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1 Problem Setup

Multi-arm bandit 4 is a special class of sequential decision-making 4 William R Thompson. On the like-
lihood that one unknown probability
exceeds another in view of the evidence
of two samples. Biometrika, 25(3-4):
285–294, 1933; and Herbert Robbins.
Some aspects of the sequential design
of experiments. Bull. Amer. Math. Soc.,
58(6):527–535, 1952

(SDM) problems we have considered before with no dynamic systems
for how the state evolves: one simply decides based on the history
the current action to take from a finite dictionary of arms, and then
observes the reward. In other words, there is no states X, the reward
can be represented by a vector of length k, and the action space is
Ak = {1, 2, . . . , k}.

Definition 1 (Stochastic Bandit). Let the action space be Ak = {1, 2, . . . , k}.
Let the reward vectors rt ∈ Rk, t = 1, 2 . . . , T be i.i.d. samples from an un-
known rewards distribution. We denote the average reward for arm i as
µ(i) := E[rt(i)], i = 1, 2, . . . k.

At each time, the player takes an action ut ∈ Ak (based on the past
information {us, rs(us)}s<t), then only observes the reward rt(ut) ∈ R.
The player tries to maximize the cumulative reward

max
ut

E
[ T

∑
t=1

rt(ut)
]
= max

ut
E
[ T

∑
t=1

µ(ut)
]

.

Define the cumulative regret for an algorithm/policy π, where the actions
ut ∼ π

Rsto
T (π) := T · max

i∈Ak
µ(i)− E

[ T

∑
t=1

µ(ut)
]
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Definition 2 (Adversarial Bandit). Let the action space be Ak =

{1, 2, . . . , k}. The reward vectors rt ∈ Rk, t = 1, 2 . . . , T now can be
arbitrary vectors.

At each time, the player takes an action ut ∈ Ak (based on the past
information {us, rs(us)}s<t), then observes the reward rt(ut) ∈ R. The
player tries to maximize the cumulative reward

max
ut

T

∑
t=1

rt(ut) .

Define the cumulative regret for an algorithm/policy π, where the actions
ut ∼ π

Radv
T (π) := max

i∈Ak

T

∑
t=1

rt(i)− E
[ T

∑
t=1

rt(ut)
]

2 Stochastic Bandits

2.1 Explore-Then-Commit (ETC) Algorithm

Definition 3 (ETC Algorithm). Explore-Then-Commit (ETC) Algo-
rithm specifies an exploration budget of time m × k.

Define

Nt(i) :=
t

∑
s=1

1us=i (2.1)

µ̂t(i) :=
1

Nt(i)

t

∑
s=1

1us=i · rs(i) (2.2)

which correspond to the number of times action i is taken up till time t, and
the empirical estimate of the average reward for arm i.

The ETC algorithm πETC implements the following

1. Input an integer m

2. In round t, choose action

ut =

(t − 1 mod k) + 1 if t ≤ mk

arg maxi µ̂mk(i) if t > mk

One more notation we need is the gap of the problem

∆i := max
i′

µ(i′)− µi , i ∈ [k] . (2.3)

Theorem 1 (Regret for ETC Algorithm). Consider stochastic bandits
with bounded rewards r(i) ∈ [−1/

√
2, 1/

√
2]. TL: The constants are for convenience

only.

Rsto
T (πETC) ≤

k

∑
i=1

m∆i + (T − mk)∆i exp

(
−

m∆2
i

4

)
(2.4)
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A few remarks follow regarding the exploration and exploitation
tradeoff. Consider k = 2: ∆1 = 0, and ∆2 = ∆ > 0. Then the above
regret bound reads

Rsto
T (πETC) ≤ m∆ + T∆ exp

(
−m∆2

4

)
(2.5)

Let us denote

m0 = ⌈ 4
∆2 log

(
T∆2

4

)
⌉ (2.6)

• Gap dependent regret.

– If m0 ≥ 1, then set m = m0

Rsto
T (πETC) ≤ ∆ +

4
∆

(
log
(

T∆2

4

)
+ 1
)

TL: log(T) regret

– If m0 < 1, then T∆2

4 < 1 which implies that the gap is small
∆ < 2√

T
, in such case, set m = T/2 will result in

Rsto
T (πETC) =

T
2

∆ ≤
√

T

• Gap independent regret. If m0 ≥ 1, then set m = m0 and note that

4
∆

(
log
(

T∆2

4

)
+ 1
)
≤ 2

√
T sup

x≥0

2 log x + 1
x

≤ 4
√

e
√

T

and thus

Rsto
T (πETC) ≤ ∆ + 4

√
e
√

T

This shows the worst case
√

T regret. TL:
√

T regret

• Gap independent policy. So far the m depends on the knowledge
of ∆. Without knowing it and simply set m = T2/3, we have

Rsto
T (πETC) ≤ T2/3∆ + T2/3 · T1/3∆ exp

(
−T2/3∆2

4

)
≤ T2/3∆ + T2/3 · 2 sup

x≥0
x exp

(
−x2

)
≍ T2/3

TL: T2/3 regret

Proof. Observe the simple identity

Rsto
T (π) := T · max

i∈Ak
µ(i)− E

[ T

∑
t=1

µ(ut)
]

=
k

∑
i=1

∆i E[NT(i)]
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WLOG, assume ∆1 = 0, and ∆i > 0 for i ≥ 2. Let’s control

E[NT(i)] =
T

∑
t=1

P[ut = i]

= m +
T

∑
t=mk+1

P[ut = i]

= m +
T

∑
t=mk+1

P

[
µ̂mk(i) > µ̂mk(j), ∀j

]
≤ m +

T

∑
t=mk+1

P

[
µ̂mk(i) > µ̂mk(1)

]
≤ m + (T − mk)P

[
1
m

m−1

∑
z=0

(
rzk+i(i)− rzk+1(1)− µ(i) + µ(1)

)
> ∆i

]

≤ m + (T − mk) exp

(
−

m∆2
i

4

)

Clearly Bz := rzk+i(i)− rzk+1(1) ∈ [−
√

2,
√

2] and that

P

[
1
m

m−1

∑
z=0

Bz − E[Bz] > t

]
≤ exp

(
−mt2

4

)
(2.7)

and the last line follows from Azuma-Hoeffding’s inequality.

2.2 Upper Confidence Bound (UCB) Algorithm

The next algorithm, UCB, is derived based on the optimism principle.
The name upper confidence bound came from the Azuma Hoffd-
ing’s inequality

P

[
µ > µ̂ +

√
2 log(1/δ)

n

]
≤ δ . (2.8)

It shows an optimistic estimate of the true µ based on n-empirical
samples, with accuracy parameter δ.

Definition 4. Upper Confidence Bound (UCB) Algorithm Define the

UCBt,δ(i) =


∞ if Nt(i) = 0

µ̂t(i) +
√

2 log(1/δ)
Nt(i) otherwise

(2.9)

The UCB algorithm πUCB implements the following

1. Input a small accuracy parameter δ ∈ (0, 1)

2. In round t, choose action

ut := arg max
i

UCBt,δ(i)
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3. Observe the new reward and update the upper confidence bounds

Theorem 2 (Regret for UCB Algorithm). Consider stochastic bandits
with bounded rewards r(i) ∈ [−1, 1] and δ = 1

T(T+1)

Rsto
T (πUCB) ≤ 2

k

∑
i=1

∆i + ∑
i:∆i>0

16 log(T + 1)
∆i

(2.10)

Proof. First, let us introduce one new notation.

R = [rit]i∈[k],t∈[T] ∈ Rk×T (2.11)

be the random reward matrix, where ri,t, t ∈ [T] are i.i.d. draws from
the distribution L(r(i)). We introduce the empirical mean as

µ̂m(i) :=
1
m

m

∑
t=1

ri,t . (2.12)

The Stochastic bandit model is stochastically equivalent to the follow-
ing model: at each time t, if an arm i is pulled, then reveal the reward
rt(i) = ri,Nt(i). TL: the distribution of rt(i) is the

same as ri,1 though Nt(i) is a random
variable.

Again recall the basic identity,

Rsto
T (π) :=

k

∑
i=1

∆i E[NT(i)]

WLOG, assume ∆1 = 0, and ∆i > 0 for i ≥ 2. Let’s control

E[NT(i)]

Choose an integer mi

mi = ⌈8 log(1/δ)

∆2
i

⌉ < T

so to satisfy TL: mi conceptually is the right level
of number of arms one need to pull to
figure out in order to eliminate the bad
arm.

√
2 log(1/δ)

mi
<

∆i
2

(2.13)

Define two events

Ei =

{
µ̂mi (i) +

√
2 log(1/δ)

mi
< µ(1)

}
(2.14)

F =
{
∀t ∈ [T], UCBt,δ(1) > µ(1)

}
(2.15)
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Let’s bound the probability of each event

P[Ec
i ] = P

[
µ̂mi (i) +

√
2 log(1/δ)

mi
≥ µ(1)

]

= P

[
µ̂mi (i)− µ(i) ≥ ∆i −

√
2 log(1/δ)

mi

]
≤ P

[
µ̂mi (i)− µ(i) ≥ ∆i

2

]
≤ exp

(
−mi∆2

i
8

)
≤ δ

P[Fc] = P

[
∃t ∈ [T], UCBt,δ(1) ≤ µ(1)

]
≤ P

[
∃m ∈ [T], µ̂m(1) +

√
2 log(1/δ)

m
≤ µ(1)

]
≤ Tδ

Thus

P[(Ei ∩ F)c] ≤ P[Ec
i ] + P[Fc] = (T + 1)δ . (2.16)

On the event Ei ∩ F, we claim that

NT(i) ≤ mi . (2.17)

If not, define

τ := inf{t ∈ [T] : Nt(i) = mi} ≤ T − 1 (2.18)

and at time τ, arm i is pulled again. Then one must have

UCBτ,δ(i) > UCBτ,δ(1) (2.19)

Recall that on the event Ei, we have

UCBτ,δ(i) = µ̂τ(i) +

√
2 log(1/δ)

Nτ(i)
= µ̂mi (i) +

√
2 log(1/δ)

mi
< µ(1)

(2.20)

yet on the event F we know

UCBτ,δ(1) > µ(1) . (2.21)

Therefore on the event Ei ∩ F, (2.20) and (2.21) contradicts with (2.19).
Therefore, we have shown on the event Ei ∩ F, NT(i) ≤ mi.

Now we are ready to bound

E[NT(i)] = E[NT(i) · 1Ei∩F] + E[NT(i) · 1(Ei∩F)c ]

≤ mi · P[Ei ∩ F] + T · P[(Ei ∩ F)c]

≤ 8 log(1/δ)

∆2
i

+ 1 + T(T + 1)δ
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Plug in δ = 1
T(T+1) , we know

E[NT(i)] ≤ 2 +
16 log(T + 1)

∆2
i

(2.22)

and thus reach the final bound.

3 Adversarial Bandits

Now we relieve the i.i.d. assumptions, and see that won’t change the
regret in the worst case

√
T. However, note in the best case, the regret

in the stochastic bandit setting grows at a rate of log(T).

3.1 Exponential Weight for Exploration and Exploitation (EXP3) Al-
gorithm

Definition 5 (EXP3 Algorithm). Define the inverse propensity score
estimate of the reward vector

r̂t(i) =


rt(i)

P[ut=i] if i = ut

0 otherwise
(3.1)

At each round t, let ut ∼ pt where pt ∈ Rk is a probability vector that
sums up to 1.

1. Input a learning rate η

2. In round t, choose action ut ∼ pt where pt ∈ Rk is a probability
distribution over arms

3. Observe the reward rt(ut) scalar, and update

pt+1(i) =
pt(i) exp(ηr̂t(i))

∑j pt(j) exp(ηr̂t(j))
(3.2)

Theorem 3 (Regret for EXP3 Algorithm). Consider the adversarial
bandits with bounded rewards r(i) ∈ [−1, 1] and η ∈ (0, 1)

Radv
T (πEXP3) ≤ log(k)

η
+ η · Tk (3.3)

Remark. Note this bound is optimized when η =
√

log(k)
Tk , in this case

Radv
T (πEXP3) ≤ 2

√
T · k log k

Proof. We first introduce an inequality based on KL divergence
D(· ∥ ·), define

p1(i) =
p0(i) exp(ηr(i))

∑j p0(j) exp(ηr(j))
(3.4)
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We then claim that ∀q

⟨r, q⟩ − ⟨r, p0⟩ =
D(q ∥ p0)− D(q ∥ p1)

η
+

D(p0 ∥ p1)

η
. (3.5)

To derive this, notice

D(q ∥ p) = ⟨q, log q − log p⟩ (3.6)

and thus the RHS equals

⟨q, log q − log p0⟩ − ⟨q, log q − log p1⟩
η

+
⟨p0, log p0 − log p1⟩

η

=
1
η
(⟨q, log p1 − log p0⟩ − ⟨p0, log p1 − log p0⟩)

=
1
η
(⟨q, r⟩ − ⟨p0, r⟩+ const. · ⟨q − p0, 1⟩)

(notice log p1 − log p0 = ηr + const. · 1)

The claim is thus proved.
A second fact we will use is a bound for the KL divergence through

the local norm: suppose z ∈ [−1, 1], then we have

exp(z)− 1 − z ≤ z2 (3.7)

and thus

D(p0 ∥ p1)

η
≤ η

k

∑
i=1

p0(i)r2(i) . (3.8)

The proof is due to the fact

D(p0 ∥ p1) = log(⟨p0, exp(ηr)⟩)− ⟨p0, ηr⟩
≤ ⟨p0, exp(ηr)− 1⟩ − ⟨p0, ηr⟩ notice log(1 + z) ≤ z, ∀z ≥ −1.

=
k

∑
i=1

p0(i)
(

exp(ηr(i))− 1 − ηr(i)
)

notice exp(z)− 1 − z ≤ z2, ∀z ∈ [−1, 1]

≤ η2
k

∑
i=1

p0(i)r2(i) .

So far we have derived

⟨r, q⟩ − ⟨r, p0⟩ ≤
D(q ∥ p0)− D(q ∥ p1)

η
+ η

k

∑
i=1

p0(i)r2(i) . (3.9)

Recursively using the above (3.9), we can obtain the following
telescoping inequality for the EXP3 algorithm

⟨r̂t, q⟩ − ⟨r̂t, pt⟩ ≤
D(q ∥ pt)− D(q ∥ pt+1)

η
+ η

k

∑
i=1

pt(i)r̂2
t (i) . (3.10)
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Notice that due to the inverse propensity rule being unbiased, we
have

E
ut
[⟨r̂t, q⟩] = ⟨E

ut
[̂rt], q⟩ = ⟨rt, q⟩ (3.11)

E
ut
[⟨r̂t, pt⟩] = ⟨E

ut
[̂rt], pt⟩ = ⟨rt, pt⟩ = E

ut
[rt(ut)] (3.12)

and thus

⟨rt, q⟩ − E
ut
[rt(ut)] ≤ E

ut
[
D(q ∥ pt)− D(q ∥ pt+1)

η
] + η

k

∑
i=1

pt(i)E
ut
[̂r2(i)]

(3.13)

where

E
ut
[̂r2(i)] =

r2
t (i)

pt(i)
(3.14)

and thus

⟨rt, q⟩ − E
ut
[rt(ut)] ≤ E

ut
[
D(q ∥ pt)− D(q ∥ pt+1)

η
] + η

k

∑
i=1

pt(i)
r2

t (i)
pt(i)

(3.15)

≤ E
ut
[
D(q ∥ pt)− D(q ∥ pt+1)

η
] + ηk (3.16)

and thus marginally we have

⟨rt, q⟩ − E[rt(ut)] ≤ E[
D(q ∥ pt)− D(q ∥ pt+1)

η
] + η

k

∑
i=1

pt(i)
r2

t (i)
pt(i)

(3.17)

≤ E[
D(q ∥ pt)− D(q ∥ pt+1)

η
] + ηk (3.18)

summing over t = 1, 2, . . . , T

Radv
T (πEXP3) ≤ D(q ∥ p1)− E[D(q ∥ pT+1)]

η
+ T · ηk

≤ log(k)
η

+ η · Tk
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