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Sequential Portfolio Selection

Consider the problem of sequential investment. A market consists of

m stocks in which, in each trading period t € 1,2...n, the price of a

stock may vary in an arbitrary way. An investor seeks to sequentially

allocate the portfolio in a trading period of n days.

We deliberately avoid any statistical assumptions about the na-

ture of the stock market, and evaluate the investor’s wealth relative

to the performance achieved by the best strategy in a class of refer-

ence investment strategies, or the so-called experts. We assume no

transaction costs.

Let’s fix the notations.

Market information: x = (x1,...,x,) € R”; denotes the ratio
of closing to opening price of the i-th stock in that period. Since
we consider a trading period t = 1,2,...,n, we stack the market
information at time t to be the matrix x := [xq,...,x;] € R™*%,
Again, the i-th component of x; is denoted as x;, is the factor by
which the wealth invested in stock i increases in the period ¢.

Investment strategy: an investment vector q = (41,...,9m) € A
the probability simplex denotes an allocation of the total wealth
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to each stock. If invest a unit amount to the market vector x with
investment strategy q, by the end of the trading, the wealth grows
to Y% qixi.

A sequential investment strategy denotes a mapping from past
market information to a probability distribution over the stocks,

m><(t 1)

namely Q; : — Ay, which specifies

X1 QX Y eAy, t=1,2,...,n (1.1)

We denote Q;;(x!1) to denote the portation of total wealth in-
vested to stock i in period ¢, based on market information collected
in the past t — 1 periods. We call the sequential investment strategy
(for periods n) Q = (Q1,Q>,...,Qy) to be the collection of such
maps.

¢ Wealth factor: given the martket information x" and a sequantial
investment stragegy Q, compute the wealth factor

H 2 Qz t xz t (1'2)

t=1i=

Now, we consider two sets of simple strategies.

Example (Buy-and-hold stragegy). A buy-and-hold stragegy refers to
a no-trading strategy indexed by q € Ay, where one distributes wealth
according to q and hold it for a period of n,

SBnH Z qdi H Xit (1'3)

Example (Constantly rebalancing strategy). A constantly rebalancing
strategy refers to a time-homogeneous strategy that Q;(x!~1) := q re-
gardless of time t and the past market behavior x'~1. Note there we trade
each period, thus bearing the name constantly rebalancing (as opposed to the
buy-and-hold strategy, where one does not trade at all).

SReB H Z qiXit - (1-4)
t=1i=

We call the constantly rebalancing strategy

BX:={(q,q,---,9),q € An} - (1.5)

To better constrast the buy-and-hold strategy and the constantly rebalac-
ing strategy, consider a simple case where there are two stocks,

11 1 1 ... 1 1

x" = (1.6)
05 2 05 2 ... 05 2

2
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Then for n even

SBnH(q’xn) — qu
SEP((1/2,1/2),x") = ()"

1.1 Minimax Wealth Ratio

Recall the goal of the investor is to compete with a certain class of
investment strategies Q, regardless of the market behavior. Such
classes might include, actively managed portfolios built based on
these m stocks, or all constantly rebalancing strategies.

Definition 1 (Minimax wealth ratio). The worst-case logarithmic
wealth ratio of a strategy P relative to a class Q is defined as

n
Wy(P, Q) := sup sup log M

(1.7)
x" QGQ Sn(P,Xn)

and define the minimax wealth ratio as
Wy (Q) := irl}f W, (P, Q) . (1.8)

A few remarks follow

e For a good class of reference strategies and good market condi-
tions, we can expect the wealth factor grow exponentially

sup log$,(Q,x")=r-n (1.9)
QecQ

For instance, the S&P500 has a growth rate of exp(log(1.095)n),
where r = 0.04.

o If a strategy P satisfies

then it implies that P can compete with the class Q
log S, (P,x") > log S, (Q,x") —o(n) .
————
=rn
The name no-regret alludes to the above property.

Example (Compete with N portfolio managers/experts). Consider Q
to be the class of strategies presented by N portfolio managers,

Q = {Q(l)/ . /Q(N)}
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Then then simple average strategy P which divide the initial wealth in
1/N,1/N,...,1/N and then invest on each expert using the buy-and-hold
strategy, we have

and thus

Wa(P, Q) < log(N)

2 Digression: Online Prediction with Log Loss

Consider the online probability assignment question, where there are
mitems Y = {1,2,...,m} and n-periods. One wishes to maximum
the likelihood of the sequence by assigning the probabilities.

* Sequences: A sequence of numbers is revealed sequentially
(y1,¥2,---,Yn), where each y; € ), finite m-items. We denote

vhi= YLy, y).

e Experts: An expert g = (q1,q2,--.,qn) is a sequence of functions
qt: yt_l — Am
Y e @y € dn (2.1)

is a probability assignment vector, with each component
a(y' ™) = [q:(ly'),q @y, qe(mly ).

We denote the class of experts as €.

¢ Forecaster: p = (p1, P2, --.,Pn) is a sequence of probability vectors
similar to the definition in experts.

¢ Likelihood: One more notation, given a forecaster p (or similarly
for an expert gq), we define the likelihood for the sequence y"

pa(y") =T Tpe(yely'™) . (2.2)
t=1

Note here the goal is to maximize the log-likelihood in comparison
to a class of Experts £

My (p,€) := max q suplogqu(y") —logpn(y") (2:3)
y" eyn qeg
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2.1 Connection to Maximum Likelihood Estimation

Definition 2 (Minimax Optimal Forecaster). Define the minimax regret
for the class &€ as

M, (&) = i%an(p,E')

The infimum turns out to be attained by the normalized maximum likelihood
probability distribution (MLE)

~ supgee gu(y")
ZZ”E)/” Supqeg qn(Zn)

AV
and the sequential forecaster is thus defined as

pr(y' )

Piay ) 4

pr(ily'™1) =

Note that this minimax optimal forecaster is a computation burden
to calculate, even for m = 2.

Theorem 1 (Regret for Minimax Optimal Forecaster). The minimax
regret is achieved by the minimax optimal forecaster, and

My (€) = 10g< Y, sup qn(Z")) (2.5)

yneyn qe€

How to deal with the computation then? The trick is to swap the
"sup" by " [" over a distribution of g, denoted by u € P(&).

 Jpeean(y") du(q)
 Laveyn Jyeg an(z") du(q)
Jocg an(y") dp(q)

= Fubini’s theorem

Jocg (Caneyn an(z")) dpu(q)
= / qn(y") du(q)
qge€

ph(y") :

It turns out this integration swapping supermum idea also has a nice
Bayesian interpretation, which we will discuss now.
2.2 Connection to Bayesian Algorithm

Definition 3 (Bayesian Mixture Forecaster). Given a prior distribu-
tion, which is a mixture of experts in £, denoted by u, define the following
Bayesian mixture forecaster

ph(y") = /q L") du() (2.6)
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and correspondingly

Joce qi(y' 1) du(q)
P =1y . 4 _ ] .
P <Z|y ) . fqeg qtfl(ytil) d.”(’?) POS}.‘lejrior(l‘y ) (2 7)

where the posterior probability is calculated based on the prior q ~ u, and
then y* ~ gu(y").

Theorem 2 (Regret for Bayesian Mixture Forecaster). The minimax
regret is achieved by the minimax optimal forecaster, and

su 2 (y"
M, (p*,E) = sup log Pgee ") (2.8)

yreyn fqeg an(y™) dp(q)
Definition 4 (Constant Experts). If the experts are time-homogeneous,
namely, q;(ily'=1) = q(i), Vt, we call them constant experts. For this
problem, we define the constant experts class as

gh = {(ﬁ,,g) | q € An} (2.9)

n

Theorem 3 (Regret Bounds: Krichevsky-Trofimov mixture forecaster
vs. minimax optimal forecaster). Consider the case of constant experts,
then the minimax optimal forecaster achieves the regret

hy  m—1 n r(/2)m
My (E™) = Tlogﬂ +logm +on(1) . (2.10)

Pick u(q) where q € Ay, and p being the Dirichlet prior
T(m/2) & 1

d = —d (2.11)
and consider the Bayesian mixture forecaster defined in (2.6)
n
pu(y") = /A 9(ye) dp(q) (2.12)
m =1

Then the corresponding regret bound holds

My (p", €)= sup sup {logqu(y") —logph(y")}  (2:13)
YyreY" geth

m—1
2

r(1/2)"
I'(m/2)

-1
< log % + log + 2 5 log2+0,(1) . (2.14)

A few remarks follow

¢ The Krichevsky-Trofimov mixture forecaster exceeds the minimax
optimal bound just by a constant factor (independent of #). In
particular,

m

-1 log2 (2.15)

Mn(pV,Eh) < i%an(p”,gh) + >

N —
me’llogn
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¢ The proof is based on Gamma functions and Stirling approxima-

tions. TL: Leave it as homework. It is not hard
to show.

¢ The Krichevsky-Trofimov mixture may be easily calculated by a
smoothed version of empirical frequencies

ti+1/2

Wy —1 _
Py ) =i (2.16)

where t; denotes the number of occurrences of i in y'~! with
Y ti=t—1

3 Reduction: Sequential Investment to Online Prediction

In this section, we will show a reduction to relate the two problems:
sequential investment, and online probability assignment.
The idea is simple based on two steps:

¢ For a minimax sequential investment problem, restricted only a
strict subset of market conditions (called Kelly market vectors),
we reduce to a minimax online probability assignment problem.
This will show the minimax sequential investment problem is
strictly harder than the online prediction problem.

¢ Given any algorithm p that solves the online probability assign-
ment problem, we induce a corresponding sequential investment
algorithm P for any market conditions. This step hopes to upper
bound the regret of P for the sequential investment problem by the
regret of p for the online learning problem.

4 Universal Portfolio and Bayesian Mixtures

Define the initial wealth Sg = 1 and define the wealth at ¢

m
SReB H Zqzxzs (4.1)

t
s=1 i=

Define the universal portfolio strategy P%P induced by u

s, a4 S (q,x 1) dpu(q)
S, SEF (@ xt=1) du(q)

In any case, the universal portfolio is a weighted average of the

PEP(Xtil) = (4.2)

strategies in BR¢B, weighted by their past performance.
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Observe that

N

Su(PH,x") = P (x )i

N
Il
—_

= I

=

Y qixi - SRR (g x ) du(q)
Ty, S5 (a,x 1) du(a)

[y SEeB(q,x') dp(q)

=1 Ja, S8F(q,x!71) du(q)

n
sita ) dauta) = [ TI0 am) dnla
m mf—=1 {

= Z qutxjttdﬂ( )

Amy eYn t=

nytt / qutd]’l

]/neyn =1

T
A

BN

|
s

Pu(y")
which is governed by the online prediction problem.

# Algorithm: universal portfolio
# Input: a sequence of market vectors X_{i,t}, i from m assets, t from n periods
# Output: Krichevsky-Trofimov mixture forecaster to build universal portfolio
def log_wealth_factor_rebalance(Q, X):

# m, n = np.shape(X)

# Nsim, m = np.shape(Q)

InW = np.log (np.matmul (Q, X))

InWcum = np.cumsum(InW, axis = 1)

return InWcum

def universal_portfolio (X, Nsim = 1e5):
m, n = np.shape(X)
alpha = 0.5 * np.ones(m)
Q = np.random. dirichlet (alpha, int(Nsim))

InWcum = log_wealth_factor_rebalance (Q, X)

P_un_normalized = np.matmul(np.transpose(Q), np.exp(InWcum-np.log (Nsim)))
norm_Const = np.sum(np.exp (InWcum-np.log (Nsim)), axis = o, keepdims=True)
return P_un_normalized/norm_Const

Theorem 4 (Performance of Universal Portfolio). The universal port-
folio algorithm P%P above satisfies the following regret guarantee over the
class of constantly rebalancing strategies defined in (1.5),

m— r(/2)m
sup sup logS,(Q,x log S, XM < lo ——l—l
P oep 108 (@) 108 Sn(Pup ) 82 8 T /2)

1
+ m2 log2 + 0, (1)
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Proof. The proof hinges on a reduction to the online probability
assignment problem, as hinted above.

Note that for any Q € BR¢B, it naturally induced an online prob-
ability assignment problem, and therefore: Given x", let qu be the
maximizer of SUP Qe ke log S,,(Q, x"), then

sup logS,(Q,x") —log Sn( upeX")
Qe BReB
=1og S, (QF,x") —log S, (P! upeX")

Lypeyn (Tl xy,) T q,

yweyn (TTf= Xy, t) fAm [T~ qy: du(q)
Yyweyn (TTE=y Xy t) - 45 (Y")
Ly,eyn (TTi=q xy,,t) - ph(y")
Denote w(y",x") := [1{_; xy,+ € R>p to be some non-negative
weights, then the above

= log

= log

Lo Zmen W X") (")
og 7
Yyeyn w(y",x") - pu(y")
7 (y")

< sup log
yn:w(y™ x*)>0 Py (yn)

< sup suplog® n(y")
ynw(y" x")>0 ge€h Pn(y )

< sup sup log —; In(y")
Yn€Y" qe&h pﬂ(y )

Put things together, we have derived that the upper bound of
the induced universal portfolio algorithm is bounded by that of the
online Krichevsky-Trofimov mixture forecaster

sup sup logS,(Q,x") —log Sn(PP&P, x") < sup sup logg,(y") —log pﬁ(y”)

x" QcBReB Yn€Y" qe&h
(4-3)
and by Theorem 3, we have the RHS is bounded by the desired quan-
tity. O

Remark. It turns out the equivalence is stronger; one can show that the
sequential portfolio question is precisely as hard as the online probability
assignment question, in the minimax sense.

W, (BReB) = iII}fsup { sup logS,(Q,x") —logS,(P, x”)}

x" | QeBReB

mf sup {Sup log g, (y") — log Pn(y”)}
]/11€yn qEEh

= Mn(gh)
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The > can be shown by considering only Kelly vectors 3 as market informa-
tion. See Theorem 10.1 in 4.

5  Exponentiated Gradient (EG) Portfolio

The the universal portfolio strategy P{’H, still involves multi-dimensional
integrals in the space q € A, and one has to calculate O(mn) such
m-dimensional simplex integrals. Though an online algorithm, the
procedure is computationally heavy and relies on Monte Carlo simu-
lations to calculate.

In this section, we consider a linearized version that is much faster
to compute, based on exponentiated gradient (EG) principle. Unfor-
tunately, unlike the universal portfolio P{}P which has log(n) regret,
the EG strategy has /n regret.

Consider the exponentiated gradient (EG) strategy PEG, an online
algorithm. Define PlElG =1/m,Vi € [m] and update

PEG ex NXit—1
PEG it—1 P <PF,Glrxt—1>

i = p. (5.1)
M PEG ep (M1
j=177-1¢ p<<rfﬂ,xt1>)

Here, no integration is needed and the algorithm can be imple-
mented exactly fast.
Motivation behind: Write out the total wealth for strategy P =

(Pr)iy
n
—log Su(P,x") = Y —log (P, x;) (5.2)
t=1
Define ¢;(P) = —log(P, x;) is a convex function in P, and thus one

can use the online EG algorithm,
Py o< Pipy exp(=y VL1 (Pt_1);) (5.3)
o Py g exp ity ) (5.4)
therefore we derive
_ Py 1exp (m@ﬁ)
- ThBeree (i)

P

(5.5)

# Algorithm: exponentiated gradient portfolio
def expGrad_portfolio(X, eta = o0.1):

m, n = np.shape(X)

P = np.ones((m, n+1))/m

for t in range(n):

3John L Kelly. A new interpretation of
information rate. the bell system technical
journal, 35(4):917-926, 1956

4Nicolo Cesa-Bianchi and Gabor
Lugosi. Prediction, Learning, and Games.
Cambridge University Press, 2006
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w = np.sum(P[:, t]«X[:, t])

P_un_normalized = P[:, t]*np.exp(etaxX[:, t]/w)

P[:, t+1] = P_un_normalized/np.sum(P_un_normalized)

return P

Theorem 5 (Performance of Exponentiated Gradient). Assume that the
price relatives x; ; all fall between two positive constants ¢ < C. Then EG

portfolio with the n = & \/@

sup sup logS,(Q,x") —log S, (Pgg,x") (5.6)

x"e [C,C]”’ Xn QEBReB

C [nlogm
< — .
= - 5 (5.7)

The proof is a simple application of the optimistic mirror descent
framework to analyze online problems with KL divergence as the
Bregman divergence.

6 Summary

Note the difference in the wealth ratios

C /nlogm

Wa(Prg, B5P) < = [7=8 (6.1)
m—1 n

W, (Pyp, BRB) < 5 log 5 (6.2)

Let’s put all the algorithms shoulder-by-shoulder as a contrast

¢ The MLE forecaster effectively solves the following optimization
problem

n

' —log(q, 6.
min t:Zl 0g(q, xt) (6.3)

¢ The Dirichlet mixture forecaster (universal portfolio) solves the
following optimization by sampling

q ~ exp(—Fu(")) (6.4)

1
Fa(q) := ) —log{q,x;) — 5(1,logq) (6.5)
=1

e Tthe EG forecaster solves the following optimization iteratively
using online mirror descent (or linearized the problem)

n
1
Gu(q) == )_ —log(q,x:) + ;<q,10g q) (6.6)
t=1
namely
1
- : X1 -
q: = arqirAr:nm, )+ KAl 67)

— ReB
ExpGrad
—— UnivPort

0.0 /\ al \\/\/
o 10 20

30 40 50

Figure 1: A simulation of the portfolios.
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