Section 3: Simple Linear Regression

Tengyuan Liang, Chicago Booth

https://tyliang.github.io/BUS41000/

Suggested Reading: OpenIntro Statistics, Chapters 7 Statistics for Business, Part IV

- Regression analysis is the most widely used statistical tool for understanding relationships among variables
- It provides a conceptually simple method for investigating functional relationships between one or more factors and an outcome of interest
- The relationship is expressed in the form of an equation or a model connecting the response or dependent variable and one or more explanatory or predictor variable

Straight prediction questions:

- For how much will my house sell?
- How many runs per game will the Red Sox score this year?
- Will this person like that movie? (Netflix rating system)

Explanation and understanding:

- What is the impact of MBA on income?
- How does the returns of a mutual fund relates to the market?
- Does Walmart discriminate different groups regarding salaries?

Problem:

Predict market price based on observed characteristics

Solution:

- Look at property sales data where we know the price and some observed characteristics.
- Build a decision rule that predicts price as a function of the observed characteristics.

What characteristics do we use?

We have to define the variables of interest and develop a specific quantitative measure of these variables

- Many factors or variables affect the price of a house
 - size
 - number of baths
 - garage, air conditioning, etc
 - neighborhood

To keep things super simple, let's focus only on size.

The value that we seek to predict is called the dependent (or output) variable, and we denote this:

• Y = price of house (e.g. thousands of dollars)

The variable that we use to guide prediction is the explanatory (or input) variable, and this is labelled:

• X = size of house (e.g. thousands of square feet)

Predicting House Prices

What does this data look like?

Size		Price	
	0.80		70
	0.90		83
	1.00		74
	1.10		93
	1.40		89
	1.40		58
	1.50		85
	1.60		114
	1.80		95
	2.00		100
	2.40		138
	2.50		111
	2.70		124
	3.20		161
	3.50		172

Predicting House Prices

It is much more useful to look at a scatterplot

In other words, view the data as points in the $X \times Y$ plane.

- Y = response or outcome variable
- X = explanatory or input variables
- A linear relationship is written

$$Y = b_0 + b_1 X$$

Linear Prediction

Appears to be a linear relationship between price and size: As size goes up, price goes up.

The line shown was fit by the "eyeball" method.

Recall that the equation of a line is:

$$Y = b_0 + b_1 X$$

Where b_0 is the intercept and b_1 is the slope.

The intercept value is in units of Y (\$1,000). The slope is in units of Y per units of X (\$1,000/1,000 sq ft).

Linear Prediction

Our "eyeball" line has $b_0 = 35$, $b_1 = 40$.

We can now predict the price of a house when we know only the size; just read the value off the line that we've drawn.

For example, given a house with of size X = 2.2.

Predicted price $\hat{Y} = 35 + 40(2.2) = 123$.

Note: Conversion from 1,000 sq ft to \$1,000 is done for us by the slope coefficient (b_1)

There are two things that we want to know:

- What value of Y can we expect for a given X?
- How sure are we about this forecast? Or how different could Y be from what we expect?

Our goal is to measure the accuracy of our forecasts or how much uncertainty there is in the forecast. One method is to specify a range of Y values that are likely, given an X value.

Prediction Interval: probable range for Y-values given X

Key Insight: To construct a prediction interval, we will have to assess the likely range of error values corresponding to a Y value that has not yet been observed!

We will build a probability model (e.g., normal distribution).

Then we can say something like "with 95% probability the error will be no less than -\$28,000 or larger than \$28,000".

We must also acknowledge that the "fitted" line may be fooled by particular realizations of the residuals.

The power of statistical inference comes from the ability to make precise statements about the accuracy of the forecasts.

In order to do this we must invest in a probability model.

Simple Linear Regression Model: $Y = \beta_0 + \beta_1 X + \varepsilon$

 $\varepsilon \sim N(0, \sigma^2)$

- ▶ β₀ + β₁X represents the "true line"; The part of Y that depends on X.
- The error term ε is independent "idiosyncratic noise"; The part of Y not associated with X.

The Simple Linear Regression Model

 $Y = \beta_0 + \beta_1 X + \varepsilon$

The conditional distribution for Y given X is Normal:

 $Y|X = x \sim N(\beta_0 + \beta_1 x, \sigma^2).$

The Simple Linear Regression Model – Example

You are told (without looking at the data) that

$$\beta_0 = 40; \ \beta_1 = 45; \ \sigma = 10$$

and you are asked to predict price of a 1500 square foot house. What do you know about Y from the model?

$$egin{array}{rcl} Y &=& 40 + 45(1.5) + arepsilon \ &=& 107.5 + arepsilon \end{array}$$

Thus our prediction for price is $Y|X = 1.5 \sim N(107.5, 10^2)$ and a 95% *Prediction Interval* for Y is 87.5 < Y < 127.5

Can we do better than the eyeball method?

We desire a strategy for estimating the slope and intercept parameters in the model $\hat{Y} = b_0 + b_1 X$

A reasonable way to fit a line is to minimize the amount by which the fitted value differs from the actual value.

This amount is called the residual.

Linear Prediction

What is the "fitted value"?

The dots are the observed values and the line represents our fitted values given by $\hat{Y}_i = b_0 + b_1 X_1$.

Linear Prediction

What is the "residual" for the *i*th 'observation'?

We can write $Y_i = \hat{Y}_i + (Y_i - \hat{Y}_i) = \hat{Y}_i + e_i$.

Least Squares

Ideally we want to minimize the size of all residuals:

- If they were all zero we would have a perfect line.
- Trade-off between moving closer to some points and at the same time moving away from other points.

The line fitting process:

Give weights to all of the residuals.

Minimize the "total" of residuals to get best fit.

Least Squares chooses b_0 and b_1 to minimize $\sum_{i=1}^{N} e_i^2$

$$\sum_{i=1}^{N} e_i^2 = e_1^2 + e_2^2 + \dots + e_N^2 = (Y_1 - \hat{Y}_1)^2 + (Y_2 - \hat{Y}_2)^2 + \dots + (Y_N - \hat{Y}_N)^2$$

Least Squares

LS chooses a different line from ours:

$$\blacktriangleright$$
 $b_0 = 38.88$ and $b_1 = 35.39$

▶ What do *b*₀ and *b*₁ mean again?

SUMMARY OUTPUT

Regression Statistics				
0.909209967				
0.826662764				
0.81332913				
14.13839732				
15				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	12393.10771	12393.10771	61.99831126	2.65987E-06
Residual	13	2598.625623	199.8942787		
Total	14	14991.73333			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	38.88468274	9.09390389	4.275906499	0.000902712	19.23849785	58.53086763
Size	35.38596255	4.494082942	7.873900638	2.65987E-06	25.67708664	45.09483846

2nd Example: Offensive Performance in Baseball

1. Problems:

- Evaluate/compare traditional measures of offensive performance
- Help evaluate the worth of a player
- 2. Solutions:
 - Compare prediction rules that forecast runs as a function of either AVG (batting average), SLG (slugging percentage) or OBP (on base percentage)

2nd Example: Offensive Performance in Baseball

Baseball Data – Using AVG

Each observation corresponds to a team in MLB. Each quantity is the average over a season.

Baseball Data – Using SLG

► X = SLG (slugging percentage)

LS fit: Runs/Game = -2.52 + 17.54 SLG

Baseball Data – Using OBP

► X = OBP (on base percentage)

LS fit: Runs/Game = -7.78 + 37.46 OBP

What is the best prediction rule?

Let's compare the predictive ability of each model using the average squared error

$$\frac{1}{N}\sum_{i=1}^{N}e_i^2 = \frac{\sum_{i=1}^{N}\left(\widehat{Runs_i} - Runs_i\right)^2}{N}$$

Place your Money on OBP!!!

	Average Squared Error
AVG	0.083
SLG	0.055
OBP	0.026

Linear Prediction

$$\hat{Y}_i = b_0 + b_1 X_i$$

- b_0 is the intercept and b_1 is the slope
- We find b_0 and b_1 using Least Squares

The formulas for b_0 and b_1 that minimize the least squares criterion are:

$$b_1 = r_{xy} imes rac{s_y}{s_x}$$
 $b_0 = ar{Y} - b_1 ar{X}$

where,

- \overline{X} and \overline{Y} are the sample mean of X and Y
- $corr(x, y) = r_{xy}$ is the sample correlation
- \triangleright s_x and s_y are the sample standard deviation of X and Y

Covariance

Measure the *direction* and *strength* of the linear relationship between Y and X

Correlation is the standardized covariance:

$$\operatorname{corr}(X,Y) = \frac{\operatorname{cov}(X,Y)}{\sqrt{s_x^2 s_y^2}} = \frac{\operatorname{cov}(X,Y)}{s_x s_y}$$

The correlation is scale invariant and the units of measurement don't matter: It is always true that $-1 \le \operatorname{corr}(X, Y) \le 1$.

This gives the direction (- or +) and strength $(0 \rightarrow 1)$ of the linear relationship between X and Y.

Correlation

Correlation

Correlation

Only measures linear relationships: corr(X, Y) = 0 does not mean the variables are not related!

Excel: correl, stdev, ... R: cor, sd, ... From now on, terms "fitted values" (\hat{Y}_i) and "residuals" (e_i) refer to those obtained from the least squares line.

The fitted values and residuals have some special properties. Lets look at the housing data analysis to figure out what these properties are...

The Fitted Values and X

The Residuals and X

Х

Why?

What is the intuition for the relationship between \hat{Y} and e and X? Lets consider some "crazy" alternative line:

Fitted Values and Residuals

This is a bad fit! We are underestimating the value of small houses and overestimating the value of big houses.

Clearly, we have left some predictive ability on the table!

As long as the correlation between e and X is non-zero, we could always adjust our prediction rule to do better.

We need to exploit all of the predictive power in the X values and put this into \hat{Y} , leaving no "Xness" in the residuals.

In Summary: $Y = \hat{Y} + e$ where:

•
$$\hat{Y}$$
 is "made from X"; $\operatorname{corr}(X, \hat{Y}) = 1$.

• e is unrelated to X; corr(X, e) = 0.

Decomposing the Variance

How well does the least squares line explain variation in Y? Remember that $Y = \hat{Y} + e$

Since \hat{Y} and e are uncorrelated, i.e. $\operatorname{corr}(\hat{Y}, e) = 0$,

$$var(Y) = var(\hat{Y} + e) = var(\hat{Y}) + var(e)$$
$$\frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1} = \frac{\sum_{i=1}^{n} (\hat{Y}_i - \bar{\hat{Y}})^2}{n-1} + \frac{\sum_{i=1}^{n} (e_i - \bar{e})^2}{n-1}$$

Given that $\bar{e} = 0$, and $\bar{\hat{Y}} = \bar{Y}$ (why?) we get to:

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} e_i^2$$

Decomposing the Variance

SSR: Variation in Y explained by the regression line. SSE: Variation in Y that is left unexplained.

 $SSR = SST \Rightarrow$ perfect fit.

Be careful of similar acronyms; e.g. SSR for "residual" SS.

The coefficient of determination, denoted by R^2 , measures goodness of fit:

$$R^2 = rac{\mathrm{SSR}}{\mathrm{SST}} = 1 - rac{\mathrm{SSE}}{\mathrm{SST}}$$

Back to the House Data

SUMMARY OUTPUT

Regression Statistics					
fultiple R 0.909209967					
R Square	0.826662764				
Adjusted R Square	0.81332913				
Standard Error 14.13839732					
Observations	Observations 15				

ANOVA

Three very similar, related ways to look at a simple linear regression... with only one X variable, life is easy!

	R^2	corr	SSE
OBP	0.88	0.94	0.79
SLG	0.76	0.87	1.64
AVG	0.63	0.79	2.49

Summary of Simple Linear Regression

The model is

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

 $\varepsilon_i \sim N(0, \sigma^2).$

The SLR has 3 basic parameters:

- \triangleright β_0 , β_1 (linear pattern)
- σ (variation around the line).

Assumptions:

- independence means that knowing ε_i doesn't affect your views about ε_j
- identically distributed means that we are using the same normal for every ε_i

SLR assumes every observation in the dataset was generated by the model:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

This is a model for the conditional distribution of ${\sf Y}$ given ${\sf X}.$

We use Least Squares *to estimate* β_0 and β_1 :

$$\hat{\beta}_1 = b_1 = r_{xy} \times \frac{s_y}{s_x}$$
$$\hat{\beta}_0 = b_0 = \bar{Y} - b_1 \bar{X}$$

We estimate σ^2 with:

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2} = \frac{SSE}{n-2}$$

(2 is the number of regression coefficients; i.e. 2 for β_0 and β_1).

We have n - 2 degrees of freedom because 2 have been "used up" in the estimation of b_0 and b_1 .

We usually use $s = \sqrt{SSE/(n-2)}$, in the same units as Y. It's also called the regression standard error.

Estimation of Error Variance

Where is *s* in the Excel output?

Regression S	tatistics							
Multiple R	0.909209967							
R Square	0.826662764		. e					
Adjusted R Square	0.81332913		- 3					
Standard Error	14.13839732	-						
Observations	15							
ANOVA	df	SS	MS	F	Significance F			
Regression	1	12393.10771	12393.10771	61.99831126	2.65987E-06			
Residual	13	2598.625623	199.8942787					
Total	14	14991.73333						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
	00 00 100071	0.00000000	4 07/000 400	0.000002712	10 22940795	E9 E2096762	10 229 40 795	E0 E200676
Intercept	38.88468274	3.03330393	4.270900499	0.000902712	19.2.3049703	30.33000703	19.23049703	30.3300070.

Remember that whenever you see "standard error" read it as estimated standard deviation: σ is the standard deviation.

One Picture Summary of SLR

- The plot below has the house data, the fitted regression line $(b_0 + b_1 X)$ and $\pm 2 * s...$
- From this picture, what can you tell me about β₀, β₁ and σ²? How about b₀, b₁ and s²?

How much do our estimates depend on the particular random sample that we happen to observe? Imagine:

- Randomly draw different samples of the same size.
- For each sample, compute the estimates b_0 , b_1 , and s.

If the estimates don't vary much from sample to sample, then it doesn't matter which sample you happen to observe.

If the estimates do vary a lot, then it matters which sample you happen to observe.

Sampling Distribution of Least Squares Estimates

Sampling Distribution of Least Squares Estimates

The sampling distribution of b_1 describes how estimator $b_1 = \hat{\beta}_1$ varies over different samples with the X values fixed.

It turns out that b_1 is normally distributed (approximately): $b_1 \sim N(\beta_1, s_{b_1}^2)$.

- b_1 is unbiased: $E[b_1] = \beta_1$.
- s_{b1} is the standard error of b₁. In general, the standard error is the standard deviation of an estimate. It determines how close b₁ is to β₁.
- This is a number directly available from the regression output.

Sampling Distribution of b_1

Can we intuit what should be in the formula for s_{b_1} ?

- How should s figure in the formula?
- What about n?
- Anything else?

$$s_{b_1}^2 = rac{s^2}{\sum (X_i - \bar{X})^2} = rac{s^2}{(n-1)s_x^2}$$

Three Factors:

sample size (*n*), error variance (s^2), and X-spread (s_x).

The intercept is also normal and unbiased: $b_0 \sim N(\beta_0, s_{b_0}^2)$.

$$s_{b_0}^2 = \operatorname{var}(b_0) = s^2 \left(\frac{1}{n} + \frac{\bar{X}^2}{(n-1)s_x^2} \right)$$

What is the intuition here?

Confidence Intervals

Since $b_1 \sim N(\beta_1, s_{b_1}^2)$, Thus:

- ▶ 68% Confidence Interval: $b_1 \pm 1 \times s_{b_1}$
- ▶ 95% Confidence Interval: $b_1 \pm 2 \times s_{b_1}$
- ▶ 99% Confidence Interval: $b_1 \pm 3 \times s_{b_1}$

Same thing for b_0

▶ 95% Confidence Interval: $b_0 \pm 2 \times s_{b_0}$

The confidence interval provides you with a set of plausible values for the parameters

Example: Runs per Game and AVG

Regression with all points

SUMMARY OUTPUT

Regression Statistics					
Multiple R	0.798496529				
R Square	0.637596707				
Adjusted R Square	0.624653732				
Standard Error	0.298493066				
Observations	30				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	4.38915033	4.38915	49.26199	1.239E-07
Residual	28	2.494747094	0.089098		
Total	29	6.883897424			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-3.936410446	1.294049995	-3.04193	0.005063	-6.587152	-1.2856692
AVG	33.57186945	4.783211061	7.018689	1.24E-07	23.773906	43.369833

 $[b_1 - 2 \times s_{b_1}; b_1 + 2 \times s_{b_1}] \approx [23.77; 43.36]$

Suppose we want to assess whether or not β_1 equals a proposed value β_1^0 . This is called hypothesis testing.

Formally we test the null hypothesis:

 H_0 : $\beta_1 = \beta_1^0$

vs. the alternative

 H_1 : $\beta_1 \neq \beta_1^0$

Testing

That are 2 ways we can think about testing:

1. Building a test statistic... the t-stat,

$$t=\frac{b_1-\beta_1^0}{s_{b_1}}$$

This quantity measures how many standard deviations the estimate (b_1) from the proposed value (β_1^0) .

If the absolute value of t is greater than 2, we need to worry (why?)... we reject the hypothesis.

2. Looking at the confidence interval. If the proposed value is outside the confidence interval you reject the hypothesis.

Notice that this is equivalent to the t-stat. An absolute value for t greater than 2 implies that the proposed value is outside the confidence interval... therefore reject.

This is my preferred approach for the testing problem. You can't go wrong by using the confidence interval!

Example: Mutual Funds

Let's investigate the performance of the Windsor Fund, an aggressive large cap fund by Vanguard...

The plot shows monthly returns for Windsor vs. the S&P500

Consider a CAPM regression for the Windsor mutual fund.

$$r_w = \beta_0 + \beta_1 r_{sp500} + \epsilon$$

Let's first test $\beta_1 = 0$ $H_0: \beta_1 = 0$. Is the Windsor fund related to the market? $H_1: \beta_1 \neq 0$

Example: Mutual Funds

Regression Statistics					
Multiple R	0.923417768				
R Square	0.852700374				
Adjusted R Square	0.851872848				
Standard Error	0.018720015				
Observations	180				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	0.3611	0.361099761	1030.421266	6.0291E-76
Residual	178	0.062378	0.000350439		
Total	179	0.423478			

- ▶ t = 32.10... reject $\beta_1 = 0!!$
- ▶ the 95% confidence interval is [0.87; 0.99]... again, reject!!

Now let's test $\beta_1 = 1$. What does that mean?

 H_0 : $\beta_1 = 1$ Windsor is as risky as the market.

 H_1 : $\beta_1 \neq 1$ and Windsor softens or exaggerates market moves.

We are asking whether or not Windsor moves in a different way than the market (e.g., is it more conservative?).

Example: Mutual Funds

Regression Statistics					
Multiple R	0.923417768				
R Square	0.852700374				
Adjusted R Square	0.851872848				
Standard Error	0.018720015				
Observations	180				

ANOVA

	df	SS	MS	F	Significance F
Regression	1	0.3611	0.361099761	1030.421266	6.0291E-76
Residual	178	0.062378	0.000350439		
Total	179	0.423478			

►
$$t = \frac{b_1 - 1}{s_{b_1}} = \frac{-0.0643}{0.0291} = -2.205...$$
 reject.

the 95% confidence interval is [0.87; 0.99]... again, reject, but...

- The *p*-value provides a measure of how weird your estimate is if the null hypothesis is true
- Small p-values are evidence against the null hypothesis
- ▶ In the AVG vs. R/G example... H_0 : $\beta_1 = 0$. How weird is our estimate of $b_1 = 33.57$?
- Remember: $b_1 \sim N(\beta_1, s_{b_1}^2)$... If the null was true $(\beta_1 = 0)$, $b_1 \sim N(0, s_{b_1}^2)$

P-values

Where is 33.57 in the picture below?

The *p*-value is the probability of seeing b_1 equal or greater than 33.57 in absolute terms. Here, *p*-value=0.000000124!!

Small p-value = bad null
P-values

• $H_0: \beta_1 = 0...$ p-value = 1.24E-07... reject!

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.798496529			
R Square	0.637596707			
Adjusted R Square	0.624653732			
Standard Error	0.298493066			
Observations	30			

ANOVA

	df	SS	MS	F	Significance F	
Regression	1	4.38915033	4.38915	49.26199	1.239E-07	
Residual	28	2.494747094	0.089098			
Total	29	6.883897424				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-3.936410446	1.294049995	-3.04193	0.005063	-6.587152	-1.2856692
AVG	33.57186945	4.783211061	7.018689	1.24E-07	23.773906	43.369833

P-values

• How about H_0 : $\beta_0 = 0$? How weird is $b_0 = -3.936$?

The *p*-value (the probability of setting b_0 equal or greater than -3.936 in absolute terms) is 0.005.

Small p-value = bad null

P-values

► H_0 : $\beta_0 = 0...$ p-value = 0.005... we still reject, but not with the same strength.

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.798496529			
R Square	0.637596707			
Adjusted R Square	0.624653732			
Standard Error	0.298493066			
Observations	30			

ANOVA

	df	SS	MS	F	Significance F	
Regression	1	4.38915033	4.38915	49.26199	1.239E-07	
Residual	28	2.494747094	0.089098			
Total	29	6.883897424				
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-3.936410446	1.294049995	-3.04193	0.005063	-6.587152	-1.2856692
AVG	33.57186945	4.783211061	7.018689	1.24E-07	23.773906	43.369833

- Large t or small p-value mean the same thing...
- *p*-value < 0.05 is equivalent to a *t*-stat > 2 in absolute value
- Small p-value means something weird happen if the null hypothesis was true...
- ▶ Bottom line, small p-value \rightarrow REJECT! Large $t \rightarrow$ REJECT!
- But remember, always look at the confidence interveal!

The conditional forecasting problem: Given covariate X_f and sample data $\{X_i, Y_i\}_{i=1}^n$, predict the "future" observation y_f .

The solution is to use our LS fitted value: $\hat{Y}_f = b_0 + b_1 X_f$.

This is the easy bit. The hard (and very important!) part of forecasting is assessing uncertainty about our predictions.

Just remember that you are uncertain about b_0 and b_1 ! As a practical matter if the confidence intervals are big you should be careful!! Some statistical software will give you a larger (and correct) predictive interval.

A large predictive error variance (high uncertainty) comes from

- Large s (i.e., large ε 's).
- Small n (not enough data).
- Small s_x (not enough observed spread in covariates).
- Large difference between X_f and \bar{X} .

Forecasting

Red lines: prediction intervals
Green lines: "plug-in" prediction intervals

House Data - one more time!

- ► $R^2 = 82\%$
- Great R², we are happy using this model to predict house prices, right?

House Data - one more time!

- But, s = 14 leading to a predictive interval width of about US\$60,000!! How do you feel about the model now?
- As a practical matter, s is a much more relevant quantity than R². Once again, *intervals* are your friend!

size