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Cowles Foundation for Research in Economics

Home  People out Us  Research Progr Publications ~ News  Events  Resource Contact

HOME > FROM THE ARCHIVES > PEOPLE > TIALLING C. KOOPMANS (1910-1985)

Tjalling C. Koopmans (1910-1985)

From the Archives

Director: July 1948-1955; 1961-1964; 1965-1967

From the Archives Ph.D, University of Leiden, 1936

Events
Tialling C. Koopmans lectured at the Rotterdam School of Economics and

People served on the staff of the Netherlands Economic Institute, 1936-37. From

1938 t0 1940 he was engaged in business-cycle research at the League of

Photo Gallery,

Nations in Geneva. In 1910-41 he was on the staff of the Local and State
Ressarch Recorts Government Section of the School for Public and International Affairs, Princeton University,
and also taught statistics at New York University. In 1941-42, he was economist with the Penn
Mutual Life Insurance Company, and in 1942-44 he was statistician to the Combined Shipping
Adjustment Board at Washington. Koopmans joined the staff of the Cowles Commission in
July1944,as.2 h 1n1946 he also b p inthe

Department of Economics at the University of Chicago. In 1948 he was appointed director of

research of the Commission and professor of economics at the University of Chicago. He was

elected a Fellow of the ety in 1940, of ical Statistics

in 1941, of the American Statistical 1949, and a member of
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OUTLINE

Implicit Distribution Estimation

Giveni.i.d. Yyq,..., Y, ~ v. Use transformation T : RY > R? to represent and learn
unknown dist. Y ~ v via simple Z ~ 11 (say Uniform or Gaussian).

close in dist.?

T(Z) Ry
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OUTLINE

Implicit Distribution Estimation

Giveni.i.d. Yyq,..., Y, ~ v. Use transformation T : RY > R? to represent and learn
unknown dist. Y ~ v via simple Z ~ 11 (say Uniform or Gaussian).

close in dist.?

T(Z) Ry

equivalently

T#},LF?E'V
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OUTLINE
Implicit Distribution Estimation
Generative Adversarial Networks Optimal Transport
* statistical rates ° estimate the Wasserstein metric

. L vs.
® pair regularization ) ) )
* estimate under the Wasserstein metric

® optimization

3/40



Intro.

Adversarial Framework

GANs

Optimization Optimal Transport

GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (conceptual)

Latent random variable

Real world
images

Generator

GAN Goodfellow et al. (2014)

WGAN Arjovsky et al. (2017); Arjovsky and
Bottou (2017)

MMD GAN Li, Swersky, and Zemel (2015);
Dziugaite, Roy, and Ghahramani (2015);
Arbel, Sutherland, Binkowski, and Gretton
(2018)

f-GAN Nowozin, Cseke, and Tomioka (2016)
Sobolev GAN Mroueh et al. (2017)

many others... Liu, Bousquet, and
Chaudhuri (2017); Tolstikhin, Gelly,
Bousquet, Simon-Gabriel, and Schélkopf
(2017)
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GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (conceptual)

Real world
images

. 4
- H (Jodett AL
———

! sp E a0y — EF,00

Latent random varizble
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GENERATIVE ADVERSARIAL NETWORKS

Generative adversarial networks (conceptual)

. 4

sp £ Rt — E£,00

Latent random varizble

Generator gg, Discriminator f,

U, w)= E o]~ E [fulso(2)]

—

e
target

input

minmax U(0, w)
6 w

GAN s are widely used in practice, however
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Optimal Transport

MUCH NEEDS TO BE UNDERSTOOD, IN THEORY

® Approximation:

what dist. can be approximated by the generator (go ) (1)?

® Statistical:

given n samples, what is the statistical/generalization error rate?

* Computational:

local convergence for practical optimization, how to stablize?

* Landscape:

are local saddle points good globally?
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Optimal Transport

FORMULATION

7¢ class of generator transformations, Fp class of discriminator functions
v target dist.

population g eargminmaxi E [f(X)]- E [f(Y)]
geTg feFp X~g#u Y~v



Intro. Adversarial Framework GANs Optimization

Optimal Transport

FORMULATION

7¢ class of generator transformations, Fp class of discriminator functions
v target dist.

population g eargminmaxi E [f(X)]- E [f(Y)]
geTg feFD [ X~gun Y~v
V" empirical dist.
empirical QJeargminmax{ E X)] - E Y
p g < argmin max {XNg#u[f( - E I )1}

S4 W as estimate for v
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FORMULATION

7¢ class of generator transformations, Fp class of discriminator functions
v target dist.

population g eargminmaxi E [f(X)]- E [f(Y)]
geTe feFp | X~gumt Y~v

V" empirical dist.

empirical g € arg min max E X)]- E Y
p geagminmaxi B [(0]- E [F()]

S4 W as estimate for v

* Density learning/estimation: long history nonparametric statistics
model target density p € W* - Sobolev space with smoothness o > 0
Stone (1982); Nemirovski (2000); Tsybakov (2009); Wassermann (2006)
* GAN statistical theory is needed

Arora and Zhang (2017); Arora et al. (2017a,b); Liu et al. (2017)
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DISCRIMINATOR METRIC

Define the critic metric (IPM)
dr(n,v)=sup| E f(X)- E f(Y)] .
feF X~w Y~y
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DISCRIMINATOR METRIC

Define the critic metric (IPM)
dr (i, v)=sup| E f(X)~ E f(V)] .
feF X~ Y~y

® F Lip-1: Wasserstein metric dy

® F bounded by 1: total variation/Radon metric dry
* RKHSH, F ={feH, |f|n <1}: MMD GAN

® F Sobolev smoothness 3: Sobolev GAN

Statistical question: statistical error rate with n-i.i.d samples, Edz (v, 11,)?

for a range of F and v with certain regularity.




Intro.

Adversarial Frame

Optim

zation

Optimal Transport

SUMMARY OF FIRST HALF OF TALK

Goal Evaluation Results Generator Discriminator ~ Property
Metric Class G Class F
Adversarial Sobolev minimax Sobolev Sobolev
Framework dr GAN optimal W W
(nonparametric)
MMD upper smooth RKHS H
GAN bound subspace
in RKHS
oracle any Sobolev gt
results w
Generative dry leaky- upper leaky- leaky- Ft, mx
Adversarial ReLU bound ReLU ReLU
Networks GANs
(parametric)
dry,dgp,dg  any GANs oracle neural neural Gt, Ff, mx
results networks networks
dy Lipschitz oracle Lipschitz Lipschitz Gt, Ff, m*
GANs results neural neural
networks networks
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Intro.

Adversarial Frame

Optim

zation

Optimal Transport

SUMMARY OF FIRST HALF OF TALK

Goal Evaluation Results Generator Discriminator ~ Property
Metric Class G Class F
Adversarial Sobolev minimax Sobolev Sobolev
Framework dr GAN optimal W W
(nonparametric)
MMD upper smooth RKHS H
GAN bound subspace
in RKHS
oracle any Sobolev gt
results w
Generative dry leaky- upper leaky- leaky- Ft, mx
Adversarial ReLU bound ReLU ReLU
Networks GANs
(parametric)
dry,dgp,dg  any GANs oracle neural neural Gt, Ff, mx
results ‘ networks networks
dy Lipschitz oracle Lipschitz Lipschitz Gt, Ff, m*
GANs results neural neural
networks networks

The symbols: (G1) and (F1) to denote the mis-specification for the generator class and the discriminator class
respectively, and (/71+) to indicate the dependence on the number of generator samples.
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Implicit Distribution Estimator: GANs, Optimal Transport

Vs.

Explicit Density Estimator: KDE, Projection/Series Estimator, ...
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Adversarial Framework
(nonparametric)
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MINIMAX OPTIMAL RATES: SOBOLEV GAN

Consider the target G := {v : py € W*} Sobolev space with smoothness «, and the
evaluation metric F = WP with smoothness (3.
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MINIMAX OPTIMAL RATES: SOBOLEV GAN

Consider the target G := {v : py € W*} Sobolev space with smoothness «, and the
evaluation metric F = WP with smoothness (3.

Theorem (L. 17 & L. "18, Sobolev).)

The minimax optimal rate is

. ~ _x+pB _1
infsupEdr (v, Vy) Xn 2a+d v~ 2
Vn veG

Here ¥ any estimator based on # samples. d-dim.

Liang (2017); Singh et al. (2018); Weed and Berthet (2019)
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Optimal Transport

MINIMAX OPTIMAL RATES: MMD GAN

Consider a reproducing kernel Hilbert space (RKHS) H
* integral operator 7 with eigenvalue decay t; xi™",0 < Kk < o0
* evaluation metric F = {f e H | |f|» <1}

x—1
* targetdensity pv inG ={v | |7 "2 pv|x <1} with smoothness
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MINIMAX OPTIMAL RATES: MMD GAN

Consider a reproducing kernel Hilbert space (RKHS) H
* integral operator 7 with eigenvalue decay t; xi™",0 < Kk < o0
* evaluation metric F = {f e H | |f|» <1}

* target density pv in G = {Vv | HT_'XT_1 P+l < 1} with smoothness o

Theorem (L. ‘18, RKHS). )

The minimax optimal rate is

. — _(x+D)x 1
infsupEdz (v, Vy) sn” 2xe+2 v 2 .
Vi veG
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Optimal Transport

MINIMAX OPTIMAL RATES: MMD GAN

Consider a reproducing kernel Hilbert space (RKHS) H
* integral operator 7 with eigenvalue decay t; xi™",0 < Kk < o0
* evaluation metric F = {f e H | |f|» <1}

* target density pv in G = {Vv | HT_'XT_1 P+l < 1} with smoothness o

Theorem (L. ‘18, RKHS). )

The minimax optimal rate is

. — _(x+D)x 1
infsupEdz (v, Vy) sn” 2xe+2 v 2 .
Vi veG

(x+1)k

- -1
K > 1: intrinsic dim. $51 t; = Y11~ < C, parametricrate n” 2ak+2 v 2 = w12,

. 2+ 2o (L) ]
K < 1: sample complexity scales n = €”" a+1 1k '/, effective dim. .
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ORACLE INEQUALITY FOR GANS

Generator class G may not contain the target v: oracle approach.
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ORACLE INEQUALITY FOR GANS

Generator class G may not contain the target v: oracle approach.

Let 7¢ be any generator transformation. The discriminator metric Fp = WP, target
density pv € W*.

S# W, Sx 1 are Implicit Density Esti-
mators!

| Corollary (L. '17). <

With empirical ¥" as plug-in, GAN

§€argminmax{ E [f(X)]—YEEw[f(Y)]}

geTe feFD | X~gym

attains a sub-optimal rate

logn

af®

Edr, (T, v) <mindz, (gu1, v) +|n
8<7¢

S

Canas and Rosasco (2012): =1
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Optimization

Optimal Transport

ORACLE INEQUALITY FOR GANS

Generator class G may not contain the target v: oracle approach.

Let 7¢ be any generator transformation. The discriminator metric Fp = WP, target

density pv € W*.

Corollary (L. '17).

S# W, $x 1 are Implicit Dens
mators!

g e A )

Corollary (L. '17).

With empirical ¥" as plug-in

E [f(X)

g € arg min max
X~gup

geTs feFp

attains a sub-optimal rate

In contrast, a regularized empirical ¥"
as plug-in

E

g€TG €Fp XNX#H

g e argmin max{ [F(x)]- YEEvn[f(Y)]} '

a faster rate is attainable

1
ﬁ 3

Edr, (T4, v) <mindz, (gum1, V) +|n
8<7¢

B
Edr,(Gun, v) <mindr, (§21, V) + e v
8<Tc
-2 ¥ logn
N

Canas and Rosasc

0(2012):B =1
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SUB-OPTIMALITY AND REGULARIZATION

Regularization helps achieve faster rate

Use V" “smoothed” empirical estimate, that serves as regularization
For example, kernel smoothing: ¥" (x) = %K ( J% ), SGD works
n n

Turns out, this is used in practice, called “instance noise” or “data augmentation”

Senderby et al. (2016); Liang et al. (2017); Arjovsky and Bottou (2017); Mescheder et al. (2018)
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Generative Adversarial Networks and Pair Regularization
(parametric)

15/40
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Adversarial Framework GANs Optimization Optimal Transport

Consider the parametrized GAN estimator

O € argmin max {Enfw(20(2)) = Enfw (V) },

with m generator samples and n target samples.

How well GANSs learn the distribution, under objective evaluation metric, say

dry ((8’9‘,,,,,, )4 H V) ?

16 / 40
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Optimal Transport

GENERALIZED ORACLE INEQUALITY

approx. err. | A1(F,G, V) :=supinf
0 w

Iogp—v—wa | A(G,v) = inf
Pre o

P

V8
log Ire

Pv

sto.err.  Sum(F, Q) = \/dem(]:)lmgn(;"# \/Pdlm(]—' o) oelm) Iog(m)

Pdim(-) the pseudo-dimension of the neural network function.

1/2
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GENERALIZED ORACLE INEQUALITY

1/2
approx. err. | A1(F,G,v) _supmf H . Ax(G, V)= irg)f Iogpﬁ )
Pv
| |
sto. err. Sy (F,G) = \/Pdim(]:)w \/Pdlm(]—' 0G)——= og(m)
mAan
Pdim(-) the pseudo-dimension of the neural network function.
,—(Theorem (L. "18, generalized oracle inequality).} N
Edty (v, (35, )#0) . Edy (v. (5, )#1).
Edi (VIl(gg,,)#m) +Edia (35, )#mlv)
<A1(F,G,v)+A2(G, V) +Sum(F.G) .

17 /40
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GENERALIZED ORACLE INEQUALITY

1/2
approx. err. | Ay(F,G,Vv) = sup |nf H . Ax(G, V)= igf log Puo
v
| |
sto. err. Sy (F,G) = \/ Pdim(F) m \/ Pdim(F o G) 21 °g(m)
n
Pdim(-) the pseudo-dimension of the neural network function.
,—(Theorem (L. "18, generalized oracle inequality).) N\
Edty (v, (35, )1) . Edy (v. (85, )#1).
Edit (V(55,,,)#) +Edia (s, )411Y)
<AI(F,G,v)+A2(G, V) +Sum(F,G) .

We emphasize on the interplay between (G, F)
as a pair of tuning parameters for regularization.
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approx. err. | A1(F,G, V) :=supinf VOv T~ VPuo wa ,
0 L VPv Tt puo
Ax(G,v) = inf VPv T VPro
0 Py + p}le

Theorem (L. '18, generalized oracle i.nequality).]

Ed7y (Vy (83, )# H) Edy (Vv (83, )# u),
<A1(F,G,v)+A2(G, V) +Sum(F,G) .

similar result for Hellinger dp, for non-absolutely continuous (ge¢ )4 1 and v.

18 /40
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PAIR REGULARIZATION

fix G, as F increase : A1(F, G, v) decrease, Ay(G, v) constant, S, (F, G) increase,

fix F, as G increase : A1(F, G, V) increase, A>(G, v) decrease, Sy (F, G) increase.

—
& ) A (G,v) =
» -
8 )
© : AF, G, v) =
5 .
] . &
£ 4 = A(F. G, v)=0
g N and Ax(9,v) =
5 \ o -
Y dominated by

g @: (Gx, Fx)

—

<

Generator Class &

19/40
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Applications of pair regularization

20 /40
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APPLICATION I: PARAMETRIC RATES FOR LEAKY RELU NETWORKS

When the generator G and discriminator F are both leaky ReLU networks with depth
L (width properly chosen depends on dimension).

When the target density is realizable by the generator.

L-1d
log p(ge)#u(x) =a Z Z Ly ()20 + o,
1=1 i=1

Bai et al. (2018)

)
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APPLICATION I: PARAMETRIC RATES FOR LEAKY RELU NETWORKS

When the generator G and discriminator F are both leaky ReLU networks with depth
L (width properly chosen depends on dimension).

Theorem (L. ‘18, leaky ReLU).)

logm logn
By (v (55, o) 5L log(an) (22 1)

The results hold for very deep networks with depth L = o(y/n/ log n).

21/40
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APPLICATION II: LEARNING MULTIVARIATE GAUSSIAN

,—(Corollary (L."18, Gaussian).} .

Consider v ~ N(, X). GANSs enjoy near optimal sampling complexity (w.r.t.
dim. d), with proper choices of the architecture and activation,

d2logd
Ed3y, (v, (g5 sy —==.
TV (V (gem,,,)#u) o

22/40
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Optimization

Optimal Transport

PAIR REGULARIZATION:

Discriminator Class

classic parametric models

WHY GANS MIGHT BE BETTER

ic density

Generator Class &

AC,v)=0

A(F,%,1)=0

A(F,%,v) =0
and A>(9,v) = 0
dominated by

*s g*

data-memorization, empirical deviation

23 /40
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Optimization
(local convergence)

24 /40
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FORMULATION

Generator gg, Discriminator f,

U, w) = E T ofo(¥)]- E [hefw(ge(2))]

Y~v
—— ——
target input

minmax U(6, w)
0 w

¢ global optimization for general U (0, w) is hard Singh et al. (2000); Pfau and Vinyals (2016);

Salimans et al. (2016)

25 /40



Intro Adversarial Framework GANs Optimization Optimal Transport

FORMULATION

Generator gg, Discriminator f,

U, w) = E [ ofo(¥)]- E [ ofuw(s0(2))]

Y~v
—— ——
target input

minmax U(6, w)
0 w

¢ global optimization for general U (0, w) is hard Singh et al. (2000); Pfau and Vinyals (2016);

Salimans et al. (2016)

Local saddle point (0+, w4 ) such that no incentive to deviate locally
U(0, w) <U(O«, wx) <U(O, wy) ,
for (6, w) in an open neighborhood of (0, w. ).

* also called local Nash Equilibrium (NE)

* modest goal: initialized properly, algorithm converges to a local NE
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2
INTERACTION MATTERS: #U(e, w)
w

Geometrically fast local convergence to stable equilibrium
However, “interaction term” matters, slows down the convergence « curse

26 /40
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2
INTERACTION MATTERS: #U(G, w)
w

Geometrically fast local convergence to stable equilibrium
However, “interaction term” matters, slows down the convergence < curse

Unstable equilibrium? turns out “interaction term” matters, utilize it renders
geometrically fast convergence <« blessing

Motivation for: optimistic mirror descent, extra-gradients, negative-momentum . ..

26 /40
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“However, no guarantees are known beyond the convex-concave setting and, more importantly

for the paper, even in convex-concave games, no guarantees are known for the last-iterate pair.”
— Daskalakis, Ilyas, Syrgkanis, and Zeng (2017)

27 /40
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GEOMETRICALLY FAST CONVERGENCE TO UNSTABLE EQUILIBRIUM

OMD proposed in Daskalakis et al. (2017)

0441 = 0r —2nVoU(Ot, wy) +‘T1Vau(9t—1v Wi1) ‘

Wre1 = Wi+ MV U(Or, wr) =[NV (O, wi) |

Rakhlin and Sridharan (2013)

For bi-linear game U(6, w) = 0TCw, to obtain e-close solution

Amax(CCT))

1
shown in Daskalakisetal 2017): Tz | € *log — |- Pol
& € y( Amin (CCT)
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GEOMETRICALLY FAST CONVERGENCE TO UNSTABLE EQUILIBRIUM

OMD proposed in Daskalakis et al. (2017)

0441 = 0r —2nVoU(O1, wy) +| MVel(0;_1, wi_1) |

Wi = W+ 2NV U(6), wy) —| NVl (041, wi_1) |

Rakhlin and Sridharan (2013)

For bi-linear game U(6, w) = 0TCw, to obtain e-close solution

1 A ccr
shown in Daskalakisetal 2017): T x| e log — ~Poly(LT))
€ Amin (CC )

Theorem (L. & Stokes, ’18).)

Amax(CCT)
)\min (CCT)

1
weproved: T x|log—
€

further generalized beyond bi-linear game in vokhtari et al. (2019).
28 /40
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GEOMETRICALLY FAST CONVERGENCE TO UNSTABLE EQUILIBRIUM

05 —— Predictive Method
—— omD

0 1000 2000 3000 4000 5000 6000
Gradient step

Theorem (L. & Stokes, '18).}

1| Amax(CCT)

we proved T Iog z m

Y

further generalized beyond bi-linear game in Mokhtari et al. (2019).

28 /40
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® Statistical :-)

given 1 samples, what is the statistical/generalization error rate?

° ’Approximation :—(‘

what dist. can be approximated by the generator g (Z2)?

° ’Computational :—O‘

local convergence for practical optimization, how to stablize?

¢ | Landscape :-(

are local saddle points good globally?

Other approach? theory of optimal transport = GANs?

29 /40
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OPTIMAL TRANSPORT

Wasserstein-p metric,

1p
Wy (i, v) = (m]_i[r(]iv) [Xxy Hx—y“pdn) TT(w, v) all couplings

30/40
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!
OPTIMAL TRANSPORT

Wasserstein-p metric,

1/p
Wp(, v) = (m]_i[r(]iv) f;wy Hx—y””dﬁ) TT(, v) all couplings

,—(Theorem (Brenier, ‘87, p = 2).) N\

LetX =) =R Let 1, v absolutely continuous w.r.t. Lebesgue measure. There
exists a unique convex U)opt (R R,

1 1
WR(w,v) = inf f— —yPd
3 (1, V) S z\lx y|dm

2 2
- [EE @@+ [ v mva

Here " (y) = sup, {({y, x) — (x)} is the Legendre-Fenchel conjugate of 1.

Peyré et al. (2019)
30/40
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OPTIMAL TRANSPORT

‘ Approximation :-)

Consider [0,1]¢, Z ~ Unif([0, 1]%), with a convex 1

(V1) (Z) can represent distribution v!

,—(Theorem (Brenier, ‘87, p = 2).} <

Let X = Y = R?. Let , v absolutely continuous w.r.t. Lebesgue measure. There
exists a unique convex hop; : R? - R,

i_5 . 1 D)
SW2(w,v) = inf f- —y|?d
5 (1, V) i z\lx y|dm

2 2
- [AEE @+ [ v vy

= [ S (T @),

Peyré et al. (2019)

30/40
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OPTIMAL TRANSPORT

Computation :-)
linear program, or smooth convex program simple

Recall input measure p given, empirical target measure ¥"
313007 =sup{ [ oSt + [ 609"}

where ¢¢(x) := infy{%Hx —yI*- e}

Genevay, Cuturi, Peyré, and Bach (2016)
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OPTIMAL TRANSPORT

Computation :-)
linear program, or smooth convex program  simple

Add e-entropic regularization

3009 = s { [ 4t u@ + [ o0)v @)

Liy—y2=
where ¢€ (x) := —¢ log [[ exp (—M)V"(dy)].
Ondatayi,...,yn
optimization reduces to SGD on [ (y1), ..., d(yn)] € R"

Genevay, Cuturi, Peyré, and Bach (2016)
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Optimal Transport

'
varying e, solving W2 _(, ¥") induced transportation map

S yiexp (_ %Hx—yiHZ—rb(yf))
1= €

(Id - V) (x) =

1 12
2 lx=yill 2= (i)
Z:?:1 exp (_ — € s )

Ondatayi,...,yn
optimization reduces to SGD on [ (y1), ..., d(yn)] € R"

32/40
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OPTIMAL TRANSPORT AND PAIR REGULARIZATION

Recall input measure p given, empirical target measure V"
31,7 = sun{ [ o @@+ [ 67 @)
where ¢¢(x) = infy {3 |x - y|* - 4 (1)}

Analogy to GANSs:

¢ : R - R as discriminator function

Id - vVé© : R - R? as generator transformation
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OPTIMAL TRANSPORT AND PAIR REGULARIZATION

Recall input measure p given, empirical target measure V"
31,7 = sun{ [ o @@+ [ 67 @)
where ¢¢(x) = infy {3 |x - y|* - 4 (1)}

Analogy to GANSs:

¢ : R - R as discriminator function

Id - vVé© : R - R? as generator transformation

However, (Id - V$©)xu = V" data memorization

W ((Id - V) pp, v) = Wp (¥, v) x ni
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PAIR REGULARIZATION, AGAIN

Analogy to GANSs:
¢ : R - R as discriminator function

Id - V© : R? - R as generator transformation

Solution: pair regularization F, = {¢, regular}, G. = {Id — V€, regular} for
better statistical rate

-
& & Ax@.1) =0
o Y AF. G =0
s £
g B
£ = ANF.C0) =0
£ ey and A>(%,v) = 0
g NS dominated by
3 i (Gar Fx)

<

d oy
ARG 1T G0 L. ST, 9) 1

Generator Class &
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Estimating Transportation Cost
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ANOTHER APPLICATION OF PAIR REGULARIZATION

Regularity in OT Caffarelli (1992, 1991): p, v € C* Holder.

Statistical question: estimate “transportation cost” W% (w, v) based on n-ii.d. samples
Yi,---,Yn ~ v. Suppose p ~ Unif([0, 1]'71) known.

Lemma (L. & Sadhanala, '19).)

Y 2 _2x+2 _1
sup E|W, - Wy(, v)| s n” 2a+d + 172
veC«
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ANOTHER APPLICATION OF PAIR REGULARIZATION

Regularity in OT Caffarelli (1992, 1991): p, v € C* Holder.

Statistical question: estimate “transportation cost” W2 (., v) based on n-i.i.d. samples
Yi,....Yn ~ V. Suppose w ~ Unif([0, 1]?) known.

Lemma (L. & Sadhanala, ’19).}

_ 2002 _1
sup E|W, —W%(p,v)l <0 Sers an3
veCx

Elbow phenomenon: o > % - 2, one gets parametric rate
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ANOTHER APPLICATION OF PAIR REGULARIZATION

Regularity in OT Caffarelli (1992, 1991): p, v € C* Holder.

Statistical question: estimate “transportation cost” W2 (., v) based on n-ii.d. samples
Yi,---,Yn ~ v. Suppose p ~ Unif([0, 1]d) known.

Lemma (L. & Sadhanala, ’19).}

_ 20042
sup E|W, - Wa(u, v)| 5 nisd 42
veCx

Pair regularization: ¢ € C**2, [d — Vp° € C*1, by Cattarelli (1992, 1991)
g y
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ANOTHER APPLICATION OF PAIR REGULARIZATION

Regularity in OT Caffarelli (1992, 1991): p, v € C* Holder.

Statistical question: estimate “transportation cost” W2 (1, v) based on n-ii.d. samples
Yi,....Yyn ~ V. Suppose w ~ Unif([0, 1]?) known.

Lemma (L. & Sadhanala, ’19).)

—~ 20+2 _1
sup E|W, —W%(u,v)| 5n_2§1d +n 2
veCx

typically an easier problem than estimating measure under W5, or estimating
transportation map T under metric Ex.,, IT(X) - T(X)|?

Hiitter and Rigollet (2019)
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BACK TO THE ADVERSARIAL FRAMEWORK

Two related problems

Estimate under the metric/loss

Theorem (L.,'17).

: 2 _2ae2p
infsupEd% (v, Vn) xn” 2Zatd v

Vn veG

G=W* F=WP

No elbow phenomenon on «.

Liang (2017); Singh et al. (2018); Weed and Berthet
(2019)
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BACK TO THE ADVERSARIAL FRAMEWORK

Two related problems

Estimate under the metric/loss Estimating the metric/loss itself

Theorem (L.,'17). ,—(Theorem (L. & Sadhanala, '19).)—

: 2 =~ .o 70k =il R = 2 2 _8oct8p 1
infsupEd% (v, Vn) xn” 2Zatd v infsupE|W,, —d% (1, v)|" =2 n” %atd vn
Vn veG Wy veg
G =W F=WB G=W* F=WP
. > \ 7
No elbow phenomenon on «. Elbow phenomenon on « = d/4 - 2f3.
Liang (2017); Singh et al. (2018); Weed and Berthet typically an easier problem.

(2019)
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HOWEVER, FOR WASSERSTEIN METRIC

,—{ Theorem (L., '19). “

Consider d > 2 and the domain Q = [0, l]d. Given n ii.d. samples y1,...,yn
from v,

inf sup E|W, - Wy (i, v)| 3 NP ,

Whn veCx

as we know

. —~ ol
inf sup EW(¥Vy, V) xn” 2a+d.
Vi veCx
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HOWEVER, FOR WASSERSTEIN METRIC

Theorem (L., "19). <
Consider d > 2 and the domain Q = [0, 1]'71. Given n ii.d. samples yy,...,yn
from v,
log| o _
M .n_Ttrld 3 inf sup E|[Wn - Wi(p, v)| 3 n_ﬁ ,
log(n) Wy veCx

as we know

~ _ o+l
inf sup EW(¥,, v) xn 2ectd.
Vi veCx

estimating the Wasserstein-1 metric itself
is almost as hard as
estimating under the Wasserstein-1 metric
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HOWEVER, FOR WASSERSTEIN METRIC

Theorem (L., "19). <
Consider d > 2 and the domain Q = [0, l]d. Given 1 iid. samples yy,...,¥x
from v,
log | x ~ -
loglog () A inf sup E[W, - Wi (i, v)| 3 o3
log(n) Wy veCe

as we know

. —~ ol
inf sup EW(¥Vy, V) xn” 2a+d.
Vi veCx

® the main technicality is in deriving the lower bound: wavelets
® construct two composite/fuzzy hypotheses using delicate priors with matching log  moments
® and the Wasserstein metric differs sufficiently

® calculate total variation metric directly on the posterior of data (sum-product form), via a telescoping trick
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SUMMARY

In this talk, we study statistical rates for d (T# w, v) and d(p, v), with
v=T,u
#

Implicit Distribution Estimation motivated from GANs, OT.

Conceptually, to learn the distribution via transformation/transportation,
vs., to estimate the transformation/transportation difficulty.

Closely related problems in the lens of Optimal Transport.

induces plug-in estimate
harder d (T# W, v) d(w,v) easier

sometimes induces a transportation map

Idea of pair regularization
what GANSs have over classical nonparametrics.
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SUMMARY

In this talk, we study statistical rates for d (T# w,v)and d(u, v), with
v=T,u
#

Implicit Distribution Estimation motivated from GANs, OT.

Conceptually, to learn the distribution via transformation/transportation,
vs., to estimate the transformation/transportation difficulty.

Closely related problems in the lens of Optimal Transport.

induces plug-in estimate
harder d (T# W, v) d(w,v) easier

sometimes induces a transportation map

Idea of pair regularization
what GANSs have over classical nonparametrics.

Many interesting open problems both statistically and computationally, with new

insights on regularization and adaptivity.
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