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1 In Theory

1.1 Observations vs. Actions

• Observations are passive, and reflect the state of the world pro-
jected to a set of features we choose to highlight. Data that we col-
lect from passive observation only show a snapshot of the world.

• Actions are active, and demonstrate what if we intervene the
world in a certain way. We wish to understand how that action
will affect the features we choose to observe. Rather than asking
for the frequency of an event in the manifested world, this asks for
the effect of a hypothetical action.
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Figure 1: See Peters, Janzing, and
Schölkopf.

Example. Correlation question: Do 16-year-old drivers have a higher
incidence rate of traffic accidents than 18-year-old drivers?

Counterfactual question: Would traffic fatalities decrease had one raised
the legal driving age by two years?

Causal reasoning is a conceptual and technical framework that
addresses the "what if" questions.

1.2 Simpson’s Paradox

• Berkeley’s admission data in 1973 is a venerable example used to
demonstrate why observations are limited.

• Historical data show that 12763 applicants were considered for ad-
mission to one of 101 departments and inter-departmental majors.

• Of the 4321 women who applied, roughly 35 percent were admit-
ted, while 44 percent of the 8442 men who applied were admitted.

• Standard statistical significance tests suggest that the observed
difference would be highly unlikely to be the outcome of sample
fluctuation if there were no difference in underlying acceptance
rates.

• However, if we condition on the department level, many of the
admission rate patterns between men and women are reversed.

Let Y be acceptance, A be female gender, and Z department
choice, then Simpson’s paradox can be illustrated as follows
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• P[Y|A] > P[Y|¬A]

• P[Y|A, Z = z] < P[Y|¬A, Z = z], ∀z ∈ Z .

Limitation of Observations. Mathematically, Simpson’s Paradox
has no surprise. However, it poses challenges to observational ques-
tions: when can we trust an answer based on empirical observations
given that the relationship can be "all reversed" in each subpopula-
tion?

The bias in the aggregated data stems not from any pattern of discrimination
on the part of admissions committees, which seems quite fair on the whole,
but apparently from prior screening at earlier levels of the educational system.
Women are shunted by their socialization and education toward fields of
graduate study that are generally more crowded, less productive of completed
degrees, and less well funded, and that frequently offer poorer professional
employment prospects.

At this point, we have two choices. Causal inference is helpful in
either case.

• Experiments: One is to design an experiment (or, better, a random-
ized study) and collect more data.

On the one hand, causal inference can be used as a guide in the
design of new studies. It can help us choose which variables to
include, which to exclude, and which to hold constant.

• Assumptions: The other is to resort to our beliefs and plausible
assumptions and then argue over which scenario is more likely.

On the other hand, causal models can serve as a mechanism to
incorporate scientific domain knowledge and exchange plausible
assumptions for plausible conclusions.

1.3 Reichenbach’s Common Cause Principle

• "Correlation does not imply causation." Well-known topos.

• To learn causal structures from observational distributions, we
need to understand how causal models and observational models
relate to each other.

• One may not infer a concrete causal structure, but we may at least
infer the existence of causal links from statistical dependences.

Principle (Reichenbach’s Common Cause Principle (1956)). If two
random variables X and Y are statistically dependent X ̸⊥⊥ Y, then there
exists a third variable Z that causally influences both. Furthermore, this
variable screens X and Y from each other in the sense that given Z, they
become independent, X ⊥⊥ Y|Z.
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1.4 Causal Models and do-Calculus

• A structural causal model is a generative model where we know
exactly the sequence of assignments for generating joint distribu-
tion starting from independent noise variables.

• It is an execution sequence of assignments in which we incremen-
tally build a set of jointly distributed random variables.

Definition 1 (Structural Causal Model). A structural causal model M
is given by a set of variables X1, . . . , Xd and corresponding assignments of
the form

Xi := fi(Pi, Ui), i = 1, . . . , d . (1.1)

Here, Pi ⊆ {X1, . . . , Xd} is a subset of variables that we call the parents
of Xi. The random variables U1, . . . , Ud are called exogenous (or noise)
variables, which we require to be jointly independent.

The directed graph corresponding to the model has one node for each
variable Xi, which has incoming edges from all parents Pi. We call such a
graph the causal graph corresponding to the structural causal model.

When M denotes a structural causal model, we write the probability of an
event E under the entailed joint distribution as PM(E).

Structural causal models are a collection of formal assumptions
about how certain variables interact. Each assignment specifies a
response function. We can think of nodes as receiving messages
from their parents and acting according to these messages as well as
the influence of an exogenous noise variable.

Throughout, we only consider acyclic assignments. Many real-
world systems are naturally described as stateful dynamical systems
with feedback loops. For example, cycles can often be broken up by
introducing time-dependent variables, such as investments at time 0
grow the economy at time 1, which in turn grows investments at time
2, continuing so forth until some chosen time horizon t.

Definition 2 (Interventions and the do-Operator). Given a structural
causal model M, we can operate on any assignment of the form

X := f (P, U) (1.2)

by replacing it with another assignment. The most common substitution is
to assign X a constant value x

X := x (1.3)

We shall denote the resulting model M′ = M[X := x] to indicate the
surgery we performed on the original model M. Under this assignment, we
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hold X constant by removing the influence of its parent nodes and, thereby,
any other variables in the model.

The assignment operator is also called do-operator to emphasize the
performance of an intervention, denoted as

P[E|do(X := x)], or, P
M[X:=x]

[E] (1.4)

Again, the do-operation (action) is fundamentally different from
the conditioning operator (observation).

Example (Exercise, Weight, and Heart Disease). Consider the following
structural causal model among variables

• X: regular exercise or not

• W: excessive weight or not

• H: heart disease or not

The first model M is X W

H1. Sample U1 ∼ Bern(1/2), U2 ∼ Bern(1/3), U3 ∼ Bern(1/3)

2. X := U1

3. W :=

0 if X = 1

U2 o.w.

4. H :=

0 if X = 1

U3 o.w.

This model induces a joint distribution

X W H P[X = x, W = w, H = h]
0 0 0 1/2*2/3*2/3=2/9
0 1 0 1/2*1/3*2/3 = 1/9
0 0 1 1/2*2/3*1/3 = 1/9
0 1 1 1/2*1/3*1/3 = 1/18
1 0 0 1/2

Consider the intervention (1) do(W := 1), M[W := 1] and (2)
do(W := 0), M[W := 0]. The two resulting causal graphs are much
simpler

do(W := 1)
X W H P[X = x, W = w, H = h]
0 1 0 1/2*2/3 = 1/3
0 1 1 1/2*1/3 = 1/6
1 1 0 1/2
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do(W := 0)
X W H P[X = x, W = w, H = h]
0 0 0 1/2*2/3=1/3
0 0 1 1/2*1/3 = 1/6
1 0 0 1/2

Intervention differs from conditioning.

• Conditional probability P[H = 1|W = 1] = 1/18
1/18+1/9 = 1/3 does not

equal to substitution probability P[H = 1|do(W := 1)] = 1/6.

• Observing overweight infers higher chance of heart disease as P[H = 1|W = 1] =
1/3 > P[H = 1|W = 0] = 2/15. However, it does not mean lower body
weight could avoid heart disease, because P[H = 1|do(W := 1)] =

1/6 = P[H = 1|do(W := 0)]

• Based on observational data, one may draw the spurious relationship that
lower body weight could result in lower chance of heart disease

E[H|W = 1]−E[H|W = 0] > 0 (1.5)

whereas the true causal effect should be

E[H|do(W := 1)]−E[H|do(W := 0)] = 0 (1.6)

• This example clearly shows that substitution is fundamentally different
from conditioning. However, we can incorporate the causal graph to
relate the substitution probability to conditional probability.

Consider now a slight variant of the model M′, which is X W

H1. Sample U1 ∼ Bern(1/2), U2 ∼ Bern(1/3), U3 ∼ Bern(1/3)

2. W := U2

3. X :=

0 if W = 0

U1 o.w.

4. H :=

0 if X = 1

U3 o.w.

This model induces a joint distribution

X W H P[X = x, W = w, H = h]
0 0 1 1*2/3*1/3=2/9
0 0 0 1*2/3*2/3 = 4/9
0 1 1 1/2*1/3*1/3 = 1/18
0 1 0 1/2*1/3*2/3 = 1/9
1 1 0 1/2*1/3*1 = 1/6
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In such a case, the do-calculus reads (1) do(W := 1), M[W := 1] and (2)
do(W := 0), M[W := 0]

do(W := 1)
X W H P[X = x, W = w, H = h]
0 1 0 1/2*2/3 = 1/3
0 1 1 1/2*1/3 = 1/6
1 1 0 1/2

do(W := 0)
X W H P[X = x, W = w, H = h]
0 0 0 2/3
0 0 1 1/3

• Conditional probability P[H = 1|W = 1] = 1/18
1/18+1/9+1/6 = 1/6,

P[H = 1|W = 0] = 2/9
2/9+4/9 = 1/3.

• Substitution probability P[H = 1|do(W := 1)] = 1/6, P[H = 1|do(W := 0)] =
1/3

• In such case, the conditional probability equals substitution counterparts,
and thus

E[H|W = 1]−E[H|W = 0] = −1/6 (1.7)

happens to estimate the true causal effect

E[H|do(W := 1)]−E[H|do(W := 0)] = −1/6 (1.8)

1.5 Some Graph Structures

Definition 3 (Forks). A fork is a node Z in a graph that has outgoing
edges to two other variables X and Y. Put differently, the node Z is a com-

mon cause of X and Y. In picture,

X Y

Z .

In forks, Z introduces a confounding effect: ignoring Z will in-
troduce a (spurious) correlation between X and Y. The confounding
leads to a disagreement between the calculus of conditional probabil-
ities (observation) and do-interventions (action).

In the Example: Exercise, Weight, and Heart Disease M, exercise X
influences both the weight W and heart disease H.

Definition 4 (Mediators). A mediator is a node Z which lies on a directed

path from X to Y. In picture,

X Y

Z or

X Y

Z .
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In this case, the path contributes to the total effect of X on Y. It’s a
causal path and thus one of the ways in which X causally influences
Y. That’s why Z is not a confounder. We call Z a mediator instead.

In the Berkeley admission example, the department choice is a
mediator on the path between Gender and Admission rate.

Definition 5 (Colliders). Z is called a unshielded collider if X, Y all

point to Z and X, Y are not adjacent. In picture,

X Y

Z . Otherwise, the

collider Z is shielded and part of a triangle. In picture,

X Y

Z .

Collider is also called "inverted forks." A good example for the col-
lider effect is the "Berkson’s paradox": Two independent diseases can
become negatively correlated when analyzing hospitalized patients.
The reason is that when either disease (X or Y) is sufficient for admis-
sion to the hospital (indicated by variable Z), observing that a patient
has one disease makes the other statistically less likely. TL: Berkson’s paradox P[X|X ∪Y] ̸=

P[X|Y, X ∪Y] even if P[X|Y] = P[X] (in
fact, the P[X|X ∪Y] > P[X|Y, X ∪Y]).

1.6 Causal Effects and Adjustment Formula

Definition 6 (Causal Effects). Given a structural causal model M, the
causal effect of an action X := x on a variable Y refers to the distribution of
the variable Y in the model M[X := x].

When X denotes the presence or absence of an intervention or treatment,
and thus a binary variable, then the average treatment effect is defined as

τ := E[Y|do(X := 1)]−E[Y|do(X := 0)] . (1.9)

In general, the above causal parameter τ cannot directly be re-
placed by the conditional probabilities

τ ̸= E[Y|X = 1]−E[Y|X = 0] (1.10)

We say that X and Y are confounded when the causal effect of action
X := x on Y does not coincide with the corresponding conditional
probability.

Principle (Adjustment Formula).

P[Y = y|do(X := x)] = ∑
z

P[Y = y|X = x, PA = z] P
M[X:=x]

[PA = z]

(1.11)

The adjustment formula is one example of what is often called
controlling for a set of variables: We estimate the effect of X on Y sepa-
rately in every slice of the population defined by a condition Z = z
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for every possible value of z. We then average these estimated sub-
population effects weighted by the probability of Z = z in the pop-
ulation. To give an example, when we control for age, we mean that
we estimate an effect separately in each possible age group and then
average out the results so that each age group is weighted by the
fraction of the population that falls into the age group.

Example. Let’s revisit the Exercise, Weight, and Heart Disease example
and apply the adjustment formula

P[H = 1|do(W := 0)] = P[H = 1|W = 0, X = 0] P
M[W:=0]

[X = 0] + P[H = 1|W = 0, X = 1] P
M[W:=0]

[X = 1]

= P[H = 1|X = 0] P
M[W:=0]

[X = 0] + P[H = 1|X = 1] P
M[W:=0]

[X = 1]

= 1/3 ∗ P
M[W:=0]

[X = 0] + 0 ∗ P
M[W:=0]

[X = 1]

= 1/3 ∗ 1/2 = 1/6

In contrast, the conditional probability calculation reads

P[H = 1|W = 0] = P[H = 1|W = 0, X = 0]P[X = 0|W = 0] + P[H = 1|W = 0, X = 1]P[X = 1|W = 0]

= P[H = 1|X = 0]P[X = 0|W = 0] + P[H = 1|X = 1]P[X = 1|W = 0]

= 1/3 ∗P[X = 0|W = 0] + 0 ∗P[X = 1|W = 0]

= 1/3 ∗ 1 = 1/3

For the three-graph structures

• Fork: controlling for a confounding variable Z in a fork will de-
confound the effect of X on Y.

• Mediator: controlling for a mediator Z will eliminate some causal
inference of X on Y.

• Collider: controlling for a collider will create a correlation between
X and Y. The same is true if we control for a descendant of a
collider.

1.7 Randomization and the Backdoor Criterion

Definition 7 (The Backdoor Criterion). Two variables are cofounded if
there is a so-called backdoor path between them. A backdoor path from X to
Y is any path starting at X with a backward edge "←" into X such as:

X ← A→ B← C → Y

• To deconfound a pair of variables we need to select a backdoor
set of variables that “blocks” all backdoor paths between the two
nodes. A backdoor path involving a chain A → B → C can be
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blocked by controlling for B. Information by default cannot flow
through a collider A → B ← C. So we only have to be careful not
to open information flow through a collider by conditioning on the
collider, or descendant of a collider.

• See Pearl’s d-separation 4: valid adjustment set S that d-separates 4 Judea Pearl. Causality. Cambridge
university press, 2009X, Y are those that for any path connect X and Y, either there

exists a node Z in S that information flow→ Z → or← Z ← or
← Z →), or that neither Z nor any of its descendants are in S and,
creates a collider (→ Z ←). Definition 6.1, Proposition 6.41 in 5 on 5 Jonas Peters, Dominik Janzing, and

Bernhard Schölkopf. Elements of Causal
Inference: Foundations and Learning
Algorithms. The MIT Press, 2017

backdoor criterion and d-separation.

• The backdoor criterion gives a non-experimental way of eliminat-
ing confounding bias given a causal model and a sufficient amount
of observational data from the joint distribution of the variables.

• An alternative experimental method of eliminating confounding
bias randomization. The idea is simple. If a treatment variable T
is an unbiased coin toss, nothing but mere chance influenced its
assignment. In particular, there cannot be a confounding variable
exercising influence on both the treatment variable and a desired
outcome variable.

Thinking in terms of causal models, what this means is that we
eliminate all incoming edges into the treatment variable. In partic-
ular, this closes all backdoor paths and hence avoids confounding
bias.

1.8 Potential Outcome Framework vs. Structural Causal Model

Consider a group of n individuals i = 1, 2, . . . , n, and two sequences
of outcomes {Y0(i)}, {Y1(i)} 6. For an individual, Y1(i) ∈ R denotes 6 Jerzy Neyman. On the application

of probability theory to agricultural
experiments. essay on principles. Ann.
Agricultural Sciences, pages 1–51, 1923

the outcome had we applied a treatment, and Y0(i) ∈ R denotes the
outcome had we applied a control. We define the actual observed
value Y(i) depending on the binary treatment variable T(i)

consistency : Y(i) = T(i)Y1(i) + (1− T(i))Y0(i) (1.12)

The estimand of interest is

τATE := E[Y|do(T := 1)]−E[Y|do(T := 0)] =
1
n

n

∑
i=1

Y1(i)−Y0(i)

(1.13)

It is clear that counterfactual reasoning can be achieved as well
in this potential outcome framework with experimental data. What
happens with observation data? A set of assumptions makes counter-
factual reasoning possible with data
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• Stable Unit Treatment Value Assumption (SUTVA): The treatment
that one unit receives does not change the effect of treatment for
any other unit. No spillover.

• Ignorability: The potential outcomes are independent of treatment
given some deconfounding variables X, namely

T ⊥⊥ (Y0, Y1)|X (1.14)

In words, the potential outcomes are conditionally independent of
treatment given some set of deconfounding variables.

A few remarks follow

• The ignorability assumption on its own cannot be verified or fal-
sified, since we never have access to samples with both potential
outcomes manifested. However, we can verify if the assumption is
consistent with a given structural causal model, by checking if T, Y
is d-separated by the set X; put differently, if the set X blocks all
backdoor paths from treatments T to outcome Y.

• Structural causal model can derive the potential outcome frame-
work. The reverse is not true. A structural equation model en- TL: HW: exercise?

codes more information. However, coming up with a plausible
structural causal model is often a daunting task.

• It seems the potential outcome model is much easier to apply for
observational data. We will discuss next.

2 In Practice

Recall the causal estimand of interest

τ := E[Y|do(T := 1)]−E[Y|do(T := 0)] (2.1)

and define the naive observational estimate

τnaive := E[Y|T = 1]−E[Y|T = 0] (2.2)

In the randomized experiment setting, the above approach works
beautifully. However, in an observational setup, typically T and Y are
confounded, these two estimands are not the same, namely, probabil-
ities do not answer causal questions τnaive ̸= τ. How to deal with this
issue?

In practice, the above issue is addressed by adjustments, by con-
ditioning on a set of covariates to block the confounding. We will go
over the few main strategies in this section. The adjustments are done
in practice by supervised machine learning methods.
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2.1 Basic Regression Adjustments

Lemma 1. Assume T ⊥⊥ (Y0, Y1)|X, then

τ = E
x
[E[Y|T = 1, X = x]]−E

x
[E[Y|T = 0, X = x]] (2.3)

Remark the inside expectation on the RHS is identifiable with
observational data.

Proof. We only need to show that, for i ∈ {0, 1}

E[Y|do(T := i)] = E[Yi]

= E
x
[E[Yi|X = x]] total expectation

= E
x
[E[Yi|X = x, T = i]] ignorability

= E
x
[E[Y|X = x, T = i]]

2.2 Propensity Score Adjustments

Lemma 2. Assume T ⊥⊥ (Y0, Y1)|X and that

e(x) := E[T|X = x] ∈ (0, 1) (2.4)

then

τ = E

[
Y
( T

e(X)
− 1− T

1− e(X)

)]
(2.5)

Remark the inside expectation on the RHS is identifiable with
observational data.

Proof. We only need to show that

E[Y|do(T := 1)] = E[Y1]

= E
x
[E[Y1|X = x]]

= E
x

[
1

e(x) E[TY1|X = x]
]

ignorability

recall TY1 = TY = T(TY1 + (1− T)Y0)

= E
x

[
1

e(x) E[TY|X = x]
]

= E

[
Y

T
e(X)

]
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2.3 Conditional Average Treatment Effects

Define the conditional average treatment effects (CATE)

τ(x) := E[Y
( T

e(X)
− 1− T

1− e(X)

)
|X = x]

by Lemma 2, we know that

E
x
[τ(x)] = τ = E[Y|do(T := 1)]−E[Y|do(T := 0)] (2.6)

2.4 Doubly Robust Adjustments

Lemma 3. Assume T ⊥⊥ (Y0, Y1)|X. Let g(x) and e(x) be two functions,
and construct the doubly-robust estimate

g(X) +
T

e(X)
(Y− g(X)) (2.7)

then

E[Y|do(T := 1)] = E

[
g(X) +

T
e(X)

(Y− g(X))

]
(2.8)

if either g or e is well specified in the sense (1) E[Y1|X = x] = g(x), or (2)
E[T|X = x] = e(x).

Proof. If (1) E[Y1|X = x] = g(x) is true, then

E[Y|do(T := 1)] = E[Y1] = E[g(X) + 0]

= E

[
g(X) +

T
e(X)

(Y1 − g(X))

]
= E

[
g(X) +

T
e(X)

(Y− g(X))

]
where the last step follows from TY = TY1.

Alternatively, if (2) E[T|X = x] = e(x) holds

E

[
g(X) +

T
e(X)

(Y− g(X))

]
= E

[
E[g(X) +

T
e(X)

(Y− g(X))|X]

]
= E

[
E[g(X) +

T
e(X)

(Y1 − g(X))|X]

]
TY = TY1

= E

[
g(X) +

E[T|X]

e(X)
E[Y1 − g(X)|X]

]
by ignorability

= E [E[Y1|X]] = E[Y|do(T := 1)] .
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2.5 Instrumental Variables

Z X Y

W .

• The instrument variable Z and the outcome Y are unconfounded

• The instrument variable Z has no direct effect on the outcome

Y = α + βT + γW + N (2.9)

where the causal parameter

β := E[Y|do(T := 1)]−E[Y|do(T := 0)] (2.10)

The moment conditions read

E[Z(Y− α− βT)] = 0 (2.11)

E[Y− α− βT] = 0 (2.12)

and thus

β =
Cov(Z, Y)
Cov(Z, T)

(2.13)

The above is equivalent to the two-stage least squares

• Form regression T ∼ Z we obtain T̂ = ζ + ξZ where ξ = Cov(T,Z)
ξVar(Z)

• Form regression Y ∼ T̂

because

β =
Cov(Y, T̂)

Var(T̂)
=

Cov(Y, Z)
ξVar(Z)

=
Cov(Z, Y)
Cov(Z, T)

(2.14)

2.6 Regression Discontinuity
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