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Regression: General Introduction

I Regression analysis is the most widely used statistical tool for
understanding relationships among variables

I It provides a conceptually simple method for investigating
functional relationships between one or more factors and an
outcome of interest

I The relationship is expressed in the form of an equation or a
model connecting the response or dependent variable and one
or more explanatory or predictor variable
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Why?

Straight prediction questions:

I For how much will my house sell?
I How many runs per game will the Red Sox score this year?
I Will this person like that movie? (Netflix rating system)

Explanation and understanding:

I What is the impact of MBA on income?
I How does the returns of a mutual fund relates to the market?
I Does Walmart discriminate different groups regarding salaries?
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1st Example: Predicting House Prices

Problem:

I Predict market price based on observed characteristics

Solution:

I Look at property sales data where we know the price and some
observed characteristics.

I Build a decision rule that predicts price as a function of the
observed characteristics.
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Predicting House Prices

What characteristics do we use?

We have to define the variables of interest and develop a specific
quantitative measure of these variables

I Many factors or variables affect the price of a house
I size
I number of baths
I garage, air conditioning, etc
I neighborhood
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Predicting House Prices

To keep things super simple, let’s focus only on size.

The value that we seek to predict is called the
dependent (or output) variable, and we denote this:

I Y = price of house (e.g. thousands of dollars)

The variable that we use to guide prediction is the
explanatory (or input) variable, and this is labelled:

I X = size of house (e.g. thousands of square feet)
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Predicting House Prices

What does this data look like?
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Predicting House Prices

It is much more useful to look at a scatterplot
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In other words, view the data as points in the X × Y plane.
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Regression Model

Y = response or outcome variable

X = explanatory or input variables

A linear relationship is written

Y = b0 + b1X
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Linear Prediction

Appears to be a linear relationship between price and size:
As size goes up, price goes up.

The line shown was fit by the “eyeball” method.
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Linear Prediction

Recall that the equation of a line is:

Y = b0 + b1X

Where b0 is the intercept and b1 is the slope.

The intercept value is in units of Y ($1,000).
The slope is in units of Y per units of X ($1,000/1,000 sq ft).
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Linear Prediction

Y 

X 

b0 

2 1 

b1 

Y = b0 + b1X 

Our "eyeball" line has b0 = 35, b1 = 40.
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Linear Prediction

We can now predict the price of a house when we know only the
size; just read the value off the line that we’ve drawn.

For example, given a house with of size X = 2.2.

Predicted price Ŷ = 35 + 40(2.2) = 123.

Note: Conversion from 1,000 sq ft to $1,000 is done for us by the
slope coefficient (b1)

13



Prediction and the Modeling Goal

There are two things that we want to know:

I What value of Y can we expect for a given X?
I How sure are we about this forecast? Or how different could Y

be from what we expect?

Our goal is to measure the accuracy of our forecasts or how much
uncertainty there is in the forecast. One method is to specify a
range of Y values that are likely, given an X value.

Prediction Interval: probable range for Y-values given X
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Prediction and the Modeling Goal

Key Insight: To construct a prediction interval, we will have to
assess the likely range of error values corresponding to a Y value
that has not yet been observed!

We will build a probability model (e.g., normal distribution).

Then we can say something like "with 95% probability the error will
be no less than -$28,000 or larger than $28,000".

We must also acknowledge that the “fitted” line may be fooled by
particular realizations of the residuals.
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The Simple Linear Regression Model

The power of statistical inference comes from the ability to make
precise statements about the accuracy of the forecasts.

In order to do this we must invest in a probability model.

Simple Linear Regression Model: Y = β0 + β1X + ε

ε ∼ N(0, σ2)

I β0 + β1X represents the “true line”; The part of Y that
depends on X .

I The error term ε is independent “idiosyncratic noise”; The part
of Y not associated with X .

16



The Simple Linear Regression Model
Y = β0 + β1X + ε
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The conditional distribution for Y given X is Normal:

Y |X = x ∼ N(β0 + β1x , σ2).
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The Simple Linear Regression Model – Example

You are told (without looking at the data) that

β0 = 40; β1 = 45; σ = 10

and you are asked to predict price of a 1500 square foot house.

What do you know about Y from the model?

Y = 40 + 45(1.5) + ε

= 107.5 + ε

Thus our prediction for price is Y |X = 1.5 ∼ N(107.5, 102)

and a 95% Prediction Interval for Y is 87.5 < Y < 127.5
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Linear Prediction

Can we do better than the eyeball method?

We desire a strategy for estimating the slope and intercept
parameters in the model Ŷ = b0 + b1X

A reasonable way to fit a line is to minimize the amount by which
the fitted value differs from the actual value.

This amount is called the residual.
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Linear Prediction

What is the “fitted value”?

Yi 

Xi 

Ŷi 

The dots are the observed values and the line represents our fitted
values given by Ŷi = b0 + b1X1.
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Linear Prediction

What is the “residual” for the ith ‘observation’?

Yi 

Xi 

Ŷi 
ei = Yi – Ŷi = Residual i  

We can write Yi = Ŷi + (Yi − Ŷi ) = Ŷi + ei .
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Least Squares

Ideally we want to minimize the size of all residuals:

I If they were all zero we would have a perfect line.
I Trade-off between moving closer to some points and at the

same time moving away from other points.

The line fitting process:

I Give weights to all of the residuals.
I Minimize the “total” of residuals to get best fit.

Least Squares chooses b0 and b1 to minimize ∑N
i=1 e2

i

N∑
i=1

e2
i = e2

1+e2
2+· · ·+e2

N = (Y1−Ŷ1)2+(Y2−Ŷ2)2+· · ·+(YN−ŶN)2
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Least Squares

LS chooses a different line from ours:

I b0 = 38.88 and b1 = 35.39
I What do b0 and b1 mean again?

LS line 

Our line 
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Least Squares – Excel Output

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.909209967
R Square 0.826662764
Adjusted R Square 0.81332913
Standard Error 14.13839732
Observations 15

ANOVA
df SS MS F Significance F

Regression 1 12393.10771 12393.10771 61.99831126 2.65987E-06
Residual 13 2598.625623 199.8942787
Total 14 14991.73333

Coefficients Standard Error t Stat P-value Lower 95%
Intercept 38.88468274 9.09390389 4.275906499 0.000902712 19.23849785
Size 35.38596255 4.494082942 7.873900638 2.65987E-06 25.67708664

Upper 95%
58.53086763
45.09483846
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2nd Example: Offensive Performance in Baseball

1. Problems:
I Evaluate/compare traditional measures of offensive performance
I Help evaluate the worth of a player

2. Solutions:
I Compare prediction rules that forecast runs as a function of

either AVG (batting average), SLG (slugging percentage) or
OBP (on base percentage)
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2nd Example: Offensive Performance in Baseball
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Baseball Data – Using AVG

Each observation corresponds to a team in MLB. Each quantity is
the average over a season.

I Y = runs per game; X = AVG (average)

LS fit: Runs/Game = -3.93 + 33.57 AVG
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Baseball Data – Using SLG

I Y = runs per game
I X = SLG (slugging percentage)

LS fit: Runs/Game = -2.52 + 17.54 SLG
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Baseball Data – Using OBP

I Y = runs per game
I X = OBP (on base percentage)

LS fit: Runs/Game = -7.78 + 37.46 OBP
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Baseball Data

I What is the best prediction rule?
I Let’s compare the predictive ability of each model using the

average squared error

1
N

N∑
i=1

e2
i =

∑N
i=1

(
R̂unsi − Runsi

)2

N
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Place your Money on OBP!!!

Average Squared Error
AVG 0.083
SLG 0.055
OBP 0.026
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Linear Prediction

Ŷi = b0 + b1Xi

I b0 is the intercept and b1 is the slope
I We find b0 and b1 using Least Squares
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The Least Squares Criterion

The formulas for b0 and b1 that minimize the least squares criterion
are:

b1 = rxy ×
sy

sx
b0 = Ȳ − b1X̄

where,

I X̄ and Ȳ are the sample mean of X and Y
I corr(x , y) = rxy is the sample correlation
I sx and sy are the sample standard deviation of X and Y
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Covariance
Measure the direction and strength of the linear relationship between Y and X

Cov(Y , X) =

∑n
i=1 (Yi − Ȳ )(Xi − X̄)

n − 1
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(Yi − Ȳ )(Xi − X̄) > 0

(Yi − Ȳ )(Xi − X̄) < 0(Yi − Ȳ )(Xi − X̄) > 0

(Yi − Ȳ )(Xi − X̄) < 0

X̄

Ȳ I sy = 15.98, sx = 9.7
I Cov(X ,Y ) = 125.9

How do we interpret that?
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Correlation

Correlation is the standardized covariance:

corr(X ,Y ) = cov(X ,Y )√
s2
x s2

y
= cov(X ,Y )

sx sy

The correlation is scale invariant and the units of measurement
don’t matter: It is always true that −1 ≤ corr(X ,Y ) ≤ 1.

This gives the direction (- or +) and strength (0→ 1)
of the linear relationship between X and Y .
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Correlation

corr(Y ,X ) = cov(X ,Y )√
s2
x s2

y
= cov(X ,Y )

sx sy
= 125.9

15.98× 9.7 = 0.812
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Ȳ

36



Correlation
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Correlation

Only measures linear relationships:
corr(X ,Y ) = 0 does not mean the variables are not related!
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Also be careful with influential observations.

Excel: correl, stdev, . . .

R: cor, sd, . . .
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More on Least Squares

From now on, terms "fitted values" (Ŷi) and "residuals" (ei) refer to
those obtained from the least squares line.

The fitted values and residuals have some special properties. Lets
look at the housing data analysis to figure out what these properties
are. . .
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The Fitted Values and X
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corr(y.hat, x) = 1
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The Residuals and X
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corr(e, x) = 0

mean(e) = 0
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Why?

What is the intuition for the relationship between Ŷ and e and X?
Lets consider some "crazy" alternative line:
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LS line: 38.9 + 35.4 X

Crazy line: 10 + 50 X
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Fitted Values and Residuals

This is a bad fit! We are underestimating the value of small houses
and overestimating the value of big houses.
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corr(e, x) = -0.7
mean(e) = 1.8

Clearly, we have left some predictive ability on the table!

43



Summary: LS is the best we can do!!

As long as the correlation between e and X is non-zero, we could
always adjust our prediction rule to do better.

We need to exploit all of the predictive power in the X values and
put this into Ŷ , leaving no “Xness” in the residuals.

In Summary: Y = Ŷ + e where:

I Ŷ is “made from X”; corr(X , Ŷ ) = 1.
I e is unrelated to X ; corr(X , e) = 0.
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Decomposing the Variance

How well does the least squares line explain variation in Y ?
Remember that Y = Ŷ + e

Since Ŷ and e are uncorrelated, i.e. corr(Ŷ , e) = 0,

var(Y ) = var(Ŷ + e) = var(Ŷ ) + var(e)∑n
i=1(Yi − Ȳ )2

n − 1 =
∑n

i=1(Ŷi − ¯̂Y )2

n − 1 +
∑n

i=1(ei − ē)2

n − 1

Given that ē = 0, and ¯̂Y = Ȳ (why?) we get to:

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1
(Ŷi − Ȳ )2 +

n∑
i=1

e2
i
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Decomposing the Variance

SSR: Variation in Y explained by the regression line.
SSE: Variation in Y that is left unexplained.

SSR = SST ⇒ perfect fit.
Be careful of similar acronyms; e.g. SSR for "residual" SS.
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A Goodness of Fit Measure: R2

The coefficient of determination, denoted by R2,
measures goodness of fit:

R2 = SSR
SST = 1− SSE

SST

I 0 < R2 < 1.
I The closer R2 is to 1, the better the fit.
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Back to the House Data

!""#$%%&$'()*"$+,
Applied Regression Analysis
Carlos M. Carvalho

Back to the House Data

''-
''.

''/

R2 = SSR
SST = 0.82 = 12395

14991
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Back to Baseball

Three very similar, related ways to look at a simple linear
regression. . . with only one X variable, life is easy!

R2 corr SSE
OBP 0.88 0.94 0.79
SLG 0.76 0.87 1.64
AVG 0.63 0.79 2.49
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Summary of Simple Linear Regression

The model is
Yi = β0 + β1Xi + εi

εi ∼ N(0, σ2).

The SLR has 3 basic parameters:

I β0, β1 (linear pattern)

I σ (variation around the line).

Assumptions:

I independence means that knowing εi doesn’t affect your views
about εj

I identically distributed means that we are using the same
normal for every εi
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Estimation for the SLR Model

SLR assumes every observation in the dataset was generated by the
model:

Yi = β0 + β1Xi + εi

This is a model for the conditional distribution of Y given X.

We use Least Squares to estimate β0 and β1:

β̂1 = b1 = rxy ×
sy
sx

β̂0 = b0 = Ȳ − b1X̄
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Estimation of Error Variance

We estimate σ2 with:

s2 = 1
n − 2

n∑
i=1

e2
i = SSE

n − 2

(2 is the number of regression coefficients; i.e. 2 for β0 and β1).

We have n − 2 degrees of freedom because 2 have been “used up”
in the estimation of b0 and b1.

We usually use s =
√

SSE/(n − 2), in the same units as Y . It’s
also called the regression standard error.
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Estimation of Error Variance

Where is s in the Excel output?

!""#$%%%&$'()*"$+
Applied Regression Analysis 
Carlos M. Carvalho

Estimation of 2

!,"-"$).$s )/$0,"$123"($4506507

8"9"9:"-$;,"/"<"-$=45$.""$>.0?/*?-*$"--4-@$-"?*$)0$?.$estimated
.0?/*?-*$*"<)?0)4/&$ ).$0,"$.0?/*?-*$*"<)?0)4/

.

Remember that whenever you see “standard error” read it as
estimated standard deviation: σ is the standard deviation.
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One Picture Summary of SLR
I The plot below has the house data, the fitted regression line

(b0 + b1X ) and ±2 ∗ s. . .
I From this picture, what can you tell me about β0, β1 and σ2?

How about b0, b1 and s2?
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Sampling Distribution of Least Squares Estimates

How much do our estimates depend on the particular random
sample that we happen to observe? Imagine:

I Randomly draw different samples of the same size.
I For each sample, compute the estimates b0, b1, and s.

If the estimates don’t vary much from sample to sample, then it
doesn’t matter which sample you happen to observe.

If the estimates do vary a lot, then it matters which sample you
happen to observe.
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Sampling Distribution of Least Squares Estimates
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Sampling Distribution of Least Squares Estimates
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Sampling Distribution of b1

The sampling distribution of b1 describes how estimator b1 = β̂1
varies over different samples with the X values fixed.

It turns out that b1 is normally distributed (approximately):
b1 ∼ N(β1, s2

b1).

I b1 is unbiased: E [b1] = β1.
I sb1 is the standard error of b1. In general, the standard error is

the standard deviation of an estimate. It determines how close
b1 is to β1.

I This is a number directly available from the regression output.
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Sampling Distribution of b1

Can we intuit what should be in the formula for sb1?

I How should s figure in the formula?
I What about n?
I Anything else?

s2
b1 = s2∑

(Xi − X̄ )2 = s2

(n − 1)s2
x

Three Factors:
sample size (n), error variance (s2), and X -spread (sx ).
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Sampling Distribution of b0

The intercept is also normal and unbiased: b0 ∼ N(β0, s2
b0

).

s2
b0 = var(b0) = s2

(
1
n + X̄ 2

(n − 1)s2
x

)

What is the intuition here?
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Confidence Intervals

Since b1 ∼ N(β1, s2
b1

), Thus:

I 68% Confidence Interval: b1 ± 1× sb1
I 95% Confidence Interval: b1 ± 2× sb1
I 99% Confidence Interval: b1 ± 3× sb1

Same thing for b0

I 95% Confidence Interval: b0 ± 2× sb0

The confidence interval provides you with a set of plausible values
for the parameters
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Example: Runs per Game and AVG
Regression with all points

SUMMARY  OUTPUT

Regression  Statistics

Multiple  R 0.798496529
R  Square 0.637596707
Adjusted  R  Square 0.624653732
Standard  Error 0.298493066
Observations 30

ANOVA
df SS MS F Significance  F

Regression 1 4.38915033 4.38915 49.26199 1.239E-­‐07
Residual 28 2.494747094 0.089098
Total 29 6.883897424

Coefficients Standard  Error t  Stat P-­‐value Lower  95% Upper  95%

Intercept -­‐3.936410446 1.294049995 -­‐3.04193 0.005063 -­‐6.587152 -­‐1.2856692
AVG 33.57186945 4.783211061 7.018689 1.24E-­‐07 23.773906 43.369833

[b1 − 2× sb1 ; b1 + 2× sb1 ] ≈ [23.77; 43.36]
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Testing

Suppose we want to assess whether or not β1 equals a proposed
value β0

1 . This is called hypothesis testing.

Formally we test the null hypothesis:

H0 : β1 = β0
1

vs. the alternative

H1 : β1 6= β0
1
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Testing

That are 2 ways we can think about testing:

1. Building a test statistic. . . the t-stat,

t = b1 − β0
1

sb1

This quantity measures how many standard deviations the
estimate (b1) from the proposed value (β0

1).

If the absolute value of t is greater than 2, we need to worry
(why?). . . we reject the hypothesis.
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Testing

2. Looking at the confidence interval. If the proposed value is
outside the confidence interval you reject the hypothesis.

Notice that this is equivalent to the t-stat. An absolute value for t
greater than 2 implies that the proposed value is outside the
confidence interval. . . therefore reject.

This is my preferred approach for the testing problem. You can’t go
wrong by using the confidence interval!
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Example: Mutual Funds
Let’s investigate the performance of the Windsor Fund, an
aggressive large cap fund by Vanguard. . .

!""#$%%&$'()*"$+,
Applied Regression Analysis
Carlos M. Carvalho

Another Example of Conditional Distributions

-"./0$(11#$2.$2$032.."45426$17$.8"$*2.29$

The plot shows monthly returns for Windsor vs. the S&P500
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Example: Mutual Funds

Consider a CAPM regression for the Windsor mutual fund.

rw = β0 + β1rsp500 + ε

Let’s first test β1 = 0

H0 : β1 = 0. Is the Windsor fund related to the market?

H1 : β1 6= 0
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Example: Mutual Funds

!""#$%%%&$'()*"$+,
Applied Regression Analysis 
Carlos M. Carvalho

-"./(($01"$!)2*345$5"65"33)42$72$8$,9:;<

b! sb! b
sb
!

!

Hypothesis Testing – Windsor Fund Example

I t = 32.10. . . reject β1 = 0!!
I the 95% confidence interval is [0.87; 0.99]. . . again, reject!!
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Example: Mutual Funds

Now let’s test β1 = 1. What does that mean?

H0 : β1 = 1 Windsor is as risky as the market.

H1 : β1 6= 1 and Windsor softens or exaggerates market moves.

We are asking whether or not Windsor moves in a different way than
the market (e.g., is it more conservative?).
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Example: Mutual Funds

!""#$%%%&$'()*"$+,
Applied Regression Analysis 
Carlos M. Carvalho

-"./(($01"$!)2*345$5"65"33)42$72$8$,9:;<

b! sb! b
sb
!

!

Hypothesis Testing – Windsor Fund Example

I t = b1−1
sb1

= −0.0643
0.0291 = −2.205. . . reject.

I the 95% confidence interval is [0.87; 0.99]. . . again, reject,
but...
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P-values

I The p-value provides a measure of how weird your estimate is
if the null hypothesis is true

I Small p-values are evidence against the null hypothesis
I In the AVG vs. R/G example. . . H0 : β1 = 0. How weird is our

estimate of b1 = 33.57?
I Remember: b1 ∼ N(β1, s2

b1
). . . If the null was true (β1 = 0),

b1 ∼ N(0, s2
b1

)
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P-values

I Where is 33.57 in the picture below?
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b1 (if β1=0)The p-value is the probability of seeing b1 equal or greater than
33.57 in absolute terms. Here, p-value=0.000000124!!

Small p-value = bad null
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P-values

I H0 : β1 = 0. . . p-value = 1.24E-07. . . reject!
SUMMARY  OUTPUT

Regression  Statistics

Multiple  R 0.798496529
R  Square 0.637596707
Adjusted  R  Square 0.624653732
Standard  Error 0.298493066
Observations 30

ANOVA
df SS MS F Significance  F

Regression 1 4.38915033 4.38915 49.26199 1.239E-­‐07
Residual 28 2.494747094 0.089098
Total 29 6.883897424

Coefficients Standard  Error t  Stat P-­‐value Lower  95% Upper  95%

Intercept -­‐3.936410446 1.294049995 -­‐3.04193 0.005063 -­‐6.587152 -­‐1.2856692
AVG 33.57186945 4.783211061 7.018689 1.24E-­‐07 23.773906 43.369833
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P-values

I How about H0 : β0 = 0? How weird is b0 = −3.936?
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b0 (if β0=0)The p-value (the probability of seeing b0 equal or greater than
-3.936 in absolute terms) is 0.005.

Small p-value = bad null
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P-values

I H0 : β0 = 0. . . p-value = 0.005. . . we still reject, but not with
the same strength.

SUMMARY  OUTPUT

Regression  Statistics

Multiple  R 0.798496529
R  Square 0.637596707
Adjusted  R  Square 0.624653732
Standard  Error 0.298493066
Observations 30

ANOVA
df SS MS F Significance  F

Regression 1 4.38915033 4.38915 49.26199 1.239E-­‐07
Residual 28 2.494747094 0.089098
Total 29 6.883897424

Coefficients Standard  Error t  Stat P-­‐value Lower  95% Upper  95%

Intercept -­‐3.936410446 1.294049995 -­‐3.04193 0.005063 -­‐6.587152 -­‐1.2856692
AVG 33.57186945 4.783211061 7.018689 1.24E-­‐07 23.773906 43.369833
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Testing – Summary

I Large t or small p-value mean the same thing. . .

I p-value < 0.05 is equivalent to a t-stat > 2 in absolute value

I Small p-value means something weird happen if the null
hypothesis was true. . .

I Bottom line, small p-value → REJECT! Large t → REJECT!

I But remember, always look at the confidence interveal!
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Forecasting

The conditional forecasting problem: Given covariate Xf and sample
data {Xi ,Yi}ni=1, predict the “future” observation yf .

The solution is to use our LS fitted value: Ŷf = b0 + b1Xf .

This is the easy bit. The hard (and very important!) part of
forecasting is assessing uncertainty about our predictions.
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Forecasting

Just remember that you are uncertain about b0 and b1! As a
practical matter if the confidence intervals are big you should be
careful!! Some statistical software will give you a larger (and
correct) predictive interval.

A large predictive error variance (high uncertainty) comes from

I Large s (i.e., large ε’s).

I Small n (not enough data).

I Small sx (not enough observed spread in covariates).

I Large difference between Xf and X̄ .
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Forecasting
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I Red lines: prediction intervals
I Green lines: “plug-in” prediction intervals
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House Data – one more time!

I R2 = 82%
I Great R2, we are happy using this model to predict house

prices, right?

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0 3.5

60
80

10
0

12
0

14
0

16
0

size

pr
ic

e

80



House Data – one more time!
I But, s = 14 leading to a predictive interval width of about

US$60,000!! How do you feel about the model now?

I As a practical matter, s is a much more relevant quantity than
R2. Once again, intervals are your friend!
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