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1 Random Projection and Dimension Reduction

Nearest neighbor search is a frequent subroutine in dealing with
high-dimensional data. Consider a data set of n points in d dimen-
sions with large n and d. Ideally, we wish to collect the nearest data
points to a given query point more efficiently, say a small function of
log(n) and log(d), whereas the preprocessing time could be a poly-
nomial of n and d. Such preprocessing, or dimension reduction, can
be achieved using randomized linear projections. To this end, we will
show that one can project the data points to a k-dimensional sub-
space with k ≍ log(n) ≪ d that approximately preserves the pairwise
distances.

import numpy as np

# Algor i thm : random p r o j e c t i o n
# Input : a d a t a mat r i x X o f s i z e n by d
# Output : a d imens i on r e d u c t i o n o f X, f (X) which i s n by k
# Random p r o j e c t i o n f u n c t i o n f : R^d −> R^k

def random_projection (X , k ) :
n , d = np . shape (X)
U = np . random . normal ( l o c =0 , s c a l e =1/np . s q r t ( k ) , s i z e =(d , k ) )
f_X = np . matmul (X , U)
return f_X
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Theorem 1 (Johnson-Lindenstrauss Lemma). Let ϵ ∈ (0, 1) and n be
any integer. For any data set of n points v1, . . . , vn in Rd, and integer

k ≿
log(n)

ϵ2 , (1.1)

the random projection f : Rd → Rk defined above preserves the pairwise
distances in the following sense:

min
i ̸=j∈[n]

∥ f (vi)− f (vj)∥
∥vi − vj∥

≥ 1 − ϵ ,

max
i ̸=j∈[n]

∥ f (vi)− f (vj)∥
∥vi − vj∥

≤ 1 + ϵ ,

with probability at least 1 − O( 1
n ).

Proof of Theorem 1. The proof uses standard Gaussian concentration
and a union bound. By the definition of random projection, for any
point v ∈ Rd, f (v) := [⟨u1, v⟩, . . . , ⟨uk, v⟩] with uj ∼ N (0, 1

k Id), for
j = 1, . . . , k. By linearity, we know

f (vi)− f (vj) = f (vi − vj) .

Apply Lemma 1, for any fixed i, j

P
(∣∣∥ f (vi − vj)∥

∥vi − vj∥
− 1
∣∣ ≥ ϵ

)
≤ 2e−c·kϵ2

.

Use union bound, we know

P
(∣∣∥ f (vi − vj)∥

∥vi − vj∥
− 1
∣∣ ≥ ϵ, ∃i ̸= j ∈ [n]

)
≤
(

n
2

)
2e−c·kϵ2

. (1.2)

By setting k ≿ log(n)
ϵ2 , one can make the above probability as small as

1
n .

Lemma 1 (Concentration: Gaussian Annulus). For any point v ∈ Rd,
f (v) := [⟨u1, v⟩, . . . , ⟨uk, v⟩] with uj ∼ N (0, 1

k Id), for j = 1, . . . , k, the
following concentration holds with some universal constant c > 0

P
(∣∣∥ f (v)∥ − ∥v∥

∣∣ ≥ ϵ∥v∥
)
≤ 2e−c·kϵ2

.

Here the probability is taken over the randomized vectors uj, j = 1, . . . , k
that construct the random projection.

Proof. It is immediate that ⟨uj, v⟩ ∼ N (0, 1
k∥v∥2), therefore gj :=

√
k
⟨uj ,v⟩
∥v∥ ∼ N (0, 1) are i.i.d. normals

∥ f (v)∥2

∥v∥2 =
k

∑
j=1

⟨u1, v⟩2

∥v∥2 =
1
k

k

∑
j=1

g2
j . (1.3)
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We first show that by standard sub-Gamma/Exponential concentra-
tion inequalities TL: HW, show (1.4) in two steps: first

bound each moment, then bound the
Laplace transform. See Boucheron,
Lugosi, and Massart.P

(∣∣1
k

k

∑
j=1

g2
j − 1

∣∣ ≥ ϵ
)
≤ 2e−c·kϵ2

(1.4)

for ϵ ∈ (0, 1), with c at least 1/8. Note that

∣∣√√√√1
k

k

∑
j=1

g2
j − 1

∣∣ ≥ ϵ =⇒
∣∣1
k

k

∑
j=1

g2
j − 1

∣∣ ≥ ϵ (1.5)

we complete the proof.

2 Best-Fit Subspaces and Dimension Reduction

The decompositional approach to matrix computation (1951) is listed
as one of the "Top 10 Algorithms" that have influenced the practice of
science and engineering in the 20th century. As dimension reduction
subroutines, matrix factorization or decomposition such as singular
value decomposition, principal component analysis find appearances
in ranking documents and web pages (HITS algorithm, page-rank),
data visualization (multi-dimensional scaling), and even in social
sciences (finance, time-series analysis).

The goal is simple: given a data matrix A ∈ Rn×d (of rank r), can
we construct a low-rank matrix Ak of rank k ≪ min{n, d} such that
A ≈ Ak? Can we compute Ak using a fast algorithm?

The answer is given by the singular value decomposition (SVD).
Define the right singular vectors in a greedy way

v1 := arg max
∥v∥=1

∥Av∥, σ1 := ∥Av1∥

v2 := arg max
v⊥v1
∥v∥=1

∥Av∥, σ2 := ∥Av2∥

...

vr := arg max
v⊥v1,...,vr−1

∥v∥=1

∥Av∥, σr := ∥Avr∥

and the left singular vectors ui := 1
σi

Avi, i = 1, . . . r. Algorithmically,
one can solve the singular vectors using power iteration with random
initialization; the convergence depends on the spectral gap.

Theorem 2 (Singular Value Decomposition). Let A be an n × d matrix
of rank r with right-singular vectors v1, v2 . . . , vr, left singular vectors
u1, u2, . . . ur, and corresponding singular values σ1, σ2, . . . , σr. Then

A =
r

∑
i=1

σiuiv⊤i (2.1)
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The SVD constructs the best-fit subspaces in the following sense.

Theorem 3 (Optimal Low Rank Approximation). For k < r. Define the
rank-k approximation Ak := ∑k

i=1 σiuiv⊤i . Then

min
rank(X)≤k

∥A − X∥F = ∥A − Ak∥F =

(
r

∑
i=k+1

σ2
i

)1/2

(2.2)

min
rank(X)≤k

∥A − X∥ = ∥A − Ak∥ = σk+1 (2.3)

where ∥ · ∥F, ∥ · ∥ denote the Frobenius norm and the spectral norm. More-
over, the best-fit subspaces are given by the projection matrix Q︸︷︷︸

n×k

Q⊤ :=

∑k
i=1 uiu⊤

i and Ak = QQ⊤A.

When n and d are large, the above computation is heavy, which
requires O(knd) floating-point operations. This is standard linear al-
gebra. Can we do it fast? We can use randomized linear algebra to do
this . Consider the Randomized SVD algorithm, analyzed in Halko, TL: The trick is to consider a slightly

larger subspace, say of dimension 2k.Martinsson, and Tropp (2010), Finding Structure with Randomness:
Probabilistic Algorithms for Constructing Approximate Matrix De-
compositions. 3 3 Nathan Halko, Per-Gunnar Mar-

tinsson, and Joel A. Tropp. Finding
structure with randomness: Proba-
bilistic algorithms for constructing
approximate matrix decompositions,
December 2010

# Algor i thm : randomized SVD
# Input : a d a t a mat r i x A o f s i z e n by d ,
# a rank p a r a m e t e r k ,
# and an e x p o n en t q = 0 , 1 , 2
# Output : an a p p r o x i m a t e SVD o f rank k , A \approx U S V^\ t o p
# See Halko Mart insson and Tropp , Algor i thm 4 .4

def randomized_SVD (A, k , q = 0 ) :
n , d = np . shape (A)
m = min ( 2 * k , d ) # m ~ k << d
# S t a g e A: g e n e r a t e d by 2k Gauss ian t e s t mat r i x G,
# and r e d u c e t h e prob l em t o s i z e n by 2k
G = np . random . standard_normal ( s i z e =(d , m) )
Y = np . matmul (A, G) # n by m
Q, R = np . l i n a l g . qr (Y) # QR s t e p t o e n f o r c e o r t h o g o n a l i t y
## I t e r a t i v e mat r i x e x p o n en t s t e p t o i n c r e a s e t h e s p e c t r a l gap
for i in range ( q ) :

Z = np . matmul ( np . transpose (A) , Q) # d by m
Q, R = np . l i n a l g . qr (Z) # QR s t e p t o e n f o r c e o r t h o g o n a l i t y
Y = np . matmul (A, Q) # n by m
Q, R = np . l i n a l g . qr (Y)

# S t a g e B
B = np . matmul ( np . transpose (Q) , A) # m by d
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U_ti lde , S , V = np . l i n a l g . svd ( B ) # m by m, m by m, m by d
U = np . matmul (Q, U_t i lde ) # n by m
return U, S , V

The algorithm implements the following steps

1. Generate an d × 2k random Gaussian matrix G

2. Form Y = (AA⊤)q AG by multiplying alternatively with A and A⊤

3. Construct a matrix Q whose columns form an orthonormal basis
for the range of Y

4. Form B = Q⊤A

5. Compute an SVD of the small matrix of size 2k × d: B = ŨΣ2kV⊤

6. Set U = QŨ, and return U, Σ2k, V.

Note that the above randomized SVD is equivalent to constructing an
approximate best-fit subspace Q ∈ Rn×2k using randomized linear
algebra, and then approximating with

A ≈ QQ⊤A (2.4)

Theorem 4 (Randomized SVD). Let A ∈ Rn×d. Select an exponent
q ∈ N≥0 and a target number of singular vectors, where 2 ≤ k ≤
0.5 min{n, d}. The randomized SVD algorithm to obtain a rank-2k fac-
torization UΣ2kV⊤. Then

E ∥A − UΣ2kV⊤∥ ≤
[
1 + 4

√
2 min{n, d}

k − 1
]1/(2q+1)

σk+1 + σk+1 . (2.5)

Proof of Theorem 4. Let A = UΣV⊤ and the test matrix G ∈ Rd×ℓ ma-
trix where ℓ ≥ k (later, we take ℓ = 2k as specified in the algorithm).
We will first derive the results for q = 0 case, then lift the result for
general q using a power scheme. Recall that Y = AG and that Q is
the orthonormal basis for the range of Y, thus

∥A − UΣ2kV⊤∥ = ∥A − QQ⊤A∥ = ∥(I − PY)A∥ (2.6)

where PY denotes the projection matrix to the range of Y.
Perturbation analysis on ∥(I − PY)A∥. To set up the theorem and
proof based on perturbation analysis, let’s consider the block form
(here we only consider the n ≤ d case, the n > d case can be derived
similarly) TL: For n > d case, one needs to

stack an extra row of 0 below Σ1, Σ2
and proceed with the proof with
Σ1 ∈ Rk×k , Σ2 ∈ R(d−k)×(d−k)A = U

[
Σ1

Σ2

] [
V⊤

1
V⊤

2

]
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U ∈ Rn×n, and Σ1 ∈ Rk×k, Σ2 ∈ R(n−k)×(n−k), and V1 ∈ Rd×k, V2 ∈
Rd×(n−k). Recall here UU⊤ = U⊤U = In, and V⊤V = In. Define

G1 := V⊤
1 G ∈ Rk×ℓ , (2.7)

G2 := V⊤
2 G ∈ R(n−k)×ℓ . (2.8)

Denote

Y = AG = U

[
Σ1G1

Σ2G2

]
(2.9)

and we will show that

∥(I − PY)A∥2 ≤ ∥Σ2∥2 + ∥Σ2G2G†
1∥2 (2.10)

By unitary invariance, we first show that U ∈ Rn×n does not play a
role here

∥(I − PY)A∥ = ∥U⊤(I − PY)UΣV⊤∥ (2.11)

= ∥(I − PU⊤Y)ΣV⊤∥ (2.12)

note that

U⊤Y = U⊤AG = U⊤UΣV⊤G =

[
Σ1G1

Σ2G2

]

Define a matrix Z whose range(Z) ⊂ range(U⊤Y)

Z = U⊤Y · G†
1 Σ−1

1 =

[
Ik

Σ2G2G†
1 Σ−1

1

]
=:

[
Ik

F

]
(2.13)

where F acts as the perturbation to the range. TL: Ideally, we have in mind F ≈ 0

Then

∥(I − PU⊤Y)ΣV⊤∥ ≤ ∥(I − PZ)ΣV⊤∥ (2.14)

and then by unitary invariance, we can show that V does not matter
here since TL: Recall V⊤V = In

∥(I − PZ)ΣV⊤∥2 = ∥(I − PZ)ΣV⊤VΣ(I − PZ)∥
= ∥Σ(I − PZ)Σ∥

=
∥∥Σ

[
I − (I + F⊤F)−1 −(I + F⊤F)−1F⊤

−F(I + F⊤F)−1 I − F(I + F⊤F)−1F⊤

]
Σ
∥∥

Note that

I − (I + F⊤F)−1 ⪯ F⊤F

I − F(I + F⊤F)−1F⊤ ⪯ I
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and by Lemma 3, we have

∥(I − PY)A∥2 ≤ ∥FΣ1∥2 + ∥Σ2∥2 (2.15)

= ∥Σ2G2G†
1∥2 + ∥Σ2∥2 (2.16)

Probabilistic bounds on E ∥Σ2G2G†
1∥2. Note that

E[∥(I − PY)A∥] = E
(
∥(I − PY)A∥2)1/2 ≤ E

(
∥Σ2G2G†

1∥2 + ∥Σ2∥2)1/2

(2.17)

≤ E ∥Σ2G2G†
1∥+ ∥Σ2∥ (2.18)

Now we apply Lemma 4, we have

E ∥Σ2G2G†
1∥ ≤ ∥Σ2∥F E ∥G†

1∥+ ∥Σ2∥E ∥G†
1∥F (2.19)

≤
(√

min{n, d} − k
e
√
ℓ

ℓ− k
+

√
k

ℓ− k − 1
)
σk+1 (2.20)

≤
[
1 + 4

√
2 min{n, d}

k − 1
]
σk+1 . (2.21)

where the last step plugs in ℓ = 2k.
Power scheme for q > 0. With q > 0, we can define a matrix

A(2q+1) := (AA⊤)q A = UΣ2q+1V⊤ (2.22)

The algorithm with general q > 0 thus becomes: defining Y :=
A(2q+1)G and then projecting to the range of Y, by Lemma 2

∥(I − PY)A∥ ≤ ∥(I − PY)A(2q+1)∥1/(2q+1) (2.23)

The perturbation analysis can be repeated, replacing A by A(2q+1)

and Σ by Σ2q+1.

E[∥(I − PY)A∥] ≤ E
(
∥(I − PY)A(2q+1)∥2)1/2(2q+1)

≤ E
(
∥Σ2q+1

2 G2G†
1∥2 + ∥Σ2q+1

2 ∥2)1/2(2q+1)

≤ E ∥Σ2q+1
2 G2G†

1∥1/(2q+1) + σk+1

≤
(

E ∥Σ2q+1
2 G2G†

1∥
)1/(2q+1)

+ σk+1

≤

[1 + 4

√
2 min{n, d}

k − 1
]
σ

2q+1
k+1


1/(2q+1)

+ σk+1 .

We use the following results in the analysis.

Lemma 2 (Proposition 8.6 in Halko, Martinsson, and Tropp (2010)).
Let P be an orthogonal projector, and let M be a matrix. For each positive
number q,

∥PM∥ ≤ ∥P(MM⊤)q M∥1/(2q+1) (2.24)
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Lemma 3 (Proposition 8.3 in Halko, Martinsson, and Tropp (2010)).
We have ∥M∥ ≤ ∥A∥+ ∥C∥ for each positive semi-definite block matrix M

M =

[
A B

B⊤ C

]

Lemma 4 (Proposition 10.1 in Halko, Martinsson, and Tropp (2010)).
Fix matrix S and T, and we draw a standard Gaussian matrix G

E ∥SGT∥ ≤ ∥S∥∥T∥F + ∥S∥F∥T∥ . (2.25)

Lemma 5 (Proposition 10.2 in Halko, Martinsson, and Tropp (2010)).
Draw a standard Gaussian matrix G ∈ Rk×ℓ with k + 1 < ℓ

E ∥G†∥2
F =

k
ℓ− k − 1

(2.26)

E ∥G†∥ ≤ e
√
ℓ

ℓ− k
(2.27)

TL: The typical behavior of minimal
singular value of G is 1√

ℓ−
√

k
≤ 2

√
ℓ

ℓ−k .
The above theorem is just a stronger
version of this intuition. The first
is due to standard facts in multi-
variate analysis, or one can also derive
from the spectral density of Gaussian
matrices.

3 Matrix Sampling and Dimension Reduction
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