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Minimum-Norm Interpolation in Statistical Learning:

new phenomena in high dimensions

Tengyuan Liang

Regression: with Sasha Rakhlin (MIT), Xiyu Zhai (MIT)

Classification: with Pragya Sur (Harvard)
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OUTLINE

● Motivation: min-norm interpolants for over-parametrized models

● Regression: multiple descent of risk for kernels/neural networks

● Classification: precise asymptotics of boosting algorithms
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OVERPARAMETRIZED REGIME OF STAT/ML

Model class complex enough to interpolate the training data.
Zhang, Bengio, Hardt, Recht, and Vinyals (2016)

Belkin et al. (2018a,b); Liang and Rakhlin (2018); Bartlett et al. (2019); Hastie et al. (2019)
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λ = 0: the interpolants on training data.

MNIST data from LeCun et al. (2010)
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OVERPARAMETRIZED REGIME OF STAT/ML

In fact, many models behave the same on training data.

Practical methods or algorithms favor certain functions!

Principle: among the models that interpolate,
algorithms favor certain form of minimalism.
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MIN-NORM INTERPOLANTS

minimalism typically measured in form of certain norm
motivates the study of min-norm interpolants

Regression

f̂ = arg min
f

∥f∥norm, s.t. yi = f(xi) ∀i ∈ [n].

Classification

f̂ = arg min
f

∥f∥norm, s.t. yi ⋅ f(xi) ≥ 1 ∀i ∈ [n].
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Multiple Descent of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels
with Sasha Rakhlin (MIT), Xiyu Zhai (MIT)

Regression

f̂ = arg min
f

∥f∥norm, s.t. yi = f(xi) ∀i ∈ [n].
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SHAPE OF RISK CURVE

Classic: U-shape curve

Recent: double descent curve
Belkin, Hsu, Ma, and Mandal (2018a); Hastie, Montanari, Rosset, and Tibshirani (2019)

Question: shape of the risk curve w.r.t. “over-parametrization”?

We model the intrinsic dim. d = nα with α ∈ (0, 1), with feature cov. Σd = Id.

We consider the non-linear Kernel Regression model.
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DATA GENERATING PROCESS

DGP.

● {xi}
n
i=1

i.i.d
∼ µ = P⊗d, dist. of each coordinate satisfies weak moment condition.

● target f⋆(x) ∶= E[Y∣X = x], with bounded Var[Y∣X = x].

Kernel.
● h ∈ C∞(R), h(t) = ∑∞i=0αiti with αi ≥ 0.

● inner product kernel k(x, z) = h (⟨x, z⟩/d).

Target Function.
● Assume f⋆(x) = ∫ k(x, z)ρ⋆(z)µ(dz) with ∥ρ⋆∥µ ≤ C.
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DATA GENERATING PROCESS

Given n i.i.d. data pairs (xi, yi) ∼ PX,Y.

Risk curve for minimum RKHS norm ∥ ⋅ ∥H interpolants f̂ ?

f̂ = arg min
f

∥f∥H, s.t. yi = f(xi) ∀i ∈ [n].
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SHAPE OF RISK CURVE

For any integer ι ≥ 1, consider d = nα where α ∈ ( 1
ι+1 , 1

ι
).

With probability at least 1 − δ − e−n/dι on the design X ∈ Rn×d,

E [∥ f̂ − f∗∥2
µ∣X] ≤ C ⋅ (

dι

n
+

n
dι+1

) ≍ n−β,

β ∶= min{(ι + 1)α − 1, 1 − ια} .

Here the constant C(δ, ι, h,P) does not depend on d, n.

Theorem (L., Rakhlin & Zhai, ’19).
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MULTIPLE DESCENT
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multiple-descent behavior of the rates as the scaling d = nα changes.

● valley: “valley” on the rate curve at d = n
1

ι+1/2 , ι ∈ N
● over-parametrization: towards over-parametrized regime, the good rate at the

bottom of the valley is better

● empirical: preliminary empirical evidence of multiple descent
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EMPIRICAL EVIDENCE

empirical evidence of multiple-descent behavior as the scaling d = nα changes.

11 / 25



Min-Norm Interpolation Regression Classification
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APPLICATION TO WIDE NEURAL NETWORKS

Neural Tangent Kernel (NTK)
Jacot, Gabriel, and Hongler (2018); Du, Zhai, Poczos, and Singh (2018)......

kNTK(x, x ′) = U(
⟨x, x ′⟩
∥x∥∥x ′∥

), with U(t) =
1

4π
(3t(π − arccos(t)) +

√
1 − t2)

Compositional Kernel of Deep Neural Network (DNN)
Daniely et al. (2016); Poole et al. (2016); Liang and Tran-Bach (2020)

kDNN(x, x ′) =
∞

∑
i=0
αi ⋅ (

⟨x, x ′⟩
∥x∥∥x ′∥

)
i
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∞

∑
i=0
αi ⋅ (

⟨x, x ′⟩
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Multiple descent phenomena hold for kernels including NTK, and composi-
tional kernel of DNN.

Corollary (L., Rakhlin & Zhai, ’19).

13 / 25



Min-Norm Interpolation Regression Classification

Precise High-Dimensional Asymptotic Theory for Boosting and Min-`1-Norm Interpolated Classifiers
with Pragya Sur (Harvard)

Classification

f̂ = arg min
f

∥f∥norm, s.t. yi ⋅ f(xi) ≥ 1 ∀i ∈ [n].

14 / 25



Min-Norm Interpolation Regression Classification

PROBLEM FORMULATION

Given n-i.i.d. data pairs {(xi, yi)}1≤i≤n, with (x, y) ∼ P

yi ∈ {±1} binary labels, xi ∈ Rp feature vector (weak learners)

Consider when data is linearly separable

P (∃θ ∈ Rp, yix
⊺
i θ > 0 for 1 ≤ i ≤ n) → 1 .

Natural to consider overparametrized regime

p/n→ψ ∈ (0,∞) .
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BOOSTING/ADABOOST

“... mystery of AdaBoost as the most important unsolved problem in Machine Learn-
ing”

Wald Lecture, Breiman (2004)

“An important open problem is to derive more careful and precise bounds which can
be used for this purpose. Besides paying closer attention to constant factors, such an
analysis might also involve the measurement of more sophisticated statistics.”

Schapire, Freund, Bartlett, and Lee (1998)
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`1 GEOMETRY, MARGIN, AND INTERPOLATION

min-`1-norm interpolation equiv. max-`1-margin

max
∥θ∥1≤1

min
1≤i≤n

yix
⊺
i θ =∶ κ`1(X, y) .

Prior understanding:

generalization error <
1

√
nκ

⋅ (log factors, constants)

Schapire, Freund, Bartlett, and Lee (1998)

optimization steps <
1
κ2

⋅ (log factors, constants)

Rosset, Zhu, and Hastie (2004); Zhang and Yu (2005); Telgarsky (2013)

However, many questions remain:

Statistical
● how large is the `1-margin κ`1(X, y)?

● angle between the interpolated clasifier θ̂ and the truth θ⋆?

● precise generalization error of Boosting? relation to Bayes Error?

Computational
● effect of increasing overparametrizationψ = p/n on optimization?

● proportion of weak-learners activated by Boosting with zero initialization?
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DATA GENERATING PROCESS

DGP. xi ∼ N(0,Λ) i.i.d. with diagonal cov. Λ ∈ Rp×p, and yi are generated with
non-decreasing f ∶ R→ [0, 1],

P(yi = +1∣xi) = 1 − P(yi = −1∣xi) = f(x⊺i θ⋆) ,

with some θ⋆ ∈ Rp.

Consider high-dim asymptotic regime with overparametrized ratio

p/n→ψ ∈ (0,∞), n, p→∞.

signal strength ∶ ∥Λ1/2θ⋆∥ → ρ ∈ (0,∞), coordinate ∶ w̄j =
√

p
λ

1/2
j θ⋆,j

ρ
, 1 ≤ j ≤ p.

Assume

1
p

p

∑
j=1
δ(λj,w̄j)

Wasserstein-2
⇒ µ, a dist. on R>0 ×R
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PRECISE HIGH-DIM ASYMPTOTIC THEORY FOR BOOSTING

Forψ ≥ψ⋆ (separability threshold), sharp asymptotic characterization holds:

Margin: lim
n,p→∞
p/n→ψ

p1/2
⋅ κ`1(X, y) = κ⋆(ψ,µ) , a.s.

Generalization error: lim
n,p→∞
p/n→ψ

Px,y (y ⋅ x⊺θ̂`1 < 0) = Err⋆(ψ,µ) , a.s.

Theorem (L. & Sur, ’20).

precise asymptotics can also be established on

Angle:
⟨θ̂`1 ,θ⋆⟩Λ

∥θ̂`1∥Λ∥θ⋆∥Λ
, Loss: ∑

j∈[p]
`(θ̂`1,j,θ⋆,j)

Gaussian comparison: Gordon (1988); Thrampoulidis et al. (2014, 2015, 2018)
`2-margin: Gardner (1988); Shcherbina and Tirozzi (2003); Deng et al. (2019); Montanari et al. (2019)
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THEORY VS. EMPIRICAL

x-axis, varyingψ overparametrization ratio
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Margin: p1/2
⋅ κ`1

(X, y) → κ⋆(ψ,µ)
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0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48 CGMT
LP

Generalization: Px,y (y ⋅ x⊺θ̂`1
< 0) → Err⋆(ψ,µ)

Blue: empirical (numerical solution via linear programming)
vs.

Red: theoretical (fixed point via non-linear equation system)

Strikingly Accurate Asymptotics for Breiman’s Max Min-Margin!
max∥θ∥1≤1 min1≤i≤n yix⊺i θ
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NON-LINEAR EQUATION SYSTEM: FIXED POINT

[L. & Sur, ’20]: κ⋆(ψ,µ) enjoys the analytic characterization via fixed point
c1(ψ,κ), c2(ψ,κ), s(ψ,κ)

define Fκ(⋅, ⋅) ∶ R × R≥0
→ R≥0

Fκ(c1, c2) ∶= (E [(κ − c1YZ1 − c2Z2)
2
+])

1
2 where

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Z2 ⊥ (Y, Z1)

Zi ∼ N(0, 1), i = 1, 2
P(Y = +1∣Z1) = 1 − P(Y = −1∣Z1) = f(ρ ⋅ Z1)

.

21 / 25



Min-Norm Interpolation Regression Classification

NON-LINEAR EQUATION SYSTEM: FIXED POINT

[L. & Sur, ’20]: κ⋆(ψ,µ) enjoys the analytic characterization via fixed point
c1(ψ,κ), c2(ψ,κ), s(ψ,κ)

Fixed point equations for c1, c2, s ∈ R × R>0 × R>0 given ψ > 0, where the expectation is over (Λ, W, G) ∼

µ⊗N(0, 1) =∶ Q

c1 = − E
(Λ,W,G)∼Q

⎛
⎜
⎝

Λ−1/2W ⋅ proxs (Λ
1/2G +ψ−1/2

[∂1Fκ(c1, c2) − c1c−1
2 ∂2Fκ(c1, c2)]Λ

1/2W)

ψ−1/2c−1
2 ∂2Fκ(c1, c2)

⎞
⎟
⎠

c2
1 + c2

2 = E
(Λ,W,G)∼Q

⎛
⎜
⎝

Λ−1/2 proxs (Λ
1/2G +ψ−1/2

[∂1Fκ(c1, c2) − c1c−1
2 ∂2Fκ(c1, c2)]Λ

1/2W)

ψ−1/2c−1
2 ∂2Fκ(c1, c2)

⎞
⎟
⎠

2

.

1 = E
(Λ,W,G)∼Q

RRRRRRRRRRRRRR

Λ−1 proxs (Λ
1/2G +ψ−1/2

[∂1Fκ(c1, c2) − c1c−1
2 ∂2Fκ(c1, c2)]Λ

1/2W)

ψ−1/2c−1
2 ∂2Fκ(c1, c2)

RRRRRRRRRRRRRR

with proxλ(t) = arg min
s

{λ∣s∣ +
1

2
(s − t)2

} = sgn(t) (∣t∣ − λ)+

T(ψ,κ) ∶= ψ
−1/2

[Fκ(c1, c2) − c1∂1Fκ(c1, c2) − c2∂2Fκ(c1, c2)] − s

with c1(ψ,κ), c2(ψ,κ), s(ψ,κ).

κ⋆(ψ,µ) ∶= inf{κ ≥ 0 ∶ T(ψ,κ) ≥ 0}
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GENERALIZATION ERROR, BAYES ERROR, AND ANGLE

With c⋆i ∶= ci(ψ,κ⋆(ψ,µ)), i = 1, 2.

Err⋆(ψ,µ) = P (c⋆1 YZ1 + c⋆2 Z2 < 0)

BayesErr(ψ,µ) = P (YZ1 < 0)

⟨θ̂`1 ,θ⋆⟩Λ

∥θ̂`1∥Λ∥θ⋆∥Λ
→

c⋆1
√

(c⋆1 )
2 + (c⋆2 )

2

Mannor et al. (2002); Jiang (2004); Bartlett and Traskin (2007); Bartlett et al. (2004)

Resolves an open question posed in Breiman ’99.
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Statistical and Algorithmic implications

significantly improves over prior
generalization bounds

overparametrization→ faster
optimization

overparametrization→ sparser
solution
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SUMMARY

Research agenda: statistical and computational theory for min-norm interpolants

(naive usage of Rademacher complexity, or VC-dim struggles to explain)

● Regression: [L. & Rakhlin ’18, AOS], [L., Rakhlin & Zhai ’19, COLT]

● Classification: [L. & Sur ’20]

● Kernels vs. Neural Networks: [L. & Dou ’19, JASA], [L. & Tran-Bach ’20]
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