Reinforcement Learning II

Tengyuan Liang¹

DLA Lecture 6: Explore vs. Exploit

Bandit algorithms and details about exploration vs. exploitation. Readings: Hardt and Recht ² Chapters 11 and 12, Lattimore and Szepesvari ³ Chapters 6, 7 and 11.

Contents

- 1 Problem Setup 1
- 2 Stochastic Bandits 2
- 2.1 Explore-Then-Commit (ETC) Algorithm 2
- 2.2 Upper Confidence Bound (UCB) Algorithm
- 3 Adversarial Bandits 7

3.1 Exponential Weight for Exploration and Exploitation (EXP3) Algorithm 7

4

1 Problem Setup

Multi-arm bandit ⁴ is a special class of sequential decision-making (SDM) problems we have considered before with no dynamic systems for how the state evolves: one simply decides based on the history the current action to take from a finite dictionary of arms, and then observes the reward. In other words, there is no states *X*, the reward can be represented by a vector of length *k*, and the action space is $A_k = \{1, 2, ..., k\}$.

Definition 1 (Stochastic Bandit). *Let the action space be* $A_k = \{1, 2, ..., k\}$. *Let the reward vectors* $\mathbf{r}_t \in \mathbb{R}^k$, t = 1, 2, ..., T *be i.i.d. samples from an unknown rewards distribution. We denote the average reward for arm i as* $\mu(i) := \mathbb{E}[\mathbf{r}_t(i)], i = 1, 2, ..., k.$

At each time, the player takes an action $u_t \in A_k$ (based on the past information $\{u_s, \mathbf{r}_s(u_s)\}_{s < t}$), then only observes the reward $\mathbf{r}_t(u_t) \in \mathbb{R}$. The player tries to maximize the cumulative reward

$$\max_{u_t} \mathbb{E}\left[\sum_{t=1}^T \mathbf{r}_t(u_t)\right] = \max_{u_t} \mathbb{E}\left[\sum_{t=1}^T \mu(u_t)\right]$$

Define the cumulative regret for an algorithm/policy π , where the actions $u_t \sim \pi$

$$\mathcal{R}_T^{\mathrm{sto}}(\pi) := T \cdot \max_{i \in \mathcal{A}_k} \mu(i) - \mathbb{E}\left[\sum_{t=1}^T \mu(u_t)\right]$$

¹ The University of Chicago Booth School of Business

 ² Moritz Hardt and Benjamin Recht. Patterns, Predictions, and Actions: A Story about Machine Learning. Princeton University Press, 2022
 ³ Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020

⁴ William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3-4): 285–294, 1933; and Herbert Robbins. Some aspects of the sequential design of experiments. *Bull. Amer. Math. Soc.*, 58(6):527–535, 1952 **Definition 2** (Adversarial Bandit). Let the action space be $A_k = \{1, 2, ..., k\}$. The reward vectors $\mathbf{r}_t \in \mathbb{R}^k$, t = 1, 2, ..., T now can be arbitrary vectors.

At each time, the player takes an action $u_t \in A_k$ (based on the past information $\{u_s, \mathbf{r}_s(u_s)\}_{s < t}$), then observes the reward $\mathbf{r}_t(u_t) \in \mathbb{R}$. The player tries to maximize the cumulative reward

$$\max_{u_t} \sum_{t=1}^T \mathbf{r}_t(u_t) \ .$$

Define the cumulative regret for an algorithm/policy π , where the actions $u_t \sim \pi$

$$\mathcal{R}_T^{\text{adv}}(\pi) := \max_{i \in \mathcal{A}_k} \sum_{t=1}^T \mathbf{r}_t(i) - \mathbb{E}\left[\sum_{t=1}^T \mathbf{r}_t(u_t)\right]$$

2 Stochastic Bandits

2.1 Explore-Then-Commit (ETC) Algorithm

Definition 3 (ETC Algorithm). Explore-Then-Commit (ETC) Algo-

rithm specifies an exploration budget of time $m \times k$ *.*

Define

$$N^{t}(i) := \sum_{s=1}^{t} \mathbb{1}_{u_{s}=i}$$
(2.1)

$$\hat{\mu}^{t}(i) := \frac{1}{N^{t}(i)} \sum_{s=1}^{t} \mathbf{1}_{u_{s}=i} \cdot \mathbf{r}_{s}(i)$$
(2.2)

which correspond to the number of times action *i* is taken up till time *t*, and the empirical estimate of the average reward for arm *i*.

The ETC algorithm π^{ETC} implements the following

- 1. Input an integer m
- 2. In round t, choose action

$$u_t = \begin{cases} (t-1 \mod k) + 1 & \text{if } t \le mk \\ \arg\max_i \ \widehat{\mu}^{mk}(i) & \text{if } t > mk \end{cases}$$

One more notation we need is the gap of the problem

$$\Delta_i := \max_{i'} \mu(i') - \mu_i , \ i \in [k] .$$
(2.3)

Theorem 1 (Regret for ETC Algorithm). *Consider stochastic bandits* with bounded rewards $\mathbf{r}(i) \in [-1/\sqrt{2}, 1/\sqrt{2}]$.

$$\mathcal{R}_T^{\text{sto}}(\pi^{ETC}) \le \sum_{i=1}^k m\Delta_i + (T - mk)\Delta_i \exp\left(-\frac{m\Delta_i^2}{4}\right)$$
(2.4)

TL: The constants are for convenience only.

A few remarks follow regarding the **exploration and exploitation tradeoff**. Consider k = 2: $\Delta_1 = 0$, and $\Delta_2 = \Delta > 0$. Then the above regret bound reads

$$\mathcal{R}_T^{\text{sto}}(\pi^{ETC}) \le m\Delta + T\Delta \exp\left(-\frac{m\Delta^2}{4}\right)$$
 (2.5)

Let us denote

$$m_0 = \left\lceil \frac{4}{\Delta^2} \log\left(\frac{T\Delta^2}{4}\right) \right\rceil \tag{2.6}$$

• Gap dependent regret.

- If $m_0 \ge 1$, then set $m = m_0$

$$\mathcal{R}_T^{\mathrm{sto}}(\pi^{ETC}) \leq \Delta + \frac{4}{\Delta} \left(\log \left(\frac{T\Delta^2}{4} \right) + 1 \right)$$

TL: log(T) regret

- If $m_0 < 1$, then $\frac{T\Delta^2}{4} < 1$ which implies that the gap is small $\Delta < \frac{2}{\sqrt{T}}$, in such case, set m = T/2 will result in

$$\mathcal{R}_T^{\rm sto}(\pi^{ETC}) = \frac{T}{2}\Delta \le \sqrt{T}$$

• **Gap independent regret**. If $m_0 \ge 1$, then set $m = m_0$ and note that

$$\frac{4}{\Delta} \left(\log \left(\frac{T \Delta^2}{4} \right) + 1 \right) \le 2\sqrt{T} \sup_{x \ge 0} \frac{2 \log x + 1}{x} \le 4\sqrt{e} \sqrt{T}$$

and thus

$$\mathcal{R}_T^{\text{sto}}(\pi^{ETC}) \le \Delta + 4\sqrt{e}\sqrt{T}$$

This shows the worst case \sqrt{T} regret.

TL: \sqrt{T} regret

Gap independent policy. So far the *m* depends on the knowledge of Δ. Without knowing it and simply set *m* = *T*^{2/3}, we have

$$\mathcal{R}_{T}^{\text{sto}}(\pi^{ETC}) \leq T^{2/3}\Delta + T^{2/3} \cdot T^{1/3}\Delta \exp\left(-\frac{T^{2/3}\Delta^{2}}{4}\right)$$
$$\leq T^{2/3}\Delta + T^{2/3} \cdot 2\sup_{x \geq 0} x \exp\left(-x^{2}\right) \asymp T^{2/3}$$

TL: $T^{2/3}$ regret

Proof. Observe the simple identity

$$\begin{aligned} \mathcal{R}_T^{\text{sto}}(\pi) &:= T \cdot \max_{i \in \mathcal{A}_k} \mu(i) - \mathbb{E}\left[\sum_{t=1}^l \mu(u_t)\right] \\ &= \sum_{i=1}^k \Delta_i \mathbb{E}[N^T(i)] \end{aligned}$$

WLOG, assume $\Delta_1 = 0$, and $\Delta_i > 0$ for $i \ge 2$. Let's control

$$\begin{split} \mathbb{E}[N^{T}(i)] &= \sum_{t=1}^{T} \mathbb{P}[u_{t} = i] \\ &= m + \sum_{t=mk+1}^{T} \mathbb{P}[u_{t} = i] \\ &= m + \sum_{t=mk+1}^{T} \mathbb{P}\left[\hat{\mu}^{mk}(i) > \hat{\mu}^{mk}(j), \forall j\right] \\ &\leq m + \sum_{t=mk+1}^{T} \mathbb{P}\left[\hat{\mu}^{mk}(i) > \hat{\mu}^{mk}(1)\right] \\ &\leq m + (T - mk) \mathbb{P}\left[\frac{1}{m} \sum_{z=0}^{m-1} \left(\mathbf{r}_{zk+i}(i) - \mathbf{r}_{zk+1}(1) - \mu(i) + \mu(1)\right) > \Delta_{i}\right] \\ &\leq m + (T - mk) \exp\left(-\frac{m\Delta_{i}^{2}}{4}\right) \end{split}$$

Clearly $B_z := \mathbf{r}_{zk+i}(i) - \mathbf{r}_{zk+1}(1) \in [-\sqrt{2}, \sqrt{2}]$ and that

$$\mathbb{P}\left[\frac{1}{m}\sum_{z=0}^{m-1}B_z - \mathbb{E}[B_z] > t\right] \le \exp\left(-\frac{mt^2}{4}\right)$$
(2.7)

and the last line follows from Azuma-Hoeffding's inequality.

2.2 Upper Confidence Bound (UCB) Algorithm

The next algorithm, UCB, is derived based on the *optimism principle*. The name **upper confidence bound** came from the Azuma Hoffding's inequality

$$\mathbb{P}\left[\mu > \hat{\mu} + \sqrt{\frac{2\log(1/\delta)}{n}}\right] \le \delta .$$
(2.8)

It shows an optimistic estimate of the true μ based on *n*-empirical samples, with accuracy parameter δ .

Definition 4. Upper Confidence Bound (UCB) Algorithm Define the

$$UCB^{t,\delta}(i) = \begin{cases} \infty & \text{if } N^t(i) = 0\\ \widehat{\mu}^t(i) + \sqrt{\frac{2\log(1/\delta)}{N^t(i)}} & \text{otherwise} \end{cases}$$
(2.9)

The UCB algorithm π^{UCB} implements the following

- *1. Input a small accuracy parameter* $\delta \in (0, 1)$
- 2. In round t, choose action

$$u_t := \arg\max_i \operatorname{UCB}^{t,\delta}(i)$$

3. Observe the new reward and update the upper confidence bounds

Theorem 2 (Regret for UCB Algorithm). *Consider stochastic bandits* with bounded rewards $\mathbf{r}(i) \in [-1, 1]$ and $\delta = \frac{1}{T(T+1)}$

$$\mathcal{R}_T^{\text{sto}}(\pi^{UCB}) \le 2\sum_{i=1}^k \Delta_i + \sum_{i:\Delta_i > 0} \frac{16\log(T+1)}{\Delta_i}$$
(2.10)

Proof. First, let us introduce one new notation.

$$\mathbf{R} = [r_{it}]_{i \in [k], t \in [T]} \in \mathbb{R}^{k \times T}$$
(2.11)

be the random reward matrix, where $r_{i,t}$, $t \in [T]$ are i.i.d. draws from the distribution $\mathcal{L}(\mathbf{r}(i))$. We introduce the empirical mean as

$$\widehat{\mu}_m(i) := \frac{1}{m} \sum_{t=1}^m r_{i,t} \ .$$
 (2.12)

The Stochastic bandit model is stochastically equivalent to the following model: at each time *t*, if an arm *i* is pulled, then reveal the reward $\mathbf{r}_t(i) = r_{i,N^t(i)}$.

Again recall the basic identity,

$$\mathcal{R}_T^{\mathrm{sto}}(\pi) := \sum_{i=1}^k \Delta_i \mathbb{E}[N^T(i)]$$

WLOG, assume $\Delta_1 = 0$, and $\Delta_i > 0$ for $i \ge 2$. Let's control

 $\mathbb{E}[N^T(i)]$

Choose an integer m_i

$$m_i = \lceil \frac{8\log(1/\delta)}{\Delta_i^2} \rceil < T$$

so to satisfy

$$\left|\frac{2\log(1/\delta)}{m_i} < \frac{\Delta_i}{2}\right| \tag{2.13}$$

Define two events

$$E_{i} = \left\{ \widehat{\mu}_{m_{i}}(i) + \sqrt{\frac{2\log(1/\delta)}{m_{i}}} < \mu(1) \right\}$$
(2.14)
$$F = \left\{ \forall t \in [T], \text{ UCB}^{t,\delta}(1) > \mu(1) \right\}$$
(2.15)

TL: the distribution of $\mathbf{r}_t(i)$ is the same as $r_{i,1}$ though $N^t(i)$ is a random variable.

TL: m_i conceptually is the right level of number of arms one need to pull to figure out in order to eliminate the bad arm.

Let's bound the probability of each event

$$\mathbb{P}[E_i^c] = \mathbb{P}\left[\widehat{\mu}_{m_i}(i) + \sqrt{\frac{2\log(1/\delta)}{m_i}} \ge \mu(1)\right]$$
$$= \mathbb{P}\left[\widehat{\mu}_{m_i}(i) - \mu(i) \ge \Delta_i - \sqrt{\frac{2\log(1/\delta)}{m_i}}\right]$$
$$\le \mathbb{P}\left[\widehat{\mu}_{m_i}(i) - \mu(i) \ge \frac{\Delta_i}{2}\right]$$
$$\le \exp\left(-\frac{m_i\Delta_i^2}{8}\right) \le \delta$$

$$\mathbb{P}[F^{c}] = \mathbb{P}\left[\exists t \in [T], \text{ UCB}^{t,\delta}(1) \le \mu(1)\right]$$
$$\le \mathbb{P}\left[\exists m \in [T], \ \widehat{\mu}_{m}(1) + \sqrt{\frac{2\log(1/\delta)}{m}} \le \mu(1)\right]$$
$$\le T\delta$$

Thus

$$\mathbb{P}[(E_i \cap F)^c] \le \mathbb{P}[E_i^c] + \mathbb{P}[F^c] = (T+1)\delta.$$
(2.16)

On the event $E_i \cap F$, we claim that

$$N^T(i) \le m_i . \tag{2.17}$$

If not, define

$$\tau := \inf\{t \in [T] : N^t(i) = m_i\} \le T - 1$$
(2.18)

and at time τ , arm *i* is pulled again. Then one must have

$$UCB^{\tau,\delta}(i) > UCB^{\tau,\delta}(1)$$
(2.19)

Recall that on the event E_i , we have

$$UCB^{\tau,\delta}(i) = \hat{\mu}^{\tau}(i) + \sqrt{\frac{2\log(1/\delta)}{N^{\tau}(i)}} = \hat{\mu}_{m_i}(i) + \sqrt{\frac{2\log(1/\delta)}{m_i}} < \mu(1)$$
(2.20)

yet on the event *F* we know

$$\text{UCB}^{\tau,\delta}(1) > \mu(1)$$
 . (2.21)

Therefore on the event $E_i \cap F$, (2.20) and (2.21) contradicts with (2.19). Therefore, we have shown on the event $E_i \cap F$, $N^T(i) \le m_i$.

Now we are ready to bound

$$\begin{split} \mathbb{E}[N^{T}(i)] &= \mathbb{E}[N^{T}(i) \cdot \mathbf{1}_{E_{i} \cap F}] + \mathbb{E}[N^{T}(i) \cdot \mathbf{1}_{(E_{i} \cap F)^{c}}] \\ &\leq m_{i} \cdot \mathbb{P}[E_{i} \cap F] + T \cdot \mathbb{P}[(E_{i} \cap F)^{c}] \\ &\leq \frac{8 \log(1/\delta)}{\Delta_{i}^{2}} + 1 + T(T+1)\delta \end{split}$$

Plug in $\delta = \frac{1}{T(T+1)}$, we know

$$\mathbb{E}[N^{T}(i)] \le 2 + \frac{16\log(T+1)}{\Delta_{i}^{2}}$$
(2.22)

and thus reach the final bound.

3 Adversarial Bandits

Now we relieve the i.i.d. assumptions, and see that won't change the regret in the worst case \sqrt{T} . However, note in the best case, the regret in the stochastic bandit setting grows at a rate of $\log(T)$.

3.1 *Exponential Weight for Exploration and Exploitation (EXP3) Algorithm*

Definition 5 (EXP3 Algorithm). *Define the inverse propensity score estimate of the reward vector*

$$\widehat{\mathbf{r}}_t(i) = \begin{cases} \frac{\mathbf{r}_t(i)}{\mathbb{P}[u_t=i]} & \text{if } i = u_t \\ 0 & \text{otherwise} \end{cases}$$
(3.1)

At each round t, let $u_t \sim \mathbf{p}_t$ where $\mathbf{p}_t \in \mathbb{R}^k$ is a probability vector that sums up to 1.

- 1. Input a learning rate η
- 2. In round t, choose action $u_t \sim \mathbf{p}_t$ where $\mathbf{p}_t \in \mathbb{R}^k$ is a probability distribution over arms
- *3. Observe the reward* $\mathbf{r}_t(u_t)$ *scalar, and update*

$$\mathbf{p}_{t+1}(i) = \frac{\mathbf{p}_t(i) \exp(\eta \hat{\mathbf{r}}_t(i))}{\sum_j \mathbf{p}_t(j) \exp(\eta \hat{\mathbf{r}}_t(j))}$$
(3.2)

Theorem 3 (Regret for EXP3 Algorithm). *Consider the adversarial bandits with bounded rewards* $\mathbf{r}(i) \in [-1, 1]$ *and* $\eta \in (0, 1)$

$$\mathcal{R}_T^{\text{adv}}(\pi^{EXP3}) \le \frac{\log(k)}{\eta} + \eta \cdot Tk \tag{3.3}$$

Remark. Note this bound is optimized when $\eta = \sqrt{\frac{\log(k)}{Tk}}$, in this case

$$\mathcal{R}_T^{\mathrm{adv}}(\pi^{EXP3}) \le 2\sqrt{T \cdot k \log k}$$

Proof. We first introduce an inequality based on *KL* divergence $D(\cdot \parallel \cdot)$, define

$$\mathbf{p}_{1}(i) = \frac{\mathbf{p}_{0}(i) \exp(\eta \mathbf{r}(i))}{\sum_{j} \mathbf{p}_{0}(j) \exp(\eta \mathbf{r}(j))}$$
(3.4)

We then claim that $\forall q$

$$\langle \mathbf{r}, \mathbf{q} \rangle - \langle \mathbf{r}, \mathbf{p}_0 \rangle = \frac{D(\mathbf{q} \parallel \mathbf{p}_0) - D(\mathbf{q} \parallel \mathbf{p}_1)}{\eta} + \frac{D(\mathbf{p}_0 \parallel \mathbf{p}_1)}{\eta} .$$
 (3.5)

To derive this, notice

$$D(\mathbf{q} \parallel \mathbf{p}) = \langle \mathbf{q}, \log \mathbf{q} - \log \mathbf{p} \rangle$$
(3.6)

and thus the RHS equals

$$\frac{\langle \mathbf{q}, \log \mathbf{q} - \log \mathbf{p}_0 \rangle - \langle \mathbf{q}, \log \mathbf{q} - \log \mathbf{p}_1 \rangle}{\eta} + \frac{\langle \mathbf{p}_0, \log \mathbf{p}_0 - \log \mathbf{p}_1 \rangle}{\eta} \\
= \frac{1}{\eta} \left(\langle \mathbf{q}, \log \mathbf{p}_1 - \log \mathbf{p}_0 \rangle - \langle \mathbf{p}_0, \log \mathbf{p}_1 - \log \mathbf{p}_0 \rangle \right) \\
= \frac{1}{\eta} \left(\langle \mathbf{q}, \mathbf{r} \rangle - \langle \mathbf{p}_0, \mathbf{r} \rangle + \text{const.} \cdot \langle \mathbf{q} - \mathbf{p}_0, \mathbf{1} \rangle \right)$$

(notice $\log \mathbf{p}_1 - \log \mathbf{p}_0 = \eta \mathbf{r} + \text{const.} \cdot \mathbf{1}$)

The claim is thus proved.

A second fact we will use is a bound for the KL divergence through the local norm: suppose $z \in [-1, 1]$, then we have

$$\exp(z) - 1 - z \le z^2 \tag{3.7}$$

and thus

$$\frac{D(\mathbf{p}_0 \parallel \mathbf{p}_1)}{\eta} \le \eta \sum_{i=1}^k \mathbf{p}_0(i) \mathbf{r}^2(i) .$$
(3.8)

The proof is due to the fact

$$D(\mathbf{p}_0 \parallel \mathbf{p}_1) = \log(\langle \mathbf{p}_0, \exp(\eta \mathbf{r}) \rangle) - \langle \mathbf{p}_0, \eta \mathbf{r} \rangle$$

$$\leq \langle \mathbf{p}_0, \exp(\eta \mathbf{r}) - 1 \rangle - \langle \mathbf{p}_0, \eta \mathbf{r} \rangle \quad \text{notice } \log(1+z) \leq z, \forall z \geq -1.$$

$$= \sum_{i=1}^k \mathbf{p}_0(i) \big(\exp(\eta \mathbf{r}(i)) - 1 - \eta \mathbf{r}(i) \big) \quad \text{notice } \exp(z) - 1 - z \leq z^2, \forall z \in [-1, 1]$$

$$\leq \eta^2 \sum_{i=1}^k \mathbf{p}_0(i) \mathbf{r}^2(i) .$$

So far we have derived

$$\langle \mathbf{r}, \mathbf{q} \rangle - \langle \mathbf{r}, \mathbf{p}_0 \rangle \leq \frac{D(\mathbf{q} \parallel \mathbf{p}_0) - D(\mathbf{q} \parallel \mathbf{p}_1)}{\eta} + \eta \sum_{i=1}^k \mathbf{p}_0(i) \mathbf{r}^2(i) .$$
 (3.9)

Recursively using the above (3.9), we can obtain the following telescoping inequality for the EXP3 algorithm

$$\langle \hat{\mathbf{r}}_t, \mathbf{q} \rangle - \langle \hat{\mathbf{r}}_t, \mathbf{p}_t \rangle \leq \frac{D(\mathbf{q} \parallel \mathbf{p}_t) - D(\mathbf{q} \parallel \mathbf{p}_{t+1})}{\eta} + \eta \sum_{i=1}^k \mathbf{p}_t(i) \hat{\mathbf{r}}_t^2(i) . \quad (3.10)$$

Notice that due to the inverse propensity rule being unbiased, we have

$$\mathbb{E}_{u_t}[\langle \hat{\mathbf{r}}_t, \mathbf{q} \rangle] = \langle \mathbb{E}_{u_t}[\hat{\mathbf{r}}_t], \mathbf{q} \rangle = \langle \mathbf{r}_t, \mathbf{q} \rangle \tag{3.11}$$

$$\mathbb{E}_{u_t}[\langle \hat{\mathbf{r}}_t, \mathbf{p}_t \rangle] = \langle \mathbb{E}_{u_t}[\hat{\mathbf{r}}_t], \mathbf{p}_t \rangle = \langle \mathbf{r}_t, \mathbf{p}_t \rangle = \mathbb{E}_{u_t}[\mathbf{r}_t(u_t)]$$
(3.12)

and thus

$$\langle \mathbf{r}_{t}, \mathbf{q} \rangle - \underset{u_{t}}{\mathbb{E}}[\mathbf{r}_{t}(u_{t})] \leq \underset{u_{t}}{\mathbb{E}}[\frac{D(\mathbf{q} \parallel \mathbf{p}_{t}) - D(\mathbf{q} \parallel \mathbf{p}_{t+1})}{\eta}] + \eta \sum_{i=1}^{k} \mathbf{p}_{t}(i) \underset{u_{t}}{\mathbb{E}}[\hat{\mathbf{r}}^{2}(i)]$$
(3.13)

where

$$\mathbb{E}_{u_t}[\hat{\mathbf{r}}^2(i)] = \frac{\mathbf{r}_t^2(i)}{\mathbf{p}_t(i)}$$
(3.14)

and thus

$$\langle \mathbf{r}_{t}, \mathbf{q} \rangle - \underset{u_{t}}{\mathbb{E}}[\mathbf{r}_{t}(u_{t})] \leq \underset{u_{t}}{\mathbb{E}}[\frac{D(\mathbf{q} \parallel \mathbf{p}_{t}) - D(\mathbf{q} \parallel \mathbf{p}_{t+1})}{\eta}] + \eta \sum_{i=1}^{k} \mathbf{p}_{t}(i) \frac{\mathbf{r}_{t}^{2}(i)}{\mathbf{p}_{t}(i)}$$

$$\leq \underset{u_{t}}{\mathbb{E}}[\frac{D(\mathbf{q} \parallel \mathbf{p}_{t}) - D(\mathbf{q} \parallel \mathbf{p}_{t+1})}{\eta}] + \eta k$$

$$(3.16)$$

and thus marginally we have

$$\langle \mathbf{r}_{t}, \mathbf{q} \rangle - \mathbb{E}[\mathbf{r}_{t}(u_{t})] \leq \mathbb{E}[\frac{D(\mathbf{q} \parallel \mathbf{p}_{t}) - D(\mathbf{q} \parallel \mathbf{p}_{t+1})}{\eta}] + \eta \sum_{i=1}^{k} \mathbf{p}_{t}(i) \frac{\mathbf{r}_{t}^{2}(i)}{\mathbf{p}_{t}(i)}$$

$$\leq \mathbb{E}[\frac{D(\mathbf{q} \parallel \mathbf{p}_{t}) - D(\mathbf{q} \parallel \mathbf{p}_{t+1})}{\eta}] + \eta k$$

$$(3.18)$$

summing over $t = 1, 2, \ldots, T$

$$\mathcal{R}_{T}^{\mathrm{adv}}(\pi^{EXP3}) \leq \frac{D(\mathbf{q} \parallel \mathbf{p}_{1}) - \mathbb{E}[D(\mathbf{q} \parallel \mathbf{p}_{T+1})]}{\eta} + T \cdot \eta k$$
$$\leq \frac{\log(k)}{\eta} + \eta \cdot Tk$$

References

- Moritz Hardt and Benjamin Recht. *Patterns, Predictions, and Actions: A Story about Machine Learning*. Princeton University Press, 2022.
- Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

- Herbert Robbins. Some aspects of the sequential design of experiments. *Bull. Amer. Math. Soc.*, 58(6):527–535, 1952.
- William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3-4):285–294, 1933.