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1 The Jackknife Estimate

A central element of frequentist inference is the standard error. Be-
fore the computer age, an applied statistician had to be a master in
the Tayler series (or other expansion-based approaches) to produce
an analytical formula for the estimate of a parameter of interest. It is
a laborious effort, if not impossible, for complicated statistics.

The Jackknife (1957) provides a computation-based, nonformulaic
approach to standard errors. Consider a case where the statistician
has observed i.i.d. sample x = (x1, x2, . . . , xn) from an unknown
probability distribution F ∈ PX on some space X ,

xi
i.i.d.∼ F, i = 1, 2, . . . , n .

A real-valued statistics θ̂ (or computation rule) has been computed by
executing some algorithm s(·) : X⊗∞ → R TL: Here we assume the algorithm

can execute for any sample size n,
this is not crucial but convenient for
subsequent discussions.

θ̂ = s(x) . (1.1)

As x is random, we wish to assign a standard error to θ under the
aforementioned i.i.d. sampling model.
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Let x(i) be the sample with xi removed

x(i) := (x1, x2, . . . , xi−1, xi+1, . . . , xn) (1.2)

and denote the corresponding, leave-one-out execution of the algo-
rithm

θ̂(i) = s(x(i)).

The Jackknife estimate of the standard error for θ̂ is

ŝejack :=

[
n − 1

n

n

∑
i=1

(
θ̂(i) − θ̂(·)

)2
]1/2

, where θ̂(·) =
1
n

n

∑
i=1

θ̂(i) . (1.3)

Example. Consider the case when the test statistic is the sample mean TL: The fudge factor n−1
n makes the

jackknife estimate coincide with the
classic formula when θ̂ = x̄.θ̂ = x̄

θ̂(i) =
nx̄ − xi
n − 1

θ̂(·) = x̄

ŝejack =

[
1
n

1
n − 1

n

∑
i=1

(xi − x̄)2

]1/2

A few remarks on the intuition behind Jackknife follow

• ŝejack can be applied in an automatic way to any statistics θ̂ = s(x),
as long as s can be computed based on any sample size. Computer
power is substituted for analytical Taylor series calculations. For
example, when s(x) measure the sample correlation

s(x) =
µ̂11√
µ̂20µ̂02

where µ̂hk := 1
n ∑(xi − x̄)h(yi − ȳ)k, h, k ∈ N≥0

The Taylor series formula looks formidable

ŝetaylor :=


µ̂2

11
µ̂20µ̂02

4n
[ µ̂40

µ̂2
20

+
µ̂04

µ̂2
02

+
2µ̂22

µ̂20µ̂02
+

4µ̂22

µ̂2
11

− 4µ̂31

µ̂11µ̂20
− 4µ̂13

µ̂11µ̂02

]
1/2

(1.4)

it saves us all the tedious analytic calculations.

• It is nonparametric w.r.t F, no assumption needed.

• The algorithm works with data sets of size n − 1, not n. There is a
hidden assumption of smooth behavior across sample sizes. This
can be worrisome for statistics such as sample median, which have
a different definition for odd and even sample sizes.
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• The jackknife standard error is upwardly biased as an estimate
of the true standard error. We will give a connection to the Efron-
Stein-Steele Inequality later.

• Jackknife is approximating the directional derivatives

ŝejack =

[
∑n

i=1 D2
i

n2

]1/2

, where Di :=
θ̂(i) − θ̂(·)

1/
√

n(n − 1)
(1.5)

Here Di is measuring as we decrease the weight on data point xi,
how fast the statistics s(x) is changing. We will see a connection in
the “Resampling Plans” section soon.

In particular, this directional derivative viewpoint is also closely
related to the influence function, as well as Efron-Stein-Steele
inequality.

1.1 A Connection to Efron-Stein-Steele Inequality

Theorem 1 (Efron-Stein-Steele Inequality, or Influence Inequality).
Suppose x1, . . . xn, x′1, . . . , x′n are i.i.d. drawn from F Denote the i−th coor-
dinate replacement

x(i) = (x1, x2, . . . , xi−1, x′i , xi+1, . . . , xn) (1.6)

then

var[s(x)] ≤
n

∑
i=1

1
2 E

[(
s(x)− s(x(i))

)2] (1.7)

The proof follows from elementary facts of Martingale differences,
see Boucheron, Lugosi, and Massart.

If this is not immediate to see the connection to the jackknife es-
timate, we simply replace the RHS of the above with the following
equality

1
2 E

[(
s(x)− s(x(i))

)2]
= E

[(
s(x)− E[s(x)|x(i)]︸ ︷︷ ︸

leave-one-out

)2] (1.8)

and therefore

var[s(x)] ≤
n

∑
i=1

E
[(

s(x)− E[s(x)|x(i)]︸ ︷︷ ︸
leave-one-out

)2] (1.9)

Contrast with the jackknife

ŝe2
jack :=

n − 1
n

n

∑
i=1

(
θ̂(i) − θ̂(·)

)2 (1.10)

Both measure the influence of i-th coordinate.
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2 The Nonparametric Bootstrap

The frequentist standard error of an estimate θ̂ = s(x) is, ideally, the
standard deviation we would observe by repeatedly sampling new
versions of x from F. This is impossible because we do not know F.
The bootstrap substitutes an estimate F̂ for F and then estimates
the frequentist standard error by direct simulation, a feasible tactic
only since the advent of electronic computation.

Recall that given the sample and the statistic

x = (x1, x2, . . . , xn), θ̂ = s(x) . (2.1)

Let us begin with the notion of a bootstrap sample, constructed by
sampling with replacement where each

x⋆i
i.i.d.∼ F̂ :=

1
n

n

∑
i=1

δxi , (2.2)

the empirical distribution of F based on the original sample. Each
bootstrap sample provides a bootstrap replication of the statistics

x⋆ = (x⋆1 , x⋆2 , . . . , x⋆n), θ̂⋆ = s(x⋆) . (2.3)

Some large number B of bootstrap samples are independently
drawn. The corresponding bootstrap replications are calculated, say

θ̂⋆b = s(x⋆b), b = 1, 2, . . . , B. (2.4)

The resulting bootstrap estimate of standard error for θ̂ is the empiri-
cal sandard deviation of the θ̂⋆b values

ŝeboot :=

[
1

B − 1

B

∑
b=1

(
θ̂⋆b − θ̂⋆·

)2
]1/2

, where θ̂⋆· =
1
B

B

∑
b=1

θ̂⋆b (2.5)

To see the main motivation behind the bootstrap, we illustrate
with the following diagram

F i.i.d.−→ x s−→ θ̂ (2.6)

The bootstrap flow diagram reads

F̂ i.i.d.−→ x⋆ s−→ θ̂⋆ (2.7)

To assess the standard error of sd(θ̂), follow the above diagram,
we can define a functional SD : PX → R≥0

SD : F 7→ sd(θ̂) (2.8)

where

SD[F] :=
[

E
x∼F⊗n

(
s(x)− E

x′∼F⊗n
s(x′)

)2
]1/2

(2.9)
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In this notation

lim
B→∞

ŝeboot = SD[F̂] (2.10)

Due to the fact that

F̂ → F (2.11)

in certain topological sense in the space of probability distributions , TL: say in Wasserstein metric, weak-*
metric, etc.if the functional SD[F] is smooth w.r.t the metric, then

lim
B→∞

ŝeboot = SD[F̂] → SD[F] (2.12)

Some remarks follow

• Automatic based on simulations and resampling

• Nonparametric. The parametric bootstrap will be described later.

• Bootstrap “shakes” the original data more violently than jackknife,
producing non-local deviations of x⋆ from x. The bootstrap is more
dependable than the jackknife for unsmooth statistics since it does not
depend on local derivatives.

• There is nothing special about standard errors, say expected abso-
lute error, or any other accuracy measure is fine.

• Might be intensive computationally.

3 Resampling Plans

In this section, we consider a resampling framework that unifies
bootstrap and jackknife. Again, the whole section is conditioned on
the original data vector x, and consider perturbations to the empirical
distribution which assigns equal weights to each data point.

A resampling vector P ∈ ∆n is a vector of nonnegative weights
that sum up to 1,

P = (P1, P2, . . . , Pn) (3.1)

Then the original statistic, the jackknife (leave-one-out), and bootstrap
replication can all be represented with a specific resampling vector

θ̂ = S(P0), where P0 := (
1
n

,
1
n

, . . . ,
1
n
)

θ̂(i) = S(P(i)) where P(i) := (
1

n − 1
,

1
n − 1

, . . . ,
1

n − 1
,

i−th︷︸︸︷
0 ,

1
n − 1

, . . .
1

n − 1
)

θ̂⋆ = S(P⋆) where P⋆ := (
N1

n
,

N2

n
, . . . ,

Nn

n
)
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Here

Ni = #{x⋆j = xi}

is sampling n balls from a bag of n unique balls with replacement,
the number of times when the i-th ball occurs, and follows a multino-
mial distribution

N = (N1, N2, . . . , Nn) ∼ Multin(n, P0) (3.2)

This gives the bootstrap probability

n!
N1!N2! · · · Nn!

1
nn (3.3)

on P⋆. TL: The number of distinct bootstrap
weight vector P⋆ is (2n−1

n ), the number
of unique ways to put indistinguishable
n balls to distinguishable n bars.

Figure 1: See Efron and Hastie

• Bootstrap vs. Jackknife. The Euclidean distance between a jack-
knife (leave-one-out) to the original data is

∥P(i) − P0∥ =
1√

n(n − 1)
(3.4)

For the bootstrap, Ni ∼ Binom(n, 1/n) which has mean 1 and
variance (n − 1)/n, then for the bootstrap vector P⋆

i = Ni/n

E[P⋆
i ] =

1
n

(3.5)

var[P⋆
i ] =

n − 1
n3 (3.6)

cov(P⋆
i , P⋆

j ) = − 1
n3 (3.7)

and that (
E ∥P⋆ − P0∥2

)1/2
=

√
(n − 1)

n2 (3.8)

which is
√

n times larger than the leave-one-out vector.

• The function S(P) has approximate directional derivative

Di =
S(P(i))− S(P0)

∥P(i) − P0∥
(3.9)

Jackknife estimate is proportional to the root mean square of the
directional derivatives.

3.1 The Bayesian Bootstrap

Let G1, G2, . . . , Gn be independent exponential variable with density
exp(−x), the Bayesian bootstrap uses resampling vectors

P⋆ = (
G1

∑i Gi
,

G2

∑i Gi
, . . . ,

Gn

∑i Gi
) (3.10)
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Note that the above P⋆ follows a Dirichlet distribution, which has
the mean and covariance matrix

P⋆ ∼ [P0,
1

n + 1
(diag(P0)− P0P⊤

0 )] (3.11)

this is almost identical to the mean and covariance of bootstrap re-
samples P⋆ ∼ Multin(n, p0)/n

P⋆ ∼ [P0,
1
n
(diag(P0)− P0P⊤

0 )] (3.12)

4 Parametric Bootstrap, Infinitesimal Jackknife, and More

4.1 Parametric Bootstrap

F̂ i.i.d.−→ x⋆ s−→ θ̂⋆ (4.1)

Now rather than using the empirical distribution F̂ = 1
n ∑i δxi ,

suppose we consider F is from some parametric family

F = {Fω(x), ω ∈ Ω} (4.2)

Let ω̂ be some estimate of the parameter ω. The parametric bootstrap
resamples directly from

Fω̂
i.i.d.−→ x⋆ s−→ θ̂⋆ (4.3)

The parametric families act as regularizers, namely one may have

d(Fω̂, F) ≪ d(F̂, F) (4.4)

under some suitable metric d : PX × PX → R. Conceptually, the
parametric bootstrap smoothes out the raw data and de-emphasizes
outliers.

Many simulation-based inference methods can be considered as
parametric bootstrap, including the generative models now standard
in the machine learning literature.

4.2 Infinitesimal Jackknife and Influence Functions

There is an intimate connection between the infinitesimal jackknife
and the bootstrap.

Define the linear interpolation between P0 and P(i)

Pi(ϵ) = (1 − ϵ)P0 + ϵP(i) (4.5)

Then

D̃i = lim
ϵ→0

S(Pi(ϵ))− S(P0)

ϵ∥P(i) − P0∥
(4.6)
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The infinitesimal jackknife estimate of the standard error is

ŝeIJ =
( 1

n2

n

∑
i=1

D̃2
i
)1/2 (4.7)

Consider directly the mapping between the probability distribu-
tion to the statistic, namely the test statistic functional T : PX → R

θ = T[F] (4.8)

θ̂ = T[F̂] (4.9)

Define the influence function

IF(x) := lim
ϵ→0

T[(1 − ϵ)F + ϵδx]− T[F]
ϵ

(4.10)

A fundamental theorem due to Tukey/Huber claims that

θ̂ ≈ θ +
1
n

n

∑
i=1

IF(xi), as n → ∞ (4.11)

which implies

var(θ̂) ≈ 1
n

var
x∼F

(IF(x)) (4.12)

Example. Consider the mean

θ = T[F] :=
∫

x dF(x) (4.13)

θ̂ = T[F̂] :=
∫

x dF̂(x) =
1
n

n

∑
i=1

xi (4.14)

then the influence function is

IF(x) = x − θ (4.15)

Example (A failing example). Consider the median

θ = T[F] = F−1(1/2) (4.16)

where F(t) := P(x ≤ t) is the CDF.
Then one can verify that for x < θ = F−1(1/2)

T[(1 − ϵ)F + ϵδx] = F−1( 1/2−ϵ
1−ϵ ) = F−1(1/2)− 1

2 f ′(θ)
· ϵ + o(ϵ)

(4.17)

and thus

IF(x) = − 1
2 f ′(θ)

, for x < θ (4.18)

similarly, one can show

IF(x) =
1

2 f ′(θ)
, for x > θ (4.19)

Thus the influence function has discontinuity at θ. The Infinitesimal Jack-
knife fail to produce a valid standard error.
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5 Parametric vs. Nonparametric Bootstrap: GFR data exercise

Table 10.2 in Efron and Hastie 3. 3 Bradley Efron and Trevor Hastie. Com-
puter Age Statistical Inference: Algorithms,
Evidence, and Data Science. Cambridge
University Press, 2016

TL: HW: Reproduce the Table 10.2 in
Efron and Hastie’s book. Addition-
ally, add the jackknife estimate and
compare.
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