
Reinforcement Learning II
Tengyuan Liang1

1 The University of Chicago
Booth School of Business

DLA Lecture 6: Explore vs. Exploit

Bandit algorithms and details about exploration vs. exploitation. Read-
ings: Hardt and Recht 2 Chapters 11 and 12, Lattimore and Szepesvari 2 Moritz Hardt and Benjamin Recht.

Patterns, Predictions, and Actions: A
Story about Machine Learning. Princeton
University Press, 2022

3 Chapters 6, 7 and 11.

3 Tor Lattimore and Csaba Szepesvári.
Bandit algorithms. Cambridge University
Press, 2020

Contents

1 Problem Setup 1

2 Stochastic Bandits 2

2.1 Explore-Then-Commit (ETC) Algorithm 2

2.2 Upper Confidence Bound (UCB) Algorithm 4

3 Adversarial Bandits 7

3.1 Exponential Weight for Exploration and Exploitation (EXP3) Algorithm 7

1 Problem Setup

Multi-arm bandit 4 is a special class of sequential decision-making 4 William R Thompson. On the like-
lihood that one unknown probability
exceeds another in view of the evidence
of two samples. Biometrika, 25(3-4):
285–294, 1933; and Herbert Robbins.
Some aspects of the sequential design
of experiments. Bull. Amer. Math. Soc.,
58(6):527–535, 1952

(SDM) problems we have considered before with no dynamic systems
for how the state evolves: one simply decides based on the history
the current action to take from a finite dictionary of arms, and then
observes the reward. In other words, there is no states X, the reward
can be represented by a vector of length k, and the action space is
Ak = {1, 2, . . . , k}.

Definition 1 (Stochastic Bandit). Let the action space be Ak = {1, 2, . . . , k}.
Let the reward vectors rt ∈ Rk, t = 1, 2 . . . , T be i.i.d. samples from an un-
known rewards distribution. We denote the average reward for arm i as
µ(i) := E[rt(i)], i = 1, 2, . . . k.

At each time, the player takes an action ut ∈ Ak (based on the past
information {us, rs(us)}s<t), then only observes the reward rt(ut) ∈ R.
The player tries to maximize the cumulative reward

max
ut

E
[T

∑
t=1

rt(ut)
]
= max

ut
E
[T

∑
t=1

µ(ut)
]

.

Define the cumulative regret for an algorithm/policy π, where the actions
ut ∼ π

Rsto
T (π) := T · max

i∈Ak
µ(i)− E

[T

∑
t=1

µ(ut)
]

reinforcement learning ii 2

Definition 2 (Adversarial Bandit). Let the action space be Ak =

{1, 2, . . . , k}. The reward vectors rt ∈ Rk, t = 1, 2 . . . , T now can be
arbitrary vectors.

At each time, the player takes an action ut ∈ Ak (based on the past
information {us, rs(us)}s<t), then observes the reward rt(ut) ∈ R. The
player tries to maximize the cumulative reward

max
ut

T

∑
t=1

rt(ut) .

Define the cumulative regret for an algorithm/policy π, where the actions
ut ∼ π

Radv
T (π) := max

i∈Ak

T

∑
t=1

rt(i)− E
[T

∑
t=1

rt(ut)
]

2 Stochastic Bandits

2.1 Explore-Then-Commit (ETC) Algorithm

Definition 3 (ETC Algorithm). Explore-Then-Commit (ETC) Algo-
rithm specifies an exploration budget of time m × k.

Define

Nt(i) :=
t

∑
s=1

1us=i (2.1)

µ̂t(i) :=
1

Nt(i)

t

∑
s=1

1us=i · rs(i) (2.2)

which correspond to the number of times action i is taken up till time t, and
the empirical estimate of the average reward for arm i.

The ETC algorithm πETC implements the following

1. Input an integer m

2. In round t, choose action

ut =

(t − 1 mod k) + 1 if t ≤ mk

arg maxi µ̂mk(i) if t > mk

One more notation we need is the gap of the problem

∆i := max
i′

µ(i′)− µi , i ∈ [k] . (2.3)

Theorem 1 (Regret for ETC Algorithm). Consider stochastic bandits
with bounded rewards r(i) ∈ [−1/

√
2, 1/

√
2]. TL: The constants are for convenience

only.

Rsto
T (πETC) ≤

k

∑
i=1

m∆i + (T − mk)∆i exp

(
−

m∆2
i

4

)
(2.4)

reinforcement learning ii 3

A few remarks follow regarding the exploration and exploitation
tradeoff. Consider k = 2: ∆1 = 0, and ∆2 = ∆ > 0. Then the above
regret bound reads

Rsto
T (πETC) ≤ m∆ + T∆ exp

(
−m∆2

4

)
(2.5)

Let us denote

m0 = ⌈ 4
∆2 log

(
T∆2

4

)
⌉ (2.6)

• Gap dependent regret.

– If m0 ≥ 1, then set m = m0

Rsto
T (πETC) ≤ ∆ +

4
∆

(
log
(

T∆2

4

)
+ 1
)

TL: log(T) regret

– If m0 < 1, then T∆2

4 < 1 which implies that the gap is small
∆ < 2√

T
, in such case, set m = T/2 will result in

Rsto
T (πETC) =

T
2

∆ ≤
√

T

• Gap independent regret. If m0 ≥ 1, then set m = m0 and note that

4
∆

(
log
(

T∆2

4

)
+ 1
)
≤ 2

√
T sup

x≥0

2 log x + 1
x

≤ 4
√

e
√

T

and thus

Rsto
T (πETC) ≤ ∆ + 4

√
e
√

T

This shows the worst case
√

T regret. TL:
√

T regret

• Gap independent policy. So far the m depends on the knowledge
of ∆. Without knowing it and simply set m = T2/3, we have

Rsto
T (πETC) ≤ T2/3∆ + T2/3 · T1/3∆ exp

(
−T2/3∆2

4

)
≤ T2/3∆ + T2/3 · 2 sup

x≥0
x exp

(
−x2

)
≍ T2/3

TL: T2/3 regret

Proof. Observe the simple identity

Rsto
T (π) := T · max

i∈Ak
µ(i)− E

[T

∑
t=1

µ(ut)
]

=
k

∑
i=1

∆i E[NT(i)]

reinforcement learning ii 4

WLOG, assume ∆1 = 0, and ∆i > 0 for i ≥ 2. Let’s control

E[NT(i)] =
T

∑
t=1

P[ut = i]

= m +
T

∑
t=mk+1

P[ut = i]

= m +
T

∑
t=mk+1

P

[
µ̂mk(i) > µ̂mk(j), ∀j

]
≤ m +

T

∑
t=mk+1

P

[
µ̂mk(i) > µ̂mk(1)

]
≤ m + (T − mk)P

[
1
m

m−1

∑
z=0

(
rzk+i(i)− rzk+1(1)− µ(i) + µ(1)

)
> ∆i

]

≤ m + (T − mk) exp

(
−

m∆2
i

4

)

Clearly Bz := rzk+i(i)− rzk+1(1) ∈ [−
√

2,
√

2] and that

P

[
1
m

m−1

∑
z=0

Bz − E[Bz] > t

]
≤ exp

(
−mt2

4

)
(2.7)

and the last line follows from Azuma-Hoeffding’s inequality.

2.2 Upper Confidence Bound (UCB) Algorithm

The next algorithm, UCB, is derived based on the optimism principle.
The name upper confidence bound came from the Azuma Hoffd-
ing’s inequality

P

[
µ > µ̂ +

√
2 log(1/δ)

n

]
≤ δ . (2.8)

It shows an optimistic estimate of the true µ based on n-empirical
samples, with accuracy parameter δ.

Definition 4. Upper Confidence Bound (UCB) Algorithm Define the

UCBt,δ(i) =

∞ if Nt(i) = 0

µ̂t(i) +
√

2 log(1/δ)
Nt(i) otherwise

(2.9)

The UCB algorithm πUCB implements the following

1. Input a small accuracy parameter δ ∈ (0, 1)

2. In round t, choose action

ut := arg max
i

UCBt,δ(i)

reinforcement learning ii 5

3. Observe the new reward and update the upper confidence bounds

Theorem 2 (Regret for UCB Algorithm). Consider stochastic bandits
with bounded rewards r(i) ∈ [−1, 1] and δ = 1

T(T+1)

Rsto
T (πUCB) ≤ 2

k

∑
i=1

∆i + ∑
i:∆i>0

16 log(T + 1)
∆i

(2.10)

Proof. First, let us introduce one new notation.

R = [rit]i∈[k],t∈[T] ∈ Rk×T (2.11)

be the random reward matrix, where ri,t, t ∈ [T] are i.i.d. draws from
the distribution L(r(i)). We introduce the empirical mean as

µ̂m(i) :=
1
m

m

∑
t=1

ri,t . (2.12)

The Stochastic bandit model is stochastically equivalent to the follow-
ing model: at each time t, if an arm i is pulled, then reveal the reward
rt(i) = ri,Nt(i). TL: the distribution of rt(i) is the

same as ri,1 though Nt(i) is a random
variable.

Again recall the basic identity,

Rsto
T (π) :=

k

∑
i=1

∆i E[NT(i)]

WLOG, assume ∆1 = 0, and ∆i > 0 for i ≥ 2. Let’s control

E[NT(i)]

Choose an integer mi

mi = ⌈8 log(1/δ)

∆2
i

⌉ < T

so to satisfy TL: mi conceptually is the right level
of number of arms one need to pull to
figure out in order to eliminate the bad
arm.

√
2 log(1/δ)

mi
<

∆i
2

(2.13)

Define two events

Ei =

{
µ̂mi (i) +

√
2 log(1/δ)

mi
< µ(1)

}
(2.14)

F =
{
∀t ∈ [T], UCBt,δ(1) > µ(1)

}
(2.15)

reinforcement learning ii 6

Let’s bound the probability of each event

P[Ec
i] = P

[
µ̂mi (i) +

√
2 log(1/δ)

mi
≥ µ(1)

]

= P

[
µ̂mi (i)− µ(i) ≥ ∆i −

√
2 log(1/δ)

mi

]
≤ P

[
µ̂mi (i)− µ(i) ≥ ∆i

2

]
≤ exp

(
−mi∆2

i
8

)
≤ δ

P[Fc] = P

[
∃t ∈ [T], UCBt,δ(1) ≤ µ(1)

]
≤ P

[
∃m ∈ [T], µ̂m(1) +

√
2 log(1/δ)

m
≤ µ(1)

]
≤ Tδ

Thus

P[(Ei ∩ F)c] ≤ P[Ec
i] + P[Fc] = (T + 1)δ . (2.16)

On the event Ei ∩ F, we claim that

NT(i) ≤ mi . (2.17)

If not, define

τ := inf{t ∈ [T] : Nt(i) = mi} ≤ T − 1 (2.18)

and at time τ, arm i is pulled again. Then one must have

UCBτ,δ(i) > UCBτ,δ(1) (2.19)

Recall that on the event Ei, we have

UCBτ,δ(i) = µ̂τ(i) +

√
2 log(1/δ)

Nτ(i)
= µ̂mi (i) +

√
2 log(1/δ)

mi
< µ(1)

(2.20)

yet on the event F we know

UCBτ,δ(1) > µ(1) . (2.21)

Therefore on the event Ei ∩ F, (2.20) and (2.21) contradicts with (2.19).
Therefore, we have shown on the event Ei ∩ F, NT(i) ≤ mi.

Now we are ready to bound

E[NT(i)] = E[NT(i) · 1Ei∩F] + E[NT(i) · 1(Ei∩F)c]

≤ mi · P[Ei ∩ F] + T · P[(Ei ∩ F)c]

≤ 8 log(1/δ)

∆2
i

+ 1 + T(T + 1)δ

reinforcement learning ii 7

Plug in δ = 1
T(T+1) , we know

E[NT(i)] ≤ 2 +
16 log(T + 1)

∆2
i

(2.22)

and thus reach the final bound.

3 Adversarial Bandits

Now we relieve the i.i.d. assumptions, and see that won’t change the
regret in the worst case

√
T. However, note in the best case, the regret

in the stochastic bandit setting grows at a rate of log(T).

3.1 Exponential Weight for Exploration and Exploitation (EXP3) Al-
gorithm

Definition 5 (EXP3 Algorithm). Define the inverse propensity score
estimate of the reward vector

r̂t(i) =

rt(i)

P[ut=i] if i = ut

0 otherwise
(3.1)

At each round t, let ut ∼ pt where pt ∈ Rk is a probability vector that
sums up to 1.

1. Input a learning rate η

2. In round t, choose action ut ∼ pt where pt ∈ Rk is a probability
distribution over arms

3. Observe the reward rt(ut) scalar, and update

pt+1(i) =
pt(i) exp(ηr̂t(i))

∑j pt(j) exp(ηr̂t(j))
(3.2)

Theorem 3 (Regret for EXP3 Algorithm). Consider the adversarial
bandits with bounded rewards r(i) ∈ [−1, 1] and η ∈ (0, 1)

Radv
T (πEXP3) ≤ log(k)

η
+ η · Tk (3.3)

Remark. Note this bound is optimized when η =
√

log(k)
Tk , in this case

Radv
T (πEXP3) ≤ 2

√
T · k log k

Proof. We first introduce an inequality based on KL divergence
D(· ∥ ·), define

p1(i) =
p0(i) exp(ηr(i))

∑j p0(j) exp(ηr(j))
(3.4)

reinforcement learning ii 8

We then claim that ∀q

⟨r, q⟩ − ⟨r, p0⟩ =
D(q ∥ p0)− D(q ∥ p1)

η
+

D(p0 ∥ p1)

η
. (3.5)

To derive this, notice

D(q ∥ p) = ⟨q, log q − log p⟩ (3.6)

and thus the RHS equals

⟨q, log q − log p0⟩ − ⟨q, log q − log p1⟩
η

+
⟨p0, log p0 − log p1⟩

η

=
1
η
(⟨q, log p1 − log p0⟩ − ⟨p0, log p1 − log p0⟩)

=
1
η
(⟨q, r⟩ − ⟨p0, r⟩+ const. · ⟨q − p0, 1⟩)

(notice log p1 − log p0 = ηr + const. · 1)

The claim is thus proved.
A second fact we will use is a bound for the KL divergence through

the local norm: suppose z ∈ [−1, 1], then we have

exp(z)− 1 − z ≤ z2 (3.7)

and thus

D(p0 ∥ p1)

η
≤ η

k

∑
i=1

p0(i)r2(i) . (3.8)

The proof is due to the fact

D(p0 ∥ p1) = log(⟨p0, exp(ηr)⟩)− ⟨p0, ηr⟩
≤ ⟨p0, exp(ηr)− 1⟩ − ⟨p0, ηr⟩ notice log(1 + z) ≤ z, ∀z ≥ −1.

=
k

∑
i=1

p0(i)
(

exp(ηr(i))− 1 − ηr(i)
)

notice exp(z)− 1 − z ≤ z2, ∀z ∈ [−1, 1]

≤ η2
k

∑
i=1

p0(i)r2(i) .

So far we have derived

⟨r, q⟩ − ⟨r, p0⟩ ≤
D(q ∥ p0)− D(q ∥ p1)

η
+ η

k

∑
i=1

p0(i)r2(i) . (3.9)

Recursively using the above (3.9), we can obtain the following
telescoping inequality for the EXP3 algorithm

⟨r̂t, q⟩ − ⟨r̂t, pt⟩ ≤
D(q ∥ pt)− D(q ∥ pt+1)

η
+ η

k

∑
i=1

pt(i)r̂2
t (i) . (3.10)

reinforcement learning ii 9

Notice that due to the inverse propensity rule being unbiased, we
have

E
ut
[⟨r̂t, q⟩] = ⟨E

ut
[̂rt], q⟩ = ⟨rt, q⟩ (3.11)

E
ut
[⟨r̂t, pt⟩] = ⟨E

ut
[̂rt], pt⟩ = ⟨rt, pt⟩ = E

ut
[rt(ut)] (3.12)

and thus

⟨rt, q⟩ − E
ut
[rt(ut)] ≤ E

ut
[
D(q ∥ pt)− D(q ∥ pt+1)

η
] + η

k

∑
i=1

pt(i)E
ut
[̂r2(i)]

(3.13)

where

E
ut
[̂r2(i)] =

r2
t (i)

pt(i)
(3.14)

and thus

⟨rt, q⟩ − E
ut
[rt(ut)] ≤ E

ut
[
D(q ∥ pt)− D(q ∥ pt+1)

η
] + η

k

∑
i=1

pt(i)
r2

t (i)
pt(i)

(3.15)

≤ E
ut
[
D(q ∥ pt)− D(q ∥ pt+1)

η
] + ηk (3.16)

and thus marginally we have

⟨rt, q⟩ − E[rt(ut)] ≤ E[
D(q ∥ pt)− D(q ∥ pt+1)

η
] + η

k

∑
i=1

pt(i)
r2

t (i)
pt(i)

(3.17)

≤ E[
D(q ∥ pt)− D(q ∥ pt+1)

η
] + ηk (3.18)

summing over t = 1, 2, . . . , T

Radv
T (πEXP3) ≤ D(q ∥ p1)− E[D(q ∥ pT+1)]

η
+ T · ηk

≤ log(k)
η

+ η · Tk

References

Moritz Hardt and Benjamin Recht. Patterns, Predictions, and Actions: A
Story about Machine Learning. Princeton University Press, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge
University Press, 2020.

reinforcement learning ii 10

Herbert Robbins. Some aspects of the sequential design of experi-
ments. Bull. Amer. Math. Soc., 58(6):527–535, 1952.

William R Thompson. On the likelihood that one unknown prob-
ability exceeds another in view of the evidence of two samples.
Biometrika, 25(3-4):285–294, 1933.

	Problem Setup
	Stochastic Bandits
	Adversarial Bandits

