id,F) := {(Id, F ) : F ∈ F}
and (B, Id) := {(B, Id) : B ∈ B}; hence, they are classes of maps from X to X × Y and from Y to X × Y,
respectively. Under Assumption 2, for any δ > 0,

sup
(F,B)∈F×B

|M̂(F,B)−M(F,B)| -
√

log(1/δ)

m
+

√
log(1/δ)

n
+Rm(HY(1) ◦ F , µ) +Rn(HX (1) ◦ B, ν)

+Rm(HX×Y(1) ◦ (Id,F), µ) +Rn(HX×Y(1) ◦ (B, Id), ν)

holds with probability at least 1− 6δ. Here, F ◦ G = {f ◦ g : f ∈ F , g ∈ G} for any function classes F and G
with matching input and output space.

Now, the only remaining task is to bound four Rademacher complexities. We will derive upper bounds
using the chaining technique. To illustrate the main idea, let us consider HY(1) ◦ F . Recall that

Rm(HY(1) ◦ F , µ) = E
xi

iid∼µ
Rm(HY(1) ◦ F , {xi}mi=1) ,

where Rm(HY(1)◦F , {xi}mi=1) is the empirical Rademacher complexity of HY(1)◦F associated with {xi}mi=1:

Rm(HY(1) ◦ F , {xi}mi=1) = E
εi

sup
h∈HY(1),F∈F

∣∣∣∣∣ 1

m

m∑
i=1

εih(F (xi))

∣∣∣∣∣ = E
εi

sup
h∈HY(1),F∈F

1

m

m∑
i=1

εih(F (xi)) .

30



Notice that we may remove the absolute value since HY(1) = −HY(1). Now, considering {xi}mi=1 as fixed,
we will first bound the empirical Rademacher complexity by replacing the Rademacher random variables
with Gaussian random variables. Let gi be i.i.d. standard Gaussian random variables, then it is well known
that

Rm(HY(1) ◦ F , {xi}mi=1) ≤
√
π

2
E
gi

sup
h∈HY(1),F∈F

1

m

m∑
i=1

gih(F (xi)) =:

√
π

2
Gm(HY(1) ◦ F , {xi}mi=1) .

Also, under the assumption that KY is bounded by K, the reproducing property and the Cauchy-Schwarz
inequality imply

sup
h∈HY(1),F∈F

m∑
i=1

gih(F (xi))

= sup
h∈HY(1),F∈F

〈
h,

m∑
i=1

giKY(·, F (xi))

〉
HY

≤ sup
h∈HY(1),F∈F

‖h‖HY

 m∑
i=1

g2
iKY(F (xi), F (xi)) +

∑
i 6=j

gigjKY(F (xi), F (xj))

1/2

≤ sup
F∈F

 m∑
i=1

g2
iK +

∑
i 6=j

gigjKY(F (xi), F (xj))

1/2

≤

 m∑
i=1

g2
iK + sup

F∈F

∑
i 6=j

gigjKY(F (xi), F (xj))

1/2

.

Here, 〈·, ·〉HY denotes the inner product on HY . Hence,

Gm(HY(1) ◦ F , {xi}mi=1) ≤ 1

m
E
gi

 m∑
i=1

g2
iK + sup

F∈F

∑
i 6=j

gigjKY(F (xi), F (xj))

1/2

≤ 1

m

mK + E
gi

sup
F∈F

∑
i 6=j

gigjKY(F (xi), F (xj))

1/2

,

where the second inequality follows from the Jensen’s inequality and E g2
i = 1.

For any F : X → Y, let AF ∈ Rm×m be a matrix whose diagonal elements are zero and (i, j)-th element
is KY(F (xi), F (xj)) for i 6= j. Then, the last term amounts to the supremum of a quadratic process

E
g

sup
F∈F

g>AF g ,

where g := [g1, . . . , gm]> ∼ N(0, Im).
We rely on the following chaining bound for the quadratic processes, derived in Section D.

Lemma 3 (Chaining Bound). Let Sm×m0 be the collection of all symmetric matrices A whose diagonal
elements are zero. Endow Sm×m0 with a metric d given by d(A,A′) := ‖A − A′‖. Given T ⊂ Sm×m0 and a
fixed A0 ∈ T , define ∆ = supA∈T d(A,A0). Let N(δ, T ) be the covering number of T under the metric d(·, ·),
then

E
g

sup
A∈T

g>Ag ≤ inf
J∈N

{
mδJ + 12

∫ ∆/2

δJ/2

√
2 logN(δ, T ) dδ + 24

∫ ∆/2

δJ/2

logN(δ, T ) dδ

}
, (B.1)

where for any integer J ≥ 0, we define δJ = 2−J∆.
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With the above chaining bound, we can directly upper bound the Rademacher complexities of the
compositional classes such as Rm(HY(1) ◦ F , µ) and Rm(HX×Y(1) ◦ (Id,F), µ). More specifically, for the
former class, we will apply this chaining bound to T := {AF : F ∈ F}. Then, to further bound the RHS of
(B.1), we make the following assumptions.

Assumption 5. Suppose KX and KY are Lipschitz: there exists L > 0 such that

|KX (x1, x
′)−KX (x2, x

′)| ≤ L‖x1 − x2‖ , |KY(y1, y
′)−KY(y2, y

′)| ≤ L‖y1 − y2‖ .

This plays a similar role as Assumption 4: we can derive an upper bound on d(AF , AF ′) via closeness of
F and F ′ in F . As a result, we will see that the covering number N(δ, T ) can be bounded by the complexity
of F .

Assumption 6. There exist y0 and y′0 in Y with KY(y0, y
′
0) 6= KY(y0, y0) such that

• F contains a constant map F satisfying F (x) = y0 for all x ∈ X ,

• whenever we have x 6= x′ ∈ X , we can find a non-constant map F ∈ F such that F (x) = y0 and
F (x′) = y′0.

Similarly, there exist x0 and x′0 in X with KX (x0, x
′
0) 6= KX (x0, x0) such that

• B contains a constant map B such that B(y) = x0 for all y ∈ Y,

• whenever we have y 6= y′ ∈ Y, we can find a non-constant map B ∈ B such that B(y) = x0 and
B(y′) = x′0.

The main purpose of this assumption is to exclude overly restrictive F and B, and is minimal: F and
B should contain constant maps, as well as non-constant maps. With these assumptions, we can derive the
following result.

Proposition 8. Under Assumptions 2, 3, 5, 6,

Rm(HY(1) ◦ F , µ) , Rm(HX×Y(1) ◦ (Id,F), µ) -

√√√√ logm

m

dim(Y)∑
k=1

Pdim(Fk) ,

Rn(HX (1) ◦ B, µ) , Rn(HX×Y(1) ◦ (B, Id), ν) -

√√√√ log n

n

dim(X )∑
k=1

Pdim(Bk) .

In summary, Propositions 4, 5, 7, 8 and Corollary 1 directly imply Theorem 4.

C Representer Theorem and Convex Formulation

This section provides details of the results presented in Section 3.4. Again, without loss of generality, we
only consider λ1 = λ2 = λ3 = 1 in (3.5).

First, we clarify how measurable maps correspond to bounded linear operators between L2 spaces.

Proposition 9. Let F : X → Y be a measurable map such that ‖ dF#πX /dπY ‖∞ <∞. If we define

F(g) = g ◦ F

for all g ∈ L2
Y , then F : L2

Y → L2
X is a bounded linear operator. Similarly, a measurable map B : Y → X

satisfying ‖ dB#πY / dπX ‖∞ < ∞ induces a bounded linear operator B : L2
X → L2

Y such that B(g) = g ◦ B
for all g ∈ L2

X .
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Proof. Linearity of F is obvious. Since∫
X
g(F (x))2 dπX =

∫
Y
g(y)2 dF#πX (y) =

∫
Y
g(y)2 dF#πX

dπY
(y) dπY (y) ≤ ‖g‖2L2(πY)

∥∥∥∥dF#πX
dπY

∥∥∥∥
∞
,

we can see F(g) = g ◦ F ∈ L2
X and thus F : L2

Y → L2
X . From this inequality, the operator norm of F is

bounded by ‖ dF#πX / dπY ‖1/2∞ ; hence boundedness of F follows. The same argument applies to B.

Next, we prove that (3.5) can be written in terms of F and B if KX and KY are given by the Mercer’s
representation:

KX (x, x′) =

∞∑
k=1

λkφk(x)φk(x′) , (C.1)

KY(y, y′) =

∞∑
`=1

γ`ψ`(y)ψ`(y
′) . (C.2)

Let Φx = [· · · , φk(x), · · · ]> ∈ R∞ and Ψy = [· · · , ψ`(y), · · · ]> ∈ R∞. Then, KX (x, x′) = Φ>x ΛΦx′ and
KY(y, y′) = Ψ>y ΓΨy′ . Also,

KX (x,B(y)) =
∑
k

λkφk(x)[φk ◦B](y)

=
∑
k

λkφk(x)B[φk](y)

=
∑
k,`

λkφk(x)B`kψ`(y)

= Ψ>y BΛΦx .

Analogously, we can obtain

KY(F (x), y) = Φ>x FΓΨy ,

KX (B(y), B(y′)) = Ψ>y BΛB>Ψy′ ,

KY(F (x), F (x′)) = Φ>x FΓF>Φx′ .

Using this, we have

1

mn

m∑
i=1

n∑
j=1

(KX (xi, B(yj))−KY(F (xi), yj))
2 =

1

mn

∑
i,j

(Ψ>yjBΛΦxi − Φ>xiFΓΨyj )
2 . (C.3)

Also,

MMD2
KX (µ̂m, B#ν̂n) =

1

m2

∑
i,i′

KX (xi, xi′) +
1

n2

∑
j,j′

KX (B(yj), B(yj′))−
2

mn

∑
i,j

KX (xi, B(yj))

=
1

m2

∑
i,i′

Φ>xiΛΦx′i +
1

n2

∑
j,j′

Ψ>yjBΛB>Ψyj′ −
2

mn

∑
i,j

Ψ>yjBΛΦxi .

(C.4)

Similarly, we have

MMD2
KY (F#µ̂m, ν̂n) =

1

m2

∑
i,i′

Φ>xiFΓF>Φxi′ +
1

n2

∑
j,j′

Ψ>yjΓΨyj′ −
2

mn

∑
i,j

Φ>xiFΓΨyj (C.5)
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and

MMD2
KX⊗KY ((Id, F )#µ̂m, (B, Id)#ν̂n)

=
1

m2

∑
i,i′

Φ>xiΛΦx′iΦ
>
xiFΓF>Φxi′ +

1

n2

∑
j,j′

Ψ>yjΓΨyj′Ψ
>
yjBΛB>Ψyj′

− 2

mn

∑
i,j

Ψ>yjBΛΦxiΦ
>
xiFΓΨyj .

(C.6)

The following proposition summarizes the discussion so far.

Proposition 10. Given Borel measures πX and πY over X and Y, respectively, suppose their corresponding
L2 spaces L2

X and L2
Y have countable orthonormal bases: {φk}k∈N and {ψ`}`∈N. Also, assume KX and KY

are given by the Mercer’s representation (C.1) and (C.2). Let Fo and Bo be collections of all F : X → Y
and B : Y → X such that ‖ dF#πX / dπY ‖∞ < ∞ and ‖dB#πY / dπX ‖∞ < ∞, respectively. Then, solving
(3.5) over Fo ×Bo is equivalent to (3.10), where C denotes the collection of all pairs of matrices (F,B) that
correspond to a pair of bounded linear operators induced by (F,B) ∈ Fo × Bo. Also, Ω is defined as

Ω(F,B) :=
1

mn

∑
i,j

(Ψ>yjBΛΦxi − Φ>xiFΓΨyj )
2

+
1

m2

∑
i,i′

Φ>xiΛΦx′i +
1

n2

∑
j,j′

Ψ>yjBΛB>Ψyj′ −
2

mn

∑
i,j

Ψ>yjBΛΦxi

+
1

m2

∑
i,i′

Φ>xiFΓF>Φxi′ +
1

n2

∑
j,j′

Ψ>yjΓΨyj′ −
2

mn

∑
i,j

Φ>xiFΓΨyj

+
1

m2

∑
i,i′

Φ>xiΛΦx′iΦ
>
xiFΓF>Φxi′ +

1

n2

∑
j,j′

Ψ>yjΓΨyj′Ψ
>
yjBΛB>Ψyj′

− 2

mn

∑
i,j

Ψ>yjBΛΦxiΦ
>
xiFΓΨyj .

Based on this, we now prove Theorem 5.

Proof of Theorem 5. Let xi = Λ1/2Φxi and yj = Γ1/2Ψyj . Notice that we can view them as elements of a
Hilbert space `2N, that is, the space of square-summable sequences:

`2N = {(ak)k∈N :
∑
k

a2
k <∞} .

Also, define F̄ = Λ−1/2FΓ1/2 and B̄ = Γ−1/2BΛ1/2 where Λ,Γ � 0. By rewriting (C.3)-(C.6) using xi, yj ,
F̄, and B̄, we have

Ω(F,B)

=
1

mn

∑
i,j

(y>j B̄xi − x>i F̄yj)
2 (i)

+
1

m2

∑
i,i′

x>i xi′ +
1

n2

∑
j,j′

y>j B̄B̄>yj′ −
2

mn

∑
i,j

y>j B̄xi (ii)

+
1

m2

∑
i,i′

x>i F̄F̄>xi′ +
1

n2

∑
j,j′

y>j yj′ −
2

mn

∑
i,j

x>i F̄yj (iii)

+
1

m2

∑
i,i′

(x>i xi′)(x
>
i F̄F̄>xi′) +

1

n2

∑
j,j′

(y>j yj′)(y
>
j B̄B̄>yj′)−

2

mn

∑
i,j

(y>j B̄xi)(x
>
i F̄yj) (iv)

=: Ω̄(F̄, B̄) .
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As a result, (3.11) reduces to minF̄,B̄∈R∞×∞ Ω̄(F̄, B̄). Now, we define two finite-dimensional subspaces of `2N
spanned by (x1, . . . ,xm) and (y1, . . . ,yn), respectively:

Um := span{x1, . . . ,xm} , Vn := span{y1, . . . ,yn} .

Also, we define PUm and PVn to be matrices that correspond to the orthogonal projection operators from `2N
to Um and to Vn, respectively. Recall that PUm and PVn are symmetric and idempotent by definition.

Our goal is to prove
Ω̄(F̄, B̄) ≥ Ω̄(PUmF̄PVn , PVnB̄PUm) .

More precisely, we show that four terms (i)-(iv) decrease if we replace F̄ and B̄ with PUmF̄PVn and PVnB̄PUm ,
respectively. First, observe that (i) remains the same. By definition, PUmxi = xi and PVnyj = yj , thus
y>j B̄xi = y>j PVnB̄PUmxi and x>i F̄yj = x>i PUmF̄PVnyj . Hence, (i) does not change.

To prove that (ii) decrease, it suffices to prove∑
j,j′

y>j B̄B̄>yj′ ≥
∑
j,j′

y>j (PVnB̄PUm)(PVnB̄PUm)>yj′ =
∑
j,j′

y>j B̄PUmB̄>yj′ .

To this end, define P⊥Um to be a matrix that corresponds to the orthogonal projection from `2N to U⊥m, the

orthogonal complement of Um. By definition, PUm + P⊥Um is the identity matrix and PUmP
⊥
Um

= 0. Hence,

∑
j,j′

y>j B̄B̄>yj′ =

∥∥∥∥∥∥B̄>
∑
j

yj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥PUmB̄>
∑
j

yj

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥P⊥UmB̄>
∑
j

yj

∥∥∥∥∥∥
2

≥
∑
j,j′

y>j B̄PUmB̄>yj′

Here, the second equality is the Pythagorean theorem. Therefore, we can see (ii) decreases if we replace B̄
with PVnB̄PUm . Similarly, (iii) decreases.

For (iv), it suffices to prove∑
j,j′

(y>j yj′)(y
>
j B̄B̄>yj′) ≥

∑
j,j′

(y>j yj′)
(
y>j (PVnB̄PUm)(PVnB̄PUm)>yj′

)
=
∑
j,j′

(y>j yj′)(y
>
j B̄PUmB̄>yj′) .

To see this,∑
j,j′

(y>j yj′)(y
>
j B̄B̄>yj′) =

∑
j,j′

(y>j yj′)(y
>
j B̄PUmB̄>yj′) +

∑
j,j′

(y>j yj′)(y
>
j B̄P⊥UmB̄>yj′)

≥
∑
j,j′

(y>j yj′)(y
>
j B̄PUmB̄>yj′) ,

where the inequality holds since

∑
j,j′

(y>j yj′)(y
>
j B̄P⊥UmB̄>yj′) = Tr


∑

j

P⊥UmB̄>yjy
>
j

∑
j

P⊥UmB̄>yjy
>
j

>
 ≥ 0 .

Similarly, we can obtain ∑
i,i′

(x>i xi′)(x
>
i F̄F̄>xi′) ≥

∑
i,i′

(x>i xi′)(x
>
i F̄PVnF̄>xi′).

Hence, (iv) decreases.
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Consequently, we have

(3.11) = min
F̄,B̄∈R∞×∞

Ω̄(F̄, B̄) = min
F̄,B̄∈R∞×∞

Ω̄(PUmF̄PVn , PVnB̄PUm) .

By definition of a projection operator, we can find Um ∈ Rm×∞ and Vn ∈ Rn×∞ such that

PUm = Λ1/2ΦmUm , PVn = Γ1/2ΨnVn.

By letting UmF̄V>n = Fm,n ∈ Rm×n and VnB̄U>m = Bn,m ∈ Rn×m, we have

PUmF̄PVn = Λ1/2ΦmFm,nΨ>nΓ1/2 ,

PVnB̄PUm = Γ1/2ΨnBn,mΦ>mΛ1/2 .

Hence,
min

F̄,B̄∈R∞×∞
Ω̄(PUmF̄PVn , PVnB̄PUm) = min

(Fm,n,Bn,m)∈C
ω(Fm,n,Bn,m) ,

where
ω(Fm,n,Bn,m) := Ω̄(Λ1/2ΦmFm,nΨ>nΓ1/2,Γ1/2ΨnBn,mΦ>mΛ1/2) .

Here, C is a constraint set implying that Fm,n and Bn,m are associated with F̄ and B̄, respectively, namely,

C = {(UmF̄V>n ,VnB̄U>m) : F̄, B̄ ∈ R∞×∞} ⊂ Rm×n × Rn×m .

Therefore,
(3.11) = min

(Fm,n,Bn,m)∈C
ω(Fm,n,Bn,m) ≥ min

Fm,n∈Rm×n

Bn,m∈Rn×m

ω(Fm,n,Bn,m) .

Finally, note that C = Rm×n × Rn×m if Um and Vn are full rank, that is, row spaces of Um and Vn are
rank-m and rank-n, respectively. This is true if kernel matrices

KX = (Λ1/2Φm)>(Λ1/2Φm) , KY = (Γ1/2Ψn)>(Γ1/2Ψn)

are invertible. This is equivalent to say that they are positive definite. In this case,

Um = K−1
X (Λ1/2Φm)> , Vn = K−1

Y (Γ1/2Ψn)> ,

which are indeed full rank. Accordingly, we have

(3.11) = min
(Fm,n,Bn,m)∈C

ω(Fm,n,Bn,m) = min
Fm,n∈Rm×n

Bn,m∈Rn×m

ω(Fm,n,Bn,m) .

Finally, we prove ω is convex. To see this, verify

ω(Fm,n,Bn,m) =
1

mn
‖KYBn,mKX −KYF

>
m,nKX ‖2

+

∥∥∥∥K1/2
X ·

(
1

m
1m − B>n,mKY

1

n
1n

)∥∥∥∥2

+

∥∥∥∥K1/2
Y ·

(
1

n
1n − F>m,nKX

1

m
1m

)∥∥∥∥2

+

∥∥∥∥ 1

m
K

3/2
X Fm,nK

1/2
Y − 1

n
K

1/2
X B>n,mK

3/2
Y

∥∥∥∥2

,

where K
1/2
X and K

1/2
Y are the square root matrices of KX and KY , respectively, and 1m ∈ Rm and 1n ∈ Rn

are all-ones vectors.
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D Supporting Proofs of Section B

D.1 Proofs in Section B

Proof of Proposition 4. Let hF,B(x, y) := (cX (x,B(y))− cY(F (x), y))2, then

Ĉ0(F,B)− C0(F,B) =
1

mn

m∑
i=1

n∑
j=1

hF,B(xi, yj)− E
(x,y)∼µ⊗ν

hF,B(x, y)

=
1

m

m∑
i=1

 1

n

n∑
j=1

hF,B(xi, yj)− E
y∼ν

hF,B(xi, y)


+

1

m

m∑
i=1

E
y∼ν

hF,B(xi, y)− E
(x,y)∼µ⊗ν

hF,B(x, y) .

Assumption 1 implies that a function x 7→ Ey∼ν hF,B(x, y) is bounded in [0, H]. Thus, by the McDiarmid’s
inequality,

1

m

m∑
i=1

E
y∼ν

hF,B(xi, y)− E
(x,y)∼µ⊗ν

hF,B(x, y) ≤
√
H2 log(1/δ)

2m

holds with probability at least 1− δ. By the same logic, for fixed xi,

1

n

n∑
j=1

hF,B(xi, yj)− E
y∼ν

hF,B(xi, y) ≤
√
H2 log(1/δ)

2n

holds with probability at least 1− δ, where the probability is the conditional probability of y1, . . . , yn given
x1, . . . , xm. Since this is true for all xi, the union bound implies

1

m

m∑
i=1

 1

n

n∑
j=1

hF,B(xi, yj)− E
y∼ν

hF,B(xi, y)

 ≤√H2 log(m/δ)

2n

holds with probability at least 1− δ. Hence,

Ĉ0(F,B)− C0(F,B) -

√
log(m/δ)

m
≤

√
log
(
m∨n
δ

)
m ∧ n

holds with probability at least 1 − 2δ. The same result holds for C0(F,B) − Ĉ0(F,B), hence we complete
the proof.

Proof of Proposition 5. By the triangle inequality, |M̂(F,B)−M(F,B)| is bounded above by the sum of the
following three terms:

|MMD2
KY (F#µ̂m, ν̂n)−MMD2

KY (F#µ, ν)| ,
|MMD2

KX (µ̂m, B#ν̂n)−MMD2
KX (µ,B#ν)| ,

|MMD2
KX⊗KY ((Id, F )#µ̂m, (B, Id)#ν̂n)−MMD2

KX⊗KY ((Id, F )#µ, (B, Id)#ν)| .

First, we give an upper bound on the first term. Boundedness of kernels (Assumption 2) implies

MMDKY (F#µ̂m, ν̂n) , MMDKY (F#µ, ν) ≤ 2
√
K .

Hence,

|MMD2
KY (F#µ̂m, ν̂n)−MMD2

KY (F#µ, ν)| ≤ 4
√
K|MMDKY (F#µ̂m, ν̂n)−MMDKY (F#µ, ν)| .
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Due to the triangle inequality of MMD, we have

|MMDKY (F#µ̂m, ν̂n)−MMDKY (F#µ, ν)| ≤ MMDKY (F#µ̂m, F#µ) + MMDKY (ν̂n, ν) .

By Theorem 3.4 of [41],

MMDKY (ν̂n, ν) ≤
√
K

n
+

√
2K log(1/δ)

n

holds with probability at least 1 − δ. Next, note that F#µ̂m = 1
m

∑
i δF (xi) is the empirical measure

constructed from {F (xi)}mi=1. Since they are m many i.i.d. samples from F#µ, by the same theorem,

MMDKY (F#µ̂m, F#µ) ≤
√
K

m
+

√
2K log(1/δ)

m

holds with probability at least 1− δ. Hence,

|MMD2
KY (F#µ̂m, ν̂n)−MMD2

KY (F#µ, ν)| -
√

log(1/δ)

m
+

√
log(1/δ)

n

holds with probability at least 1− 2δ. Similarly, we have

|MMD2
KX (µ̂m, B#ν̂n)−MMD2

KX (µ,B#ν)| -
√

log(1/δ)

m
+

√
log(1/δ)

n
,

|MMD2
KX⊗KY ((Id, F )#µ̂m, (B, Id)#ν̂n)−MMD2

KX⊗KY ((Id, F )#µ, (B, Id)#ν)|

-

√
log(1/δ)

m
+

√
log(1/δ)

n
,

each of which holds with probability at least 1− 2δ. Combining these three probabilistic bounds, we obtain
a bound for |M̂(F,B)−M(F,B)|.

Proof of Proposition 6. Without loss of generality, assume n ≥ m. From the proof of Proposition 4,

sup
(F,B)∈F×B

|Ĉ0(F,B)− C0(F,B)| ≤ 1

m

m∑
i=1

sup
(F,B)∈F×B

∣∣∣∣∣∣ 1n
n∑
j=1

hF,B(xi, yj)− E
y∼ν

hF,B(xi, y)

∣∣∣∣∣∣
+ sup

(F,B)∈F×B

∣∣∣∣∣ 1

m

m∑
i=1

E
y∼ν

hF,B(xi, y)− E
x∼µ

E
y∼ν

hF,B(x, y)

∣∣∣∣∣ .
Since x 7→ Ey∼ν hF,B(x, y) is bounded in [0, H], Lemma 4 implies

sup
(F,B)∈F×B

∣∣∣∣∣ 1

m

m∑
i=1

E
y∼ν

hF,B(xi, y)− E
x∼µ

E
y∼ν

hF,B(x, y)

∣∣∣∣∣
-

√
log(1/δ)

m
+ E
xi
E
εi

sup
(F,B)∈F×B

∣∣∣∣∣ 1

m

m∑
i=1

εi E
y∼ν

hF,B(xi, y)

∣∣∣∣∣
holds with probability at least 1− δ. Since n ≥ m,

E
xi
E
εi

sup
(F,B)∈F×B

∣∣∣∣∣ 1

m

m∑
i=1

εi E
y∼ν

hF,B(xi, y)

∣∣∣∣∣ = E
xi
E
εi

sup
(F,B)∈F×B

∣∣∣∣∣ E
y1,...,ym

1

m

m∑
i=1

εihF,B(xi, yi)

∣∣∣∣∣
≤ E
xi
E
εi

E
y1,...,ym

sup
(F,B)∈F×B

∣∣∣∣∣ 1

m

m∑
i=1

εihF,B(xi, yi)

∣∣∣∣∣
= E
xi
E
yi
E
εi

sup
(F,B)∈F×B

∣∣∣∣∣ 1

m

m∑
i=1

εihF,B(xi, yi)

∣∣∣∣∣ .
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We first give an upper bound on

E
εi

sup
(F,B)∈F×B

∣∣∣∣∣ 1

m

m∑
i=1

εihF,B(xi, yi)

∣∣∣∣∣︸ ︷︷ ︸
=:XF,B

.

First, observe that Assumption 1 and Assumption 4 imply

|hF,B(x, y)− hF ′,B′(x, y)| ≤
∣∣∣∣√hF,B(x, y) +

√
hF ′,B′(x, y)

∣∣∣∣ ∣∣∣∣√hF,B(x, y)−
√
hF ′,B′(x, y)

∣∣∣∣
≤ 2
√
H (|cX (x,B(y))− cX (x,B′(y))|+ |cY(F (x), y)− cY(F ′(x), y)|)

≤ 2
√
HL (‖F (x)− F ′(x)‖+ ‖B(y)−B′(y)‖)

= 2
√
HL


√√√√dim(Y)∑

k=1

|Fk(x)− F ′k(x)|2 +

√√√√dim(X )∑
`=1

|B`(y)−B′`(y)|2


≤ 2
√
HL

dim(Y)∑
k=1

|Fk(x)− F ′k(x)|+
dim(X )∑
`=1

|B`(y)−B′`(y)|

 .

Therefore,

|XF,B −XF ′,B′ | ≤
1

m

m∑
i=1

|hF,B(xi, yi)− hF ′,B′(xi, yi)|

≤ 2
√
HL

dim(Y)∑
k=1

1

m

m∑
i=1

|Fk(xi)− F ′k(xi)|+
dim(X )∑
`=1

1

m

m∑
i=1

|B`(yi)−B′`(yi)|


≤ 2
√
HL

dim(Y)∑
k=1

max
i∈[m]

|Fk(xi)− F ′k(xi)|+
dim(X )∑
`=1

max
i∈[m]

|B`(yi)−B′`(yi)|


=: ρ((F,B), (F ′, B′)) .

For ε > 0, let N∞(ε,Fk, {xi}mi=1) be the minimal ε-covering net of Fk under the pseudometric d induced by
x1, . . . , xm:

d(Fk, F
′
k) := max

i∈[m]
|Fk(xi)− Fk(x′i)| .

In other words, for any Fk ∈ Fk, we can find F ′k ∈ N∞(ε,Fk, {xi}mi=1) such that d(Fk, F
′
k) ≤ ε. Also,

|N∞(ε,Fk, {xi}mi=1)| = N∞(ε,Fk, {xi}mi=1). We define N∞(ε,B`, {yi}mi=1) in a similar fashion.

Given ε > 0, let Tε = ⊗dim(Y)
k=1 N∞(ε,Fk, {xi}mi=1) × ⊗dim(X )

`=1 N∞(ε,B`, {yi}mi=1). Then, for any (F,B) ∈
F × B, we can find (F ′, B′) ∈ Tε such that

ρ((F,B), (F ′, B′)) ≤ ηε ,

where η = 2
√
HL(dim(X ) + dim(Y)). As a result, one can easily check

sup
(F,B)∈F×B

XF,B ≤ sup
ρ((F,B),(F ′,B′))≤ηε

|XF,B −XF ′,B′ |+ sup
(F,B)∈Tε

XF,B

≤ ηε+ sup
(F,B)∈Tε

XF,B .
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Note that XF,B is the absolute value of a sub-Gaussian random variable with parameter H2/(4m). Hence,
the maximal inequality yields

E
εi

sup
(F,B)∈F×B

XF,B ≤ ηε+ E
εi

sup
(F,B)∈Tε

XF,B ≤ ηε+

√
H2 log(|Tε|)

m
.

Using |Tε| =
∏dim(Y)
k=1 N∞(ε,Fk, {xi}mi=1)×

∏dim(X )
`=1 N∞(ε,B`, {yi}mi=1), we have

E
εi

sup
(F,B)∈F×B

∣∣∣∣∣ 1

m

m∑
i=1

εihF,B(xi, yi)

∣∣∣∣∣
≤ ηε+H

√∑dim(Y)
k=1 logN∞(ε,Fk, {xi}mi=1) +

∑dim(X )
`=1 logN∞(ε,B`, {yi}mi=1)

m

≤ ηε+H

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`,m)

m
.

The second inequality is obvious from the definition of the uniform covering number. Since the last equation
is independent of xi and yi, we have

E
xi
E
yi
E
εi

sup
(F,B)∈F×B

∣∣∣∣∣ 1

m

m∑
i=1

εihF,B(xi, yi)

∣∣∣∣∣
≤ ηε+H

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`,m)

m
.

As a result,

sup
(F,B)∈F×B

∣∣∣∣∣ 1

m

m∑
i=1

E
y∼ν

hF,B(xi, y)− E
x∼µ

E
y∼ν

hF,B(x, y)

∣∣∣∣∣
-

√
log(1/δ)

m
+ ε+

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`,m)

m

≤
√

log(1/δ)

m
+ ε+

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`, n)

m

(D.1)

holds with probability at least 1− δ. Here, logN∞(ε,B`,m) ≤ logN∞(ε,B`, n) holds since n ≥ m, which is
obvious from the definition of the uniform covering number.

Next, we give a bound on

1

m

m∑
i=1

sup
(F,B)∈F×B

∣∣∣∣∣∣ 1n
n∑
j=1

hF,B(xi, yj)− E
y∼ν

hF,B(xi, y)

∣∣∣∣∣∣ .
Considering x1, . . . , xm are fixed, Lemma 4 implies

sup
(F,B)∈F×B

∣∣∣∣∣∣ 1n
n∑
j=1

hF,B(xi, yj)− E
y∼ν

hF,B(xi, y)

∣∣∣∣∣∣
-

√
log(1/δ)

n
+ E
yj
E
εj

sup
(F,B)∈F×B

∣∣∣∣∣∣ 1n
n∑
j=1

εjhF,B(xi, yj)

∣∣∣∣∣∣︸ ︷︷ ︸
YF,B
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holds with probability at least 1− δ. Here, the probability should be understood as a conditional probability
of y1, . . . , yn given x1, . . . , xm. Again, we have

|YF,B − YF ′,B′ | ≤ 2
√
HL

dim(Y)∑
k=1

|Fk(xi)− F ′k(xi)|+
dim(X )∑
`=1

1

n

n∑
j=1

|B`(yj)−B′`(yj)|


≤ 2
√
HL

dim(Y)∑
k=1

max
i∈[m]

|Fk(xi)− F ′k(xi)|+
dim(X )∑
`=1

max
j∈[n]

|B`(yj)−B′`(yj)|

 .

Also, YF,B is the absolute value of a sub-Gaussian random variable with parameter H2/(4n). By the same
argument as before,

E
yj
E
εj

sup
(F,B)∈F×B

∣∣∣∣∣∣ 1n
n∑
j=1

εjhF,B(xi, yj)

∣∣∣∣∣∣
≤ ηε+H

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`, n)

n
.

Hence,

sup
(F,B)∈F×B

∣∣∣∣∣∣ 1n
n∑
j=1

hF,B(xi, yj)− E
y∼ν

hF,B(xi, y)

∣∣∣∣∣∣
-

√
log(1/δ)

n
+ ε+

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`, n)

n

holds with probability (conditional probability as explained earlier) at least 1− δ. Since this holds for all xi,
the union bound implies

1

m

m∑
i=1

sup
(F,B)∈F×B

∣∣∣∣∣∣ 1n
n∑
j=1

hF,B(xi, yj)− E
y∼ν

hF,B(xi, y)

∣∣∣∣∣∣
-

√
log(m/δ)

n
+ ε+

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`, n)

n

≤
√

log(m/δ)

m
+ ε+

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`, n)

m

(D.2)

holds with probability at least 1− δ. Combining (D.1) and (D.2), for any ε > 0, we have

sup
(F,B)∈F×B

|Ĉ0(F,B)− C0(F,B)|

-

√
log
(
m∨n
δ

)
m ∧ n

+ ε+

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`, n)

m ∧ n

holds with probability at least 1− 2δ.

Proof of Corollary 1. Combining Assumption 3 and Lemma 5, we have

N∞(ε,Fk,m) ≤
(

2emb

ε · Pdim(Fk)

)Pdim(Fk)

.
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Hence,

sup
(F,B)∈F×B

|Ĉ0(F,B)− C0(F,B)|

-

√
log
(
m∨n
δ

)
m ∧ n

+ ε+

√∑dim(Y)
k=1 logN∞(ε,Fk,m) +

∑dim(X )
`=1 logN∞(ε,B`, n)

m ∧ n

≤

√
log
(
m∨n
δ

)
m ∧ n

+ ε+

√√√√√ log
(

2eb(m∨n)
ε

)
m ∧ n

dim(Y)∑
k=1

Pdim(Fk) +

dim(X )∑
`=1

Pdim(B`)



-

√
log
(
m∨n
δ

)
m ∧ n

+

√√√√√ log(m ∨ n)

m ∧ n

dim(Y)∑
k=1

Pdim(Fk) +

dim(X )∑
`=1

Pdim(B`)


holds with probability at least 1− 2δ, where the last bound comes from choosing ε = (m ∧ n)−1/2.

Proof of Proposition 7. Using the triangle inequality, we bound sup(F,B)∈F×B |M̂(F,B) −M(F,B)| by the
sum of the following three terms:

sup
F∈F
|MMD2

KY (F#µ̂m, ν̂n)−MMD2
KY (F#µ, ν)| ,

sup
B∈B
|MMD2

KX (µ̂m, B#ν̂n)−MMD2
KX (µ,B#ν)| ,

sup
(F,B)∈F×B

|MMD2
KX⊗KY ((Id, F )#µ̂m, (B, Id)#ν̂n)−MMD2

KX⊗KY ((Id, F )#µ, (B, Id)#ν)| .

As in the proof of Proposition 5, we have

sup
F∈F
|MMD2

KY (F#µ̂m, ν̂n)−MMD2
KY (F#µ, ν)|

≤ 4
√
K

[
sup
F∈F

MMDKY (F#µ̂m, F#µ) + MMDKY (ν̂n, ν)

]
.

MMDKY (ν̂n, ν) has already been bounded in Proposition 5. For the first term on the RHS, observe that

sup
F∈F

MMDKY (F#µ̂m, F#µ) = sup
F∈F

sup
f∈HY(1)

∣∣∣∣∫ f dF#µ̂m −
∫
f dF#µ

∣∣∣∣
= sup
F∈F

sup
f∈HY(1)

∣∣∣∣∫ f ◦ F dµ̂m −
∫
f ◦ F dµ

∣∣∣∣
= sup
f∈HY(1)◦F

∣∣∣∣∫ f dµ̂m −
∫
f dµ

∣∣∣∣ ,
where the second equality follows from change-of-variables.

First, we show HY(1) consists of
√
K-uniformly bounded functions. Let ‖ · ‖HY be the norm of HY so

that f ∈ HY(1) is equivalent to ‖f‖HY ≤ 1. Then, the reproducing property implies

|f(y)| ≤ ‖f‖HY
√
KY(y, y) ≤

√
K

for any f ∈ HY(1). Accordingly, HY(1)◦F also consists of
√
K-uniformly bounded functions. Hence, Lemma

4 implies that

sup
F∈F

MMDKY (F#µ̂m, F#µ) = sup
f∈HY(1)◦F

∣∣∣∣∫ f dµ̂m −
∫
f dµ

∣∣∣∣
≤ 2Rm(HY(1) ◦ F , µ) +

√
2K log(1/δ)

m
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holds with probability at least 1 − δ. Therefore, combining this with the upper bound on MMDKY (ν̂n, ν)
derived in Proposition 5,

sup
F∈F
|MMD2

KY (F#µ̂m, ν̂n)−MMD2
KY (F#µ, ν)| - Rm(HY(1) ◦ F , µ) +

√
log(1/δ)

m
+

√
log(1/δ)

n
(D.3)

holds with probability at least 1− 2δ. Similarly, we can prove that

sup
B∈B
|MMD2

KX (µ̂m, B#ν̂n)−MMD2
KX (µ,B#ν)| - Rn(HX (1) ◦ B, ν) +

√
log(1/δ)

m
+

√
log(1/δ)

n
(D.4)

holds with probability at least 1− 2δ.
Lastly, since KX ⊗KY is bounded by K2, that is,

sup
(x,y),(x′,y′)∈X×Y

KX ⊗KY((x, y), (x′, y′)) ≤ K2,

by the same argument, we have

sup
(F,B)∈F×B

|MMD2
KX⊗KY ((Id, F )#µ̂m, (B, Id)#ν̂n)−MMD2

KX⊗KY ((Id, F )#µ, (B, Id)#ν)|

≤ 4K

[
sup
F∈F

MMDKX⊗KY ((Id, F )#µ̂m, (Id, F )#µ) + sup
B∈B

MMDKX⊗KY ((B, Id)#ν̂n, (B, Id)#ν)

]
.

Analogously, HX×Y(1) consists of K-uniformly bounded functions, hence

sup
F∈F

MMDKX⊗KY ((Id, F )#µ̂m, (Id, F )#µ) = sup
f∈HX×Y(1)◦(Id,F)

∣∣∣∣∫ f dµ̂m −
∫
f dµ

∣∣∣∣
≤ 2Rm(HX×Y(1) ◦ (Id,F), µ) +

√
2K2 log(1/δ)

m
,

sup
B∈B

MMDKX⊗KY ((B, Id)#ν̂n, (B, Id)#ν) = sup
f∈HX×Y(1)◦(B,Id)

∣∣∣∣∫ f dν̂n −
∫
f dν

∣∣∣∣
≤ 2Rn(HX×Y(1) ◦ (B, Id), ν) +

√
2K2 log(1/δ)

n
,

each of which holds with probability at least 1− δ. Therefore,

sup
(F,B)∈F×B

|MMD2
KX⊗KY ((Id, F )#µ̂m, (B, Id)#ν̂n)−MMD2

KX⊗KY ((Id, F )#µ, (B, Id)#ν)|

- Rm(HX×Y(1) ◦ (Id,F), µ) +Rn(HX×Y(1) ◦ (B, Id), ν) +

√
log(1/δ)

m
+

√
log(1/δ)

n

(D.5)

holds with probability at least 1− 2δ. We complete the proof by combining (D.3), (D.4), (D.5).

Proof of Lemma 3. For any integer j ∈ N ∪ {0}, define δj = 2−j∆, and let Tj ⊂ Sm×m0 be a minimal δj-
covering net of T ; clearly, |Tj | = N(δj , T ). For each j, the covering set induces a mapping Πj : T → Tj such
that

sup
A∈T

d(A,Πj(A)) ≤ δj .

By definition of ∆, we may assume T0 = {A0} so that Π0(A) = A0 for all A ∈ T .
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Note that E g>A0g = 0 by definition. Using this, we write E supA∈T g
>Ag as a chaining sum:

E sup
A∈T

g>Ag = E
g

sup
A∈T

g>Ag − E g>A0g

= E sup
A∈T

(
g>Ag − g>A0g

)
= E sup

A∈T

g>Ag − g>ΠJ(A)g +

J−1∑
j=0

g>Πj+1(A)g − g>Πj(A)g


≤ E sup

A∈T

(
g>Ag − g>ΠJ(A)g

)
+

J−1∑
j=0

E sup
A∈T

(
g>Πj+1(A)g − g>Πj(A)g

)
.

For the first term on RHS, using the Cauchy-Schwarz inequality and Jensen’s inequality, we have

E sup
A∈T

(
g>Ag − g>ΠJ(A)g

)
≤ E

(∑
i 6=j

g2
i g

2
j

)1/2 · δJ
 ≤ mδJ .

For each summand in the second term on RHS, use Lemma 7. Note that for any j, the maximal cardinality
of

|{(Πj+1(A),Πj(A)) : A ∈ T }| ≤ N(δj+1, T )×N(δj , T ) ≤ N(δj+1, T )2

and that
d(Πj+1(A),Πj(A)) ≤ d(Πj+1(A), A) + d(A,Πj(A)) ≤ 3δj+1 .

Since Πj+1(A)−Πj(A) ∈ Sm×m0 and ‖Πj+1(A)−Πj(A)‖ ≤ 3δj+1, Lemma 7 asserts that for any j

E sup
A∈T

(
g>Πj+1(A)g − g>Πj(A)g

)
≤ 6δj+1

√
2 logN(δj+1, T ) + 12δj+1 logN(δj+1, T ) .

Summing over j, we have for any J , the following inequality,

E sup
A∈T

(
g>Ag − g>A0g

)
≤ mδJ + 12

∫ ∆/2

δJ/2

√
2 logN(δ, T ) dδ + 24

∫ ∆/2

δJ/2

logN(δ, T ) dδ .

Proof of Proposition 8. To make use of the chaining inequality, we are only left to bound the covering number
N(δ, T ) with

T := {AF : F ∈ F} ⊂ Sm×m0 .

Lipschitzness of KY (Assumption 5) implies

|KY(F (xi), F (xj))−KY(F ′(xi), F
′(xj))| ≤

L

2
‖F (xi)− F ′(xi)‖+

L

2
‖F (xj)− F ′(xj)‖ .
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Hence,

d(AF , AF ′) ≤ mmax
i6=j
|KY(F (xi), F (xj))−KY(F ′(xi), F

′(xj))|

≤ mL

2

(
max
i∈[m]

‖F (xi)− F ′(xi)‖+ max
j∈[m]

‖F (xj)− F ′(xj)‖
)

= mLmax
i∈[m]

‖F (xi)− F ′(xi)‖

≤ mLmax
i∈[m]

dim(Y)∑
k=1

|Fk(xi)− F ′k(xi)|2
1/2

≤ mL

dim(Y)∑
k=1

(
max
i∈[m]

|Fk(xi)− F ′k(xi)|
)2
1/2

.

As in the proof of Proposition 6, for ε > 0, let N∞(ε,Fk, {xi}mi=1) be a minimal ε-covering net of Fk. Then,
one can easily see that {

AF : F ∈ ⊗dim(Y)
k=1 N∞

(
δ

mL
√

dim(Y)
,Fk, {xi}mi=1)

)}
is a δ-covering of T . Therefore, we conclude

N(δ, T ) ≤
dim(Y)∏
k=1

N∞

(
δ

mL
√

dim(Y)
,Fk, {xi}mi=1

)
≤

dim(Y)∏
k=1

N∞

(
δ

mL
√

dim(Y)
,Fk,m

)
.

Lastly, we bound N∞(δ,Fk,m) by the pseudo-dimension of Fk via Lemma 5. Combining Assumption 3 and
Lemma 5, we have

N(δ, T ) ≤
dim(Y)∏
k=1

 2emb
δ

mL
√

dim(Y)
· Pdim(Fk)

Pdim(Fk)

.

Now, to apply Lemma 3, fix F0 ∈ F and let A0 = AF0 . Then,∫ ∆/2

δJ/2

logN(δ, T ) dδ ≤ ∆/2 ·
dim(Y)∑
k=1

Pdim(Fk) · log

 2emb
1

mL
√

dim(Y)
∆2−J/2 · Pdim(Fk)

 .

First, we obtain an upper bound on ∆:

∆ = sup
F∈F
‖AF −A0‖ ≤ mmax

i 6=j
|KY(F (xi), F (xj))−KY(F0(xi), F0(xj))| ≤ 2mK .

Next, we claim that ∆ is bounded below by a universal constant; this is to upper bound ∆ in the denominator.
Consider y0 and y′0 given in Assumption 6. We may assume that F0 is the constant map explained in
Assumption 6: F0(x) = y0 for all x ∈ X . Without loss of generality, we assume x1 6= x2. Then, we can find
F ∈ F such that F (x1) = y0 and F (x2) = y′0 according to Assumption 6. Hence,

∆ ≥ |KY(F (x1), F (x2))−KY(F0(x1), F0(x2))| = |KY(y0, y
′
0)−KY(y0, y0)| > 0 .

Therefore, with the choice of J such that m2−J �
∑
k Pdim(Fk),∫ ∆/2

δJ/2

logN(δ, T ) dδ - m

dim(Y)∑
k=1

Pdim(Fk)

 · log

(
m

mink∈[dim(Y)] Pdim(Fk)

)

≤ m log(m)

dim(Y)∑
k=1

Pdim(Fk)

 .

45



Analogously, ∫ ∆/2

δJ/2

√
2 logN(δ, T ) dδ - m log(m)

dim(Y)∑
k=1

Pdim(Fk)

 .

Thus,

Rm(Hy(1) ◦ F , {xi}mi=1) -
1

m

[
mK + E

g
sup
F∈F

g>AF g

]1/2

-

√√√√ logm

m

dim(Y)∑
k=1

Pdim(Fk)

The same argument can be applied to the other three Rademacher complexities. Hence, we have proved
the proposition.

D.2 Auxiliary Lemmas

Lemma 4 (Theorem 4.10 of [55]). Let (Z, ρ) be a probability space and G be a class of b-uniformly bounded
measurable functions defined on Z, that is, supg∈G ‖g‖∞ ≤ b. Let z1, . . . , zm are i.i.d. samples from ρ and
let ρ̂m be the empirical measure constructed from them. Then, for any δ > 0,

sup
g∈G

∣∣∣∣∫ g dρ̂m −
∫
g dρ

∣∣∣∣ ≤ 2Rm(G, ρ) +

√
2b2 log(1/δ)

m

holds with probability at least 1− δ.

Lemma 5 (Theorem 12.2 of [1]). Let G be a collection of real-valued functions defined on a set Z. Suppose
supg∈G ||g||∞ = b <∞. For ε > 0 and m ≥ Pdim(G),

N∞(ε,G,m) ≤
(

2emb

ε · Pdim(G)

)Pdim(G)

.

Lemma 6 (Example 2.12 of [7]). For any A ∈ Sm×m0 and 0 ≤ λ < 1/(2‖A‖op),

logE
g
eλg
>Ag ≤ λ2‖A‖

1− 2λ‖A‖op
, (D.6)

where g ∼ N(0, Im). Here, ‖ · ‖op denotes the operator norm of A.

This lemma tells that g>Ag is a sub-Gamma random variable with variance factor 2‖A‖2 and scale
parameter 2‖A‖op (see Chapter 2.4 of [7] for the definition). Using Corollary 2.6 of the same text, we can
derive the following maximal inequality.

Lemma 7 (Maximal inequality). For A1, . . . , AN ∈ Sm×m0 , suppose maxi=1,...,N ‖Ai‖ ≤ δ. Then,

E
g

max
i=1,...,N

g>Aig ≤ 2δ
(√

logN + logN
)
, (D.7)

where g ∼ N(0, Im).

E Computational Aspects of the RGM Distance

Recall from Section 3.2 that we have utilized the Lagrangian form instead of the constrained form (3.1)
of the RGM distance. Such a practical computation allows us to easily implement the RGM sampler and
we have observed its good empirical performance in Section 4. This section shifts our focus to the exact
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computation of the RGM distance; we discuss conditions under which minimizing the Lagrangian form leads
to a close approximation to the RGM distance. Another important computational aspect is the comparison
of the RGM distance and the GW distance. GW(µ, ν) ≤ RGM(µ, ν) holds in theory by Proposition 1; using
a concrete example, we approximate both quantities numerically and see how large the gap between them
is. Lastly, we examine the numerical performance of the convex formulation discussed in 3.4 and compare
with the results from the Lagrangian form.

E.1 Approximation with the Lagrangian Form

First, we derive connections between the RGM distance and its Lagrangian formulation. As in Section B,
let

C0(F,B) =

∫
(cX (x,B(y))− cY(F (x), y))2 dµ⊗ ν

for any F : X → Y and B : Y → X so that RGM(µ, ν)2 = inf(F,B)∈I(µ,ν) C0(F,B). Define the Lagrangian
form as

Lλ1,λ2,λ3
(F,B) = C0(F,B) + λ1 · LX×Y((Id, F )#µ, (B, Id)#ν)︸ ︷︷ ︸

`1(F,B)

+λ2 · LX (µ,B#ν)︸ ︷︷ ︸
`2(F,B)

+λ3 · LY(F#µ, ν)︸ ︷︷ ︸
`3(F,B)

,

where LX×Y , LX , and LY are suitable nonnegative discrepancy measures as in Section 3.2; in particular, we
assume `1(F,B) = `2(F,B) = `3(F,B) = 0 for (F,B) ∈ I(µ, ν).11

Suppose λ1, λ2, λ3 ≥ 0, then

inf
F : X→Y
B : Y→X

Lλ1,λ2,λ3
(F,B) ≤ inf

(F,B)∈I(µ,ν)
Lλ1,λ2,λ3

(F,B) = RGM(µ, ν)2 = inf
(F,B)∈I(µ,ν)

C0(F,B) .

We seek a minimizer of Lλ1,λ2,λ3 over F × B, namely, the product of suitable function classes as discussed
in Section 3.3. Let

(F ?, B?) ∈ arg min
(F,B)∈F×B

Lλ1,λ2,λ3
(F,B) . (E.1)

If I(µ, ν) ⊆ F × B,

C0(F ?, B?) ≤ Lλ1,λ2,λ3(F ?, B?) (∵ λ1, λ2, λ3 ≥ 0)

= inf
(F,B)∈F×B

Lλ1,λ2,λ3(F,B) (∵ (E.1))

≤ inf
(F,B)∈I(µ,ν)

Lλ1,λ2,λ3
(F,B) (∵ I(µ, ν) ⊆ F × B)

= RGM(µ, ν)2 .

Roughly speaking, if the function classes are rich enough to ensure I(µ, ν) ⊆ F ×B, the minimizer (F ?, B?)
produces a lower bound C0(F ?, B?) on RGM(µ, ν)2. On the other hand, if the minimizer satisfies the
constraint (F ?, B?) ∈ I(µ, ν), then C0(F ?, B?) is an upper bound on RGM(µ, ν)2 by definition.

Therefore, a sufficient condition for C0(F ?, B?) = RGM(µ, ν)2 is that the following two hold: I(µ, ν) ⊆
F × B and (F ?, B?) ∈ I(µ, ν).

E.2 Numerical Experiments

Using a concrete example, we compute the aforementioned quantities related to the RGM distance, approx-
imate the GW distance, and compare them; we will also discuss the results from the convex formulation in
Section 3.4. Throughout, we consider two point clouds on R2 as in Figure 6(a), that is, µ and ν are uniform
distributions supported on 30 grid points of a segment and a circle, respectively. We fix the cost functions:
cX = cY is the RBF kernel that maps (x, y) to exp

(
−‖x− y‖2

)
.

11Though we may define the Lagrangian form without LX and LY , we include them for a seamless connection with
the experiment results in Section E.2.
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Figure 6: The supports of µ and ν are the grid points of a segment connecting (−1,−1) and (1, 1)
and a circle x2 + y2 = 1, respectively.

First, we aim to compute the quantities discussed in Section E.1. To this end, we specify the discrepancy
measures and the function classes as follows.

• LX×Y = MMD2
KX⊗KY , LX = MMD2

KX , LY = MMD2
KY , where KX = KY = cX .

• F = B is the class of neural networks with two hidden layers as follows:

{x 7→ tanh(W2 tanh(W1x+ b1)) + b2) : W1 ∈ R2×30, b1 ∈ R30,W2 ∈ R30×2, b2 ∈ R2} ,

where tanh is the tangent hyperbolic function applied elementwise, that is, tanh(x) = (tanh(x1), . . . , tanh(xk)) ∈
Rk for x = (x1, . . . , xk) ∈ Rk.

We use Adam [27], a variant of stochastic gradient descent, to find a minimizer of Lλ1,λ2,λ3 over F ×B as in
(E.1). After 10000 iterations, we can see that the loss converges as in Figure 7, indicating we have a local

minimizer (F̂ ?, B̂?) ∈ F ×B. Since this optimization problem may be nonconvex, there is no guarantee that
this is a global minimizer, hence

C0(F ?, B?) ≤ C0(F̂ ?, B̂?) .

To examine the experiment results in light of Section E.1, we will assume

• F and B are rich enough to ensure I(µ, ν) ⊂ F × B,

• (F,B) ∈ I(µ, ν) if and only if `1(F,B) = `2(F,B) = `3(F,B) = 0,12

• (F̂ ?, B̂?) is indeed a global minimizer: (F̂ ?, B̂?) ∈ arg min(F,B)∈F×B Lλ1,λ2,λ3
(F,B).

Under these assumptions, (F̂ ?, B̂?) ∈ I(µ, ν) implies C0(F̂ ?, B̂?) = RGM(µ, ν)2 as discussed in Section

E.1. To verify (F̂ ?, B̂?) ∈ I(µ, ν), we check the values of `1(F,B), `2(F,B), and `3(F,B) in Table 1.
We observe that they get smaller as we increase the values of the Lagrangian multipliers. For the cases
where λ1 = λ2 = λ3 = 102 or λ1 = λ2 = λ3 = 104, the values `1, `2, `3 are sufficiently small to conclude
(F̂ ?, B̂?) ∈ I(µ, ν), hence we can roughly estimate RGM(µ, ν)2 ≈ C0(F̂ ?, B̂?) ≈ 0.39.

12This is true since we are using the RBF kernel as mentioned in Section 4.
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Figure 7: Training curves (10000 iterations).

Comparison with GW As discussed earlier, exact computation of the GW distance (Definition 2) is
impossible in general. Here, we estimate it using an off-the-shelf computational tool called Python Optimal
Transport (POT) [21] widely used in literature, which yields GW2(µ, ν) ≈ 0.171.13 Combined with the
previous computation, we can say

1 ≤ RGM(µ, ν)

GW(µ, ν)
≈
√

0.390

0.171
= 1.515 ,

indicating that the RGM distance is approximately the GW distance times 1.5. This rough computation
is based on the aforementioned assumptions regarding the RGM computation and the accuracy of POT in
computing the GW distance.

Instead, we may give an upper bound on the ratio of the two distances using the well-known lower
bounds on the GW distance: the First Lower Bound (FLB) and the Second Lower Bound (SLB) on GW

13Technically, this should be an upper bound on the exact value of GW2(µ, ν) because the result of POT ought to
be a local minimizer.
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λ1 = λ2 = λ3 = 1 λ1 = λ2 = λ3 = 102 λ1 = λ2 = λ3 = 104

C0(F̂ ?, B̂?) 0.136 0.386 0.390

`1(F̂ ?, B̂?) 3.366× 10−2 1.034× 10−3 9.550× 10−4

`2(F̂ ?, B̂?) 1.716× 10−3 5.758× 10−5 7.379× 10−5

`3(F̂ ?, B̂?) 3.327× 10−2 2.689× 10−4 2.698× 10−4

Lλ1,λ2,λ3(F̂ ?, B̂?) 0.205 0.522 13.377

Table 1: Minimum values of the Lagrangian form.

[38]. Letting µ = 1
m

∑m
i=1 δxi and ν = 1

n

∑n
j=1 δyj with m = n = 30, these bounds are computed as follows:

FLB2(µ, ν) = W 2
2

 1

m

m∑
i=1

δeX (xi),
1

n

n∑
j=1

δeY(yj)

 ≈ 0.061 ,

SLB2(µ, ν) = W 2
2

 1

m2

m∑
i,i′=1

δcX (xi,xi′ )
,

1

n2

n∑
j,j′=1

δcY(yj ,yj′ )

 ≈ 0.135 ,

where eX (xi) =
√

1
m

∑m
i′=1 c

2
X (xi, xi′) and eY(yj) =

√
1
n

∑n
j′=1 c

2
Y(yj , yj′) are called the eccentricity; see [38]

for details. These quantities, computed by using POT as well, are known to be lower bounds on GW(µ, ν)2,
hence

1 ≤ RGM(µ, ν)

GW(µ, ν)
≤
√

0.390

0.135
= 1.700 .

Therefore, we can conclude that the ratio of the two distances is bounded by 1.7.

Convex formulation Next, we estimate the RGM distance based on the convex formulation; as in
Theorem 5, we solve the convex optimization problem:

min
Fm,n∈Rm×n

Bn,m∈Rn×m

ω(Fm,n,Bn,m) , (E.2)

where

ω(Fm,n,Bn,m) =

c0(Fm,n,Bn,m)︷ ︸︸ ︷
1

mn
‖KYBn,mKX −KYF

>
m,nKX ‖2 +λ1 ·

m1(Fm,n,Bn,m)︷ ︸︸ ︷∥∥∥∥ 1

m
K

3/2
X Fm,nK

1/2
Y − 1

n
K

1/2
X B>n,mK

3/2
Y

∥∥∥∥2

+ λ2 ·
∥∥∥∥K1/2
X ·

(
1

m
1m − B>n,mKY

1

n
1n

)∥∥∥∥2

︸ ︷︷ ︸
m2(Fm,n,Bn,m)

+λ3 ·
∥∥∥∥K1/2
Y ·

(
1

n
1n − F>m,nKX

1

m
1m

)∥∥∥∥2

︸ ︷︷ ︸
m3(Fm,n,Bn,m)

as derived in Section C. It should be noted that the minimum of (E.2) is a lower bound on the minimum of
the Lagrangian, that is,

min
Fm,n∈Rm×n

Bn,m∈Rn×m

ω(Fm,n,Bn,m) ≤ min
(F,B)∈F×B

Lλ1,λ2,λ3
(F,B) .

To see this, first note that the RHS is exactly (3.5).14 Then, recall from Section 3.4 that (3.5) = (3.10) is
relaxed to (3.11) and is further relaxed to the convex problem (E.2) due to Theorem 5.

14Since µ and ν are discrete, the RHS is the same as its empirical estimate (3.5).
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λ1 = λ2 = λ3 = 1 λ1 = λ2 = λ3 = 102 λ1 = λ2 = λ3 = 104

c0(F?m,n,B
?
n,m) 0.044 0.106 0.108

m1(F?m,n,B
?
n,m) 0.011 4.521× 10−6 6.369× 10−10

m2(F?m,n,B
?
n,m) 0.012 2.592× 10−6 2.626× 10−12

m3(F?m,n,B
?
n,m) 0.001 1.050× 10−7 2.461× 10−10

ω(F?m,n,B
?
n,m) 0.068 0.107 0.108

Table 2: Mimimum values of the convex problem (E.2) obtained by CVXPY.

Table 2 shows the results obtained by a convex optimization tool called CVXPY [16]. The mimimum
ω(F?m,n,B

?
n,m) of (E.2) is always smaller than GW2(µ, ν) ≈ 0.171 and is between the two lower bounds:

FLB2(µ, ν) ≈ 0.061 and SLB2(µ, ν) ≈ 0.135. Also, the MMD terms vanish if we use the large Lagrangian
multipliers, indicating that the constraints (represented via the MMD terms) are met. That said, we can
see that the gap between the minimum and the RGM distance can be large. Therefore, finding conditions
under which this gap vanishes would be interesting future work.

F Details of the Experiments in Section 4

Here, we provide implementation details of the experiments in Section 4.

F.1 Gaussian

In the Gaussian experiment in Section 4, we minimize (3.5) using Adam for 3000 iterations. The learning
rate at the initial iteration is 0.1 and we halve it after every 500 iterations. Figure 8(a) shows the training
curve.
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Figure 8: Training curves for the experiments: (a) the Gaussian experiment, (b) the MNIST
experiment with X = R2.
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F.2 MNIST

R2 and MMDs For numerical stability, we encode a variant of empirical estimate (3.5) as our loss:

λ1 ·
1

mn

m∑
i=1

n∑
j=1

(cX (xi, B(yj))− cY(F (xi), yj))
2 + MMD2

KX⊗KY ((Id, F )#µ̂m, (B, Id)#ν̂n)

+ λ2 ·MMD2
KX (µ̂m, B#ν̂n) + λ3 ·MMD2

KY (F#µ̂m, ν̂n) . (F.1)

We choose tuning parameters (λ1, λ2, λ3) = (0.01, 1, 1). For fully connected neural networks F and B, we
apply the rectified linear unit (ReLU) activation function σ(x) = max(x, 0) to all three hidden layers of F
and B, and an additional tangent hyperbolic (tanh) function tanh(x) = (ex− e−x)/(ex + e−x) to the output
layer of F , both of which are elementwise activation functions. To put it explicitly, y = F (x) is defined as

h0 = x, x ∈ R2

hl = σ(Wlhl−1 + bl), l = 1, 2

y = tanh(W3h2 + b3)

with W1 ∈ R50×2,W2 ∈ R50×50,W3 ∈ R784×50, b1, b2 ∈ R50×1, b3 ∈ R784×1. Similarly, x̃ = B(ỹ) is defined as

h̃0 = ỹ, ỹ ∈ R784

h̃l = σ(W̃lh̃l−1 + b̃l), l = 1, 2

x̃ = W̃3h̃2 + b̃3

with W̃1 ∈ R50×784, W̃2 ∈ R50×50, W̃3 ∈ R2×50, b̃1, b̃2 ∈ R50×1, b̃3 ∈ R2×1. The training set is randomly
devided into minibatches of size 256, for which we run Adam again for 1000 iterations. The learning rate at
the initial iteration is 0.005 and we halve it after every 500 iterations. Figure 9 shows the generated images
during the training process.

R4 and Sinkhorn divergences We implement the Sinkhorn divergence with squared Euclidean cost
by using GeomLoss [20]. Concretely, we first define the entropic regularized Kantorovich problem between
µ̂m and B#ν̂n on some Euclidean space X

W 2
2,ε(µ̂m, B#ν̂n) = min

γ∈Π(µ̂m,B#ν̂n)

m∑
i=1

n∑
j=1

γij
(
‖xi −B(yj)‖2 + ε log(γij)

)
where γ is a coupling matrix and γij denotes its (i, j) element. Then the Sinkhorn divergence between two
empirical measures is defined by sε,X (µ̂m, B#ν̂n) = W 2

2,ε(µ̂m, B#ν̂n)− 1
2W

2
2,ε(µ̂m, µ̂m)− 1

2W
2
2,ε(B#ν̂n, B#ν̂n).

We encode our loss by replacing MMDs in (F.1) with Sinkhorn divergences

λ1 ·
1

mn

m∑
i=1

n∑
j=1

(cX (xi, B(yj))− cY(F (xi), yj))
2 + sε,X×Y((Id, F )#µ̂m, (B, Id)#ν̂n)

+ λ2 · sε,X (µ̂m, B#ν̂n) + λ3 · sε,Y(F#µ̂m, ν̂n) ,

and choose tuning parameters (λ1, λ2, λ3) = (1, 1, 1). The Sinkhorn parameter ε is set to be 0.0001 for all
three discrepancy measures. Again, F : R4 → R784 and B : R784 → R4 are parametrized by fully connected
neural networks with three hidden layers, whose activation functions are same as the MMD case. The rest
of the setups, including the choice of optimizer, number of iterations, and batchsize, are same as the MMD
case above.
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(a) Before training (b) After 20 iterations

(c) After 50 iterations (d) After 1000 iterations

Figure 9: Generated images on MNIST data for digits 2, 4, 6, 7 during the training process, under
the experimental setup with R2 and MMD discrepancy.

Comparison between RGM and GW Lastly, let us estimate the gap between the RGM distance
and the GW distance in the MNIST example (R2 and MMDs) based on the discussions in Section E. Recall

that we have obtained a minimizer (F̂ , B̂) of (3.5) over F × B using samples {xi}20000
i=1 and {yj}20000

j=1 from
µ = N(0, I2) and ν = the distribution of the four digits, respectively; though this is a local minimizer as
the optimization problem may be nonconvex, we will assume that this is indeed a global minimizer as in
Section E. Letting µ̂m and ν̂n be the empirical measures constructed by {xi}20000

i=1 and {yj}20000
j=1 , respectively

(m = n = 20000), we obtain the following quantities:

Ĉ0(F̂ , B̂)
Section B

=

∫
(cX (x, B̂(y))− cY(F̂ (x), y))2 dµ̂m ⊗ ν̂n ≈ 0.348 ,

m1 := MMD2
KX⊗KY ((Id, F̂ )#µ̂m, (B̂, Id)#ν̂n) ≈ 2.192× 10−3 ,

m2 := MMD2
KX (µ̂m, B̂#ν̂n) ≈ 8.261× 10−5 ,

m3 := MMD2
KY (F̂#µ̂m, ν̂n) ≈ 1.437× 10−3 .

Hence, C(µ̂m, ν̂n, F̂ , B̂) = Ĉ0(F̂ , B̂) +
∑3
k=1 λkmk = 0.719, where C is defined in (3.6). Recall from
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Section B that

|C(µ̂m, ν̂n, F̂ , B̂)− C(µ, ν, F̂ , B̂)| ≤ sup
(F,B)∈F×B

|C(µ̂m, ν̂n, F,B)− C(µ, ν, F,B)|

-M(F ,B,m, n, δ)

holds with probability at least 1 − δ, where M(F ,B,m, n, δ) is defined in Theorem 4. Assuming that

this complexity measure is sufficiently small for m = n = 20000, we may roughly say C(µ, ν, F̂ , B̂) ≈
C(µ̂m, ν̂n, F̂ , B̂) = 0.719. In the same vein, Theorem 4 indicates

inf
(F,B)∈F×B

C(µ, ν, F,B) ≈ C(µ, ν, F̂ , B̂) ≈ 0.719 .

Now, we combine this result with the discussion in Section E. First, by definition,

inf
(F,B)∈F×B

C(µ, ν, F,B) = inf
(F,B)∈F×B

Lλ1,λ2,λ3
(F,B) .

We have derived in Section E that

RGM(µ, ν)2 = C0(F ?, B?) = Lλ1,λ2,λ3(F ?, B?) = inf
(F,B)∈F×B

Lλ1,λ2,λ3(F,B)

if I(µ, ν) ⊆ F ×B and the minimizer (F ?, B?) defined in (E.1) satisfies (F ?, B?) ∈ I(µ, ν). Therefore, under
these assumptions, we can roughly estimate

RGM2(µ, ν) ≈ 0.719.

Lastly, let us estimate the lower bounds, FLB and SLB, on the GW distance as in Section E.2. Due
to the computational complexity, we will use subsets of the training data, say {xi}2000

i=1 and {yj}2000
j=1 , to

construct plug-in estimators FLB(µ̂2000, ν̂2000) and SLB(µ̂2000, ν̂2000); using POT again, we have

FLB2(µ, ν) ≈ FLB2(µ̂2000, ν̂2000) ≈ 0.006 ,

SLB2(µ, ν) ≈ SLB(µ̂2000, ν̂2000) ≈ 0.148 .

Therefore, we can roughly conclude

1 ≤ RGM(µ, ν)

GW(µ, ν)
≤
√

0.719

0.148
= 2.204 .
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