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1 Sequential Portfolio Selection

Consider the problem of sequential investment. A market consists of
m stocks in which, in each trading period t ∈ 1, 2 . . . n, the price of a
stock may vary in an arbitrary way. An investor seeks to sequentially
allocate the portfolio in a trading period of n days.

We deliberately avoid any statistical assumptions about the na-
ture of the stock market, and evaluate the investor’s wealth relative
to the performance achieved by the best strategy in a class of refer-
ence investment strategies, or the so-called experts. We assume no
transaction costs.

Let’s fix the notations.

• Market information: x = (x1, . . . , xm)⊤ ∈ Rm
≥0 denotes the ratio

of closing to opening price of the i-th stock in that period. Since
we consider a trading period t = 1, 2, . . . , n, we stack the market
information at time t to be the matrix xt := [x1, . . . , xt] ∈ Rm×t.
Again, the i-th component of xt is denoted as xi,t, is the factor by
which the wealth invested in stock i increases in the period t.

• Investment strategy: an investment vector q = (q1, . . . , qm) ∈ ∆m

the probability simplex denotes an allocation of the total wealth
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to each stock. If invest a unit amount to the market vector x with
investment strategy q, by the end of the trading, the wealth grows
to ∑m

i=1 qixi.

A sequential investment strategy denotes a mapping from past
market information to a probability distribution over the stocks,
namely Qt : R

m×(t−1)
≥0 → ∆m, which specifies

xt−1 7→ Qt(xt−1) ∈ ∆m, t = 1, 2, . . . , n (1.1)

We denote Qi,t(xt−1) to denote the portation of total wealth in-
vested to stock i in period t, based on market information collected
in the past t− 1 periods. We call the sequential investment strategy
(for periods n) Q = (Q1, Q2, . . . , Qn) to be the collection of such
maps.

• Wealth factor: given the martket information xn and a sequantial
investment stragegy Q, compute the wealth factor

Sn(Q, xn) :=
n

∏
t=1

m

∑
i=1

Qi,t(xt−1)xi,t (1.2)

Now, we consider two sets of simple strategies.

Example (Buy-and-hold stragegy). A buy-and-hold stragegy refers to
a no-trading strategy indexed by q ∈ ∆m, where one distributes wealth
according to q and hold it for a period of n,

SBnH(q, xn) :=
m

∑
i=1

qi

n

∏
t=1

xi,t (1.3)

Example (Constantly rebalancing strategy). A constantly rebalancing
strategy refers to a time-homogeneous strategy that Qt(xt−1) := q re-
gardless of time t and the past market behavior xt−1. Note there we trade
each period, thus bearing the name constantly rebalancing (as opposed to the
buy-and-hold strategy, where one does not trade at all).

SReB
n (q, xn) :=

n

∏
t=1

m

∑
i=1

qixi,t . (1.4)

We call the constantly rebalancing strategy

BReB := {(q, q, . . . , q), q ∈ ∆m} . (1.5)

To better constrast the buy-and-hold strategy and the constantly rebalac-
ing strategy, consider a simple case where there are two stocks,

xn :=

[
1 1 1 1 . . . 1 1

0.5 2 0.5 2 . . . 0.5 2

]
(1.6)
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Then for n even

SBnH(q, xn) = 1, ∀q

SReB
n ((1/2, 1/2), xn) = (

9
8
)n/2

1.1 Minimax Wealth Ratio

Recall the goal of the investor is to compete with a certain class of
investment strategies Q, regardless of the market behavior. Such
classes might include, actively managed portfolios built based on
these m stocks, or all constantly rebalancing strategies.

Definition 1 (Minimax wealth ratio). The worst-case logarithmic
wealth ratio of a strategy P relative to a class Q is defined as

Wn(P,Q) := sup
xn

sup
Q∈Q

log
Sn(Q, xn)

Sn(P, xn)
(1.7)

and define the minimax wealth ratio as

Wn(Q) := inf
P

Wn(P,Q) . (1.8)

A few remarks follow

• For a good class of reference strategies and good market condi-
tions, we can expect the wealth factor grow exponentially

sup
Q∈Q

log Sn(Q, xn) = r · n (1.9)

For instance, the S&P500 has a growth rate of exp(log(1.095)n),
where r = 0.04.

• If a strategy P satisfies

Wn(P,Q) = o(n)

then it implies that P can compete with the class Q

log Sn(P, xn) ≥ log Sn(Q, xn)︸ ︷︷ ︸
=r·n

−o(n) .

The name no-regret alludes to the above property.

Example (Compete with N portfolio managers/experts). Consider Q
to be the class of strategies presented by N portfolio managers,

Q := {Q(1), . . . , Q(N)}
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Then then simple average strategy P which divide the initial wealth in
1/N, 1/N, . . . , 1/N and then invest on each expert using the buy-and-hold
strategy, we have

Sn(P, xn) =
1
N

N

∑
j=1

Sn(Q(j), xn)

and thus

Wn(P,Q) ≤ log(N)

2 Digression: Online Prediction with Log Loss

Consider the online probability assignment question, where there are
m items Y = {1, 2, . . . , m} and n-periods. One wishes to maximum
the likelihood of the sequence by assigning the probabilities.

• Sequences: A sequence of numbers is revealed sequentially
(y1, y2, . . . , yn), where each yt ∈ Y , finite m-items. We denote
yt := (y1, y2, . . . , yt).

• Experts: An expert q = (q1, q2, . . . , qn) is a sequence of functions
qt : Y t−1 → ∆m

yt−1 7→ qt(yt−1) ∈ ∆m (2.1)

is a probability assignment vector, with each component

qt(yt−1) := [qt(1|yt−1), qt(2|yt−1), . . . , qt(m|yt−1)].

We denote the class of experts as E .

• Forecaster: p = (p1, p2, . . . , pn) is a sequence of probability vectors
similar to the definition in experts.

• Likelihood: One more notation, given a forecaster p (or similarly
for an expert q), we define the likelihood for the sequence yn

pn(yn) :=
n

∏
t=1

pt(yt|yt−1) . (2.2)

Note here the goal is to maximize the log-likelihood in comparison
to a class of Experts E

Mn(p, E) := max
yn∈Yn

{
sup
q∈E

log qn(yn)− log pn(yn)

}
(2.3)
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2.1 Connection to Maximum Likelihood Estimation

Definition 2 (Minimax Optimal Forecaster). Define the minimax regret
for the class E as

Mn(E) := inf
p

Mn(p, E)

The infimum turns out to be attained by the normalized maximum likelihood
probability distribution (MLE)

p⋆n(y
n) :=

supq∈E qn(yn)

∑zn∈Yn supq∈E qn(zn)

and the sequential forecaster is thus defined as

p⋆t (i|yt−1) :=
p⋆t (y

t−1i)
p⋆t−1(y

t−1)
. (2.4)

Note that this minimax optimal forecaster is a computation burden
to calculate, even for m = 2.

Theorem 1 (Regret for Minimax Optimal Forecaster). The minimax
regret is achieved by the minimax optimal forecaster, and

Mn(E) = log

(
∑

yn∈Yn
sup
q∈E

qn(zn)

)
(2.5)

How to deal with the computation then? The trick is to swap the
"sup" by "

∫
" over a distribution of q, denoted by µ ∈ P(E).

pµ
n(yn) :=

∫
q∈E qn(yn)dµ(q)

∑zn∈Yn
∫

q∈E qn(zn)dµ(q)

=

∫
q∈E qn(yn)dµ(q)∫

q∈E (∑zn∈Yn qn(zn))dµ(q)
Fubini’s theorem

=
∫

q∈E
qn(yn)dµ(q)

It turns out this integration swapping supermum idea also has a nice
Bayesian interpretation, which we will discuss now.

2.2 Connection to Bayesian Algorithm

Definition 3 (Bayesian Mixture Forecaster). Given a prior distribu-
tion, which is a mixture of experts in E , denoted by µ, define the following
Bayesian mixture forecaster

pµ
n(yn) :=

∫
q∈E

qn(yn)dµ(q) (2.6)
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and correspondingly

pµ
t (i|y

t−1) :=

∫
q∈E qt(yt−1i)dµ(q)∫

q∈E qt−1(yt−1)dµ(q)
= P

posterior
(i|yt−1) (2.7)

where the posterior probability is calculated based on the prior q ∼ µ, and
then yt ∼ qn(yn).

Theorem 2 (Regret for Bayesian Mixture Forecaster). The minimax
regret is achieved by the minimax optimal forecaster, and

Mn(pµ, E) = sup
yn∈Yn

log
supq∈E qn(yn)∫

q∈E qn(yn)dµ(q)
(2.8)

Definition 4 (Constant Experts). If the experts are time-homogeneous,
namely, qt(i|yt−1) ≡ q(i), ∀t, we call them constant experts. For this
problem, we define the constant experts class as

Eh := {(q, q, . . . , q︸ ︷︷ ︸
n

) | q ∈ ∆m} (2.9)

Theorem 3 (Regret Bounds: Krichevsky-Trofimov mixture forecaster
vs. minimax optimal forecaster). Consider the case of constant experts,
then the minimax optimal forecaster achieves the regret

Mn(Eh) =
m − 1

2
log

n
2π

+ log
Γ(1/2)m

Γ(m/2)
+ on(1) . (2.10)

Pick µ(q) where q ∈ ∆m and µ being the Dirichlet prior

dµ(q) =
Γ(m/2)
Γm(1/2)

m

∏
i=1

1√
q(i)

dq (2.11)

and consider the Bayesian mixture forecaster defined in (2.6)

pµ
n(yn) :=

∫
∆m

n

∏
t=1

q(yt)dµ(q) (2.12)

Then the corresponding regret bound holds

Mn(pµ, Eh) := sup
yn∈Yn

sup
q∈Eh

{
log qn(yn)− log pµ

n(yn)
}

(2.13)

≤ m − 1
2

log
n

2π
+ log

Γ(1/2)m

Γ(m/2)
+

m − 1
2

log 2 + on(1) . (2.14)

A few remarks follow

• The Krichevsky-Trofimov mixture forecaster exceeds the minimax
optimal bound just by a constant factor (independent of n). In
particular,

Mn(pµ, Eh) ≤ inf
p

Mn(pµ, Eh)︸ ︷︷ ︸
≍ m−1

2 log n

+
m − 1

2
log 2 (2.15)
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• The proof is based on Gamma functions and Stirling approxima-
tions. TL: Leave it as homework. It is not hard

to show.
• The Krichevsky-Trofimov mixture may be easily calculated by a

smoothed version of empirical frequencies

pµ
t (i|y

t−1) =
ti + 1/2

t − 1 + m/2
(2.16)

where ti denotes the number of occurrences of i in yt−1 with
∑m

i=1 ti = t − 1.

3 Reduction: Sequential Investment to Online Prediction

In this section, we will show a reduction to relate the two problems:
sequential investment, and online probability assignment.

The idea is simple based on two steps:

• For a minimax sequential investment problem, restricted only a
strict subset of market conditions (called Kelly market vectors),
we reduce to a minimax online probability assignment problem.
This will show the minimax sequential investment problem is
strictly harder than the online prediction problem.

• Given any algorithm p that solves the online probability assign-
ment problem, we induce a corresponding sequential investment
algorithm P for any market conditions. This step hopes to upper
bound the regret of P for the sequential investment problem by the
regret of p for the online learning problem.

4 Universal Portfolio and Bayesian Mixtures

Define the initial wealth S0 ≡ 1 and define the wealth at t

SReB
t (q, xt) :=

t

∏
s=1

(
m

∑
i=1

qixi,s) (4.1)

Define the universal portfolio strategy Pµ
UP induced by µ

PUP
i,t (xt−1) :=

∫
∆m

qi · SReB
t−1 (q, xt−1)dµ(q)∫

∆m
SReB

t−1 (q, xt−1)dµ(q)
(4.2)

In any case, the universal portfolio is a weighted average of the
strategies in BReB, weighted by their past performance.
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Observe that

Sn(Pµ, xn) =
n

∏
t=1

m

∑
i=1

Pi,t(xt−1)xi,t

=
n

∏
t=1

∫
∆m

∑m
i=1 qixi,t · SReB

t−1 (q, xt−1)dµ(q)∫
∆m

SReB
t−1 (q, xt−1)dµ(q)

=
n

∏
t=1

∫
∆m

SReB
t (q, xt)dµ(q)∫

∆m
SReB

t−1 (q, xt−1)dµ(q)

=
∫

∆m
SReB

n (q, xn)dµ(q) =
∫

∆m

n

∏
t=1

(
m

∑
i=1

qixi,t)dµ(q)

=
∫

∆m
∑

yn∈Yn

n

∏
t=1

qyt xyt ,t dµ(q)

= ∑
yn∈Yn

(
n

∏
t=1

xyt ,t)
∫

∆m

n

∏
t=1

qyt dµ(q)︸ ︷︷ ︸
pµ

n(yn)

which is governed by the online prediction problem.

# Algorithm : u n i v e r s a l p o r t f o l i o
# Input : a sequence of market v e c t o r s X_ { i , t } , i from m a s s e t s , t from n periods
# Output : Krichevsky −Trofimov mixture f o r e c a s t e r to bui ld u n i v e r s a l p o r t f o l i o
def l o g _ w e a l t h _ f a c t o r _ r e b a l a n c e (Q, X ) :

# m, n = np . shape (X)
# Nsim , m = np . shape (Q)
lnW = np . log ( np . matmul (Q, X ) )
lnWcum = np . cumsum(lnW , a x i s = 1 )
re turn lnWcum

def u n i v e r s a l _ p o r t f o l i o (X , Nsim = 1e5 ) :
m, n = np . shape (X)
alpha = 0 . 5 * np . ones (m)
Q = np . random . d i r i c h l e t ( alpha , i n t ( Nsim ) )

lnWcum = l o g _ w e a l t h _ f a c t o r _ r e b a l a n c e (Q, X)
P_un_normalized = np . matmul ( np . transpose (Q) , np . exp (lnWcum−np . log ( Nsim ) ) )
norm_Const = np . sum( np . exp (lnWcum−np . log ( Nsim ) ) , a x i s = 0 , keepdims=True )
re turn P_un_normalized/norm_Const

Theorem 4 (Performance of Universal Portfolio). The universal port-
folio algorithm Pµ

UP above satisfies the following regret guarantee over the
class of constantly rebalancing strategies defined in (1.5),

sup
xn

sup
Q∈BReB

log Sn(Q, xn)− log Sn(P
µ
UP, xn) ≤ m − 1

2
log

n
2π

+ log
Γ(1/2)m

Γ(m/2)
+

m − 1
2

log 2 + on(1)
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Proof. The proof hinges on a reduction to the online probability
assignment problem, as hinted above.

Note that for any Q ∈ BReB, it naturally induced an online prob-
ability assignment problem, and therefore: Given xn, let q† be the
maximizer of supQ∈BReB log Sn(Q, xn), then

sup
Q∈BReB

log Sn(Q, xn)− log Sn(P
µ
UP, xn)

= log Sn(Q†, xn)− log Sn(P
µ
UP, xn)

= log
∑yn∈Yn(∏n

t=1 xyt ,t)∏n
t=1 q†

yt

∑yn∈Yn(∏n
t=1 xyt ,t)

∫
∆m

∏n
t=1 qyt dµ(q)

= log
∑yn∈Yn(∏n

t=1 xyt ,t) · q†
n(yn)

∑yn∈Yn(∏n
t=1 xyt ,t) · pµ

n(yn)

Denote w(yn, xn) := ∏n
t=1 xyt ,t ∈ R≥0 to be some non-negative

weights, then the above

log
∑yn∈Yn w(yn, xn) · q†

n(yn)

∑yn∈Yn w(yn, xn) · pµ
n(yn)

≤ sup
yn :w(yn ,xn)>0

log
q†

n(yn)

pµ
n(yn)

≤ sup
yn :w(yn ,xn)>0

sup
q∈Eh

log
qn(yn)

pµ
n(yn)

≤ sup
yn∈Yn

sup
q∈Eh

log
qn(yn)

pµ
n(yn)

Put things together, we have derived that the upper bound of
the induced universal portfolio algorithm is bounded by that of the
online Krichevsky-Trofimov mixture forecaster

sup
xn

sup
Q∈BReB

log Sn(Q, xn)− log Sn(P
µ
UP, xn) ≤ sup

yn∈Yn
sup
q∈Eh

log qn(yn)− log pµ
n(yn)

(4.3)

and by Theorem 3, we have the RHS is bounded by the desired quan-
tity.

Remark. It turns out the equivalence is stronger; one can show that the
sequential portfolio question is precisely as hard as the online probability
assignment question, in the minimax sense.

Wn(BReB) = inf
P

sup
xn

{
sup

Q∈BReB
log Sn(Q, xn)− log Sn(P, xn)

}

= inf
p

sup
yn∈Yn

{
sup
q∈Eh

log qn(yn)− log pn(yn)

}
= Mn(Eh)
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The ≥ can be shown by considering only Kelly vectors 3 as market informa- 3 John L Kelly. A new interpretation of
information rate. the bell system technical
journal, 35(4):917–926, 1956

tion. See Theorem 10.1 in 4.
4 Nicolò Cesa-Bianchi and Gábor
Lugosi. Prediction, Learning, and Games.
Cambridge University Press, 2006

5 Exponentiated Gradient (EG) Portfolio

The the universal portfolio strategy Pµ
UP still involves multi-dimensional

integrals in the space q ∈ ∆m, and one has to calculate O(mn) such
m-dimensional simplex integrals. Though an online algorithm, the
procedure is computationally heavy and relies on Monte Carlo simu-
lations to calculate.

In this section, we consider a linearized version that is much faster
to compute, based on exponentiated gradient (EG) principle. Unfor-
tunately, unlike the universal portfolio Pµ

UP which has log(n) regret,
the EG strategy has

√
n regret.

Consider the exponentiated gradient (EG) strategy Pη
EG, an online

algorithm. Define PEG
i,1 = 1/m, ∀i ∈ [m] and update

PEG
i,t =

PEG
i,t−1 exp

(
ηxi,t−1

⟨PEG
t−1,xt−1⟩

)
∑m

j=1 PEG
j,t−1 exp

(
ηxj,t−1

⟨PEG
t−1,xt−1⟩

) (5.1)

Here, no integration is needed and the algorithm can be imple-
mented exactly fast.

Motivation behind: Write out the total wealth for strategy P =

(Pt)n
t=1

− log Sn(P, xn) =
n

∑
t=1

− log⟨Pt, xt⟩ (5.2)

Define ℓt(P) = − log⟨P, xt⟩ is a convex function in P, and thus one
can use the online EG algorithm,

Pi,t ∝ Pi,t−1 exp(−η∇ℓt−1(Pt−1)i) (5.3)

∝ Pi,t−1 exp
(

ηxi,t−1
⟨Pt−1,xt−1⟩

)
(5.4)

therefore we derive

Pi,t =
Pi,t−1 exp

(
ηxi,t−1

⟨Pt−1,xt−1⟩

)
∑m

j=1 Pj,t−1 exp
(

ηxj,t−1
⟨Pt−1,xt−1⟩

) (5.5)

# Algorithm : exponentiated gradient p o r t f o l i o
def expGrad_portfol io (X , e ta = 0 . 1 ) :

m, n = np . shape (X)
P = np . ones ( (m, n+1 ) )/m
f o r t in range ( n ) :
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w = np . sum( P [ : , t ] * X [ : , t ] )
P_un_normalized = P [ : , t ] * np . exp ( e ta *X [ : , t ]/w)
P [ : , t +1] = P_un_normalized/np . sum( P_un_normalized )

re turn P

Theorem 5 (Performance of Exponentiated Gradient). Assume that the
price relatives xi,t all fall between two positive constants c < C. Then EG

portfolio with the η = c
C

√
8 log m

n

sup
xn∈[c,C]m×n

sup
Q∈BReB

log Sn(Q, xn)− log Sn(PEG, xn) (5.6)

≤ C
c

√
n log m

2
(5.7)

The proof is a simple application of the optimistic mirror descent
framework to analyze online problems with KL divergence as the
Bregman divergence.

6 Summary

Note the difference in the wealth ratios

Wn(PEG,BReB) ≤ C
c

√
n log m

2
(6.1)

Wn(PUP,BReB) ≤ m − 1
2

log
n

2π
(6.2)

0 10 20 30 40 50

0.0

0.5

1.0

1.5

ReB
ExpGrad
UnivPort

Figure 1: A simulation of the portfolios.

Let’s put all the algorithms shoulder-by-shoulder as a contrast

• The MLE forecaster effectively solves the following optimization
problem

min
q∈∆m

n

∑
t=1

− log⟨q, xt⟩ (6.3)

• The Dirichlet mixture forecaster (universal portfolio) solves the
following optimization by sampling

q ∼ exp(−Fn(·)) (6.4)

Fn(q) :=
n

∑
t=1

− log⟨q, xt⟩ −
1
2
⟨1, log q⟩ (6.5)

• Tthe EG forecaster solves the following optimization iteratively
using online mirror descent (or linearized the problem)

Gn(q) :=
n

∑
t=1

− log⟨q, xt⟩+
1
η
⟨q, log q⟩ (6.6)

namely

qt := arg min
q∈∆m

⟨q,− xt−1
⟨qt−1,xt⟩ ⟩+

1
η

KL(q∥qt−1) (6.7)
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