
Reinforcement Learning I
Tengyuan Liang1

1 The University of Chicago
Booth School of Business

DLA Lecture 5: Explore vs. Exploit

Dynamic Programming and Bellman Equations. An overview of rein-
forcement learning. Readings: Hardt and Recht 2 Chapters 11 and 12, 2 Moritz Hardt and Benjamin Recht.

Patterns, Predictions, and Actions: A
Story about Machine Learning. Princeton
University Press, 2022

Lattimore and Szepesvari 3.

3 Tor Lattimore and Csaba Szepesvári.
Bandit algorithms. Cambridge University
Press, 2020

Contents

1 Sequential Decision Making Framework 1

2 Dynamic Programming 2

2.1 Infinite horizons and stationary policies 3

2.2 Tabular Markov Decision Process (MDP) 4

2.3 Linear Quadratic Regulator 4

3 Policy and Value Iteration 5

4 Unknown Dynamics and/or Rewards: A Brief Overview 6

4.1 Principle of Certainty Equivalence 6

4.2 Approximate Dynamic Programming 7

4.3 Policy Gradient 8

1 Sequential Decision Making Framework

First, let’s consider the generic formulation of sequential decision
making when the model is known.

• State (or data): X = {Xt}t=1,2,...

• Action (or decision): U = {Ut}t=1,2,...

• Reward (or feedback): R = {Rt}t=1,2,...

The goal is to analyze data X sequentially and then subsequently
choose decision U so that the reward R is large.

Definition 1 (Stochastic Dynamical Systems). A dynamical system
model has a rule for how states evolve over time. A (discrete time) stochastic
dynamical system has a state Xt, exogenous input Ut modeling our control
action, and reward Rt. The state evolves according to the equation

Xt+1 = ft(Xt, Ut, Wt)

reinforcement learning i 2

and the reward

Rt = gt(Xt, Ut, Wt)

where ft, gt are known functions, Wt is a random variable modeling the
stochasticity of the system.

Definition 2 (Control Policy). We call πt, t = 1, 2 . . . a control policy that
takes the trajectory of previous states {Xs}t

s=0 and maps to a control action

Ut = πt(Xt, Xt−1, . . .) .
TL: Note here we are vague about
where πt is a randomized policy or a
deterministic policy, as in many prob-
lems, one may need to use randomized
policy to balance the exploration vs.
exploitation.

Definition 3. Sequential Decision Making (SDM) Problem The sequential
decision-making problem solves the following policy optimization

max
πt

E
Wt

[T

∑
t=0

Rt(Xt, Ut, Wt)
]

s.t. Xt+1 = ft(Xt, Ut, Wt)

Ut = πt(Xt, Xt−1, . . .)

(X0 = x0 given)
TL: For MDPs, we encode the stochastic
nature of the states into Wt.

2 Dynamic Programming

Dynamic programming (DP) provides a general-purpose solution
to SDM problems. The DP solution to the SDM problem is based
on the principle of optimality: an optimal route from A to C that goes
through B, must induce an optimal route from B to C. DP is built on
this principle, allowing us to recursively find an optimal policy by
starting at the final time and going backward in time to solve for the
earlier stages.

Definition 4 (Q-function). Define the Q-function to be the mapping:

Qs→e(x, u) := max
ut

E
Wt

[e

∑
t=s

Rt(Xt, ut, Wt)
]

s.t. Xt+1 = ft(Xt, ut, Wt), t = s, . . . , e − 1

(Xs, us) = (x, u)

The Q-function determines the best achievable value of the SDM
problem from start time s to end e.

Definition 5 (Bellman’s Equation). The DP solves the following problem
by iteratively calculating the Q function backward in time

QT→T(x, u) = E
WT

[RT(x, u, Wt)] ,

reinforcement learning i 3

then compute recursively for t = T − 1, T − 2, . . . , 0

Qt→T(x, u) = E
Wt

[
Rt(x, u, Wt) + max

u′
Qt+1→T

(
ft(x, u, Wt), u′)] .

The above expression is known as Bellman’s equation.

Given the sequence of Qt→T , t = 0, 1, 2, . . ., the optimal decision at
time t given state xt is

ut = arg max
u

Qt→T(xt, u) (2.1)

and the policy only depends on the current state. TL: this is no surprise due to the fact
that the current and future rewards
(taking optimal decision onwards) only
depend on the current state and action,
and the past states are the past and
only affect xt.

Now we consider some special cases to give concrete examples,
where specific instances of Bellman equations are either efficiently
solvable or take a clean form to approximate.

2.1 Infinite horizons and stationary policies

The Q-functions we derived so far are time-varying. The compu-
tation scales up when the horizon times increase. With a bit more
structure—namely time-invariant dynamics, and costs, together with
a discount factor—the Bellman equation can be reduced to a fixed
point equation.

Let γ ∈ (0, 1) be a discount factor and consider the infinite horizon
SDM problem

max
π

E
Wt

[∞

∑
t=0

γtR(Xt, Ut, Wt)
]

s.t. Xt+1 = f (Xt, Ut, Wt)

Ut = π(Xt)

(X0 = x0 given)

Then the Qγ function can be verified to be time-invariant and
satisfies the following fixed point equations

Qγ(x, u) = E
W

[
R(x, u, W) + γ max

u′
Qγ

(
f (x, u, W), u′)] . (2.2)

The optimal policy is now time-invariant as well

ut = arg max
u

Qγ(xt, u) . (2.3)

In a second, we will show that Policy and Value iterations are ap-
proximation schemes to solve the fixed point equation.

reinforcement learning i 4

2.2 Tabular Markov Decision Process (MDP)

Consider the following finite state and action spaces Markov decision
processes, which the next state Xt+1 is given by the current state Xt

and action Ut given by a transition kernel

P
[
Xt+1 = x′|Xt = x, Ut = u

]
(2.4)

which is a probability transition matrix/table [0, 1]|X |×|X | indexed by
u ∈ A.

The Q function for the tabular case is also tables of size |X | × |A|.

Qt→T(x, u) = Rt(x, u) + ∑
x′∈X

P
[
Xt+1 = x′|Xt = x, Ut = u

]
max

u′
Qt+1→T(x′, u′)

(2.5)

This function can be computed by simple matrix-vector operations.
The max operations can be performed by operating each row of
the table maxu′ Qt+1→T(x′, u′) to get an array of size |X |. For each
column of Qt→T(·, u), one can compute with a matrix-vector product
with time |X |2.

2.3 Linear Quadratic Regulator

The other important problem where dynamic programming is ef-
ficiently solvable is the case when the dynamics are linear and the
rewards are quadratic.

max
πt

E
Wt

[T

∑
t=0

X⊤
t ΦtXt + U⊤

t ΨtUt
]

s.t. Xt+1 = AtXt + BtUt + Wt

Ut = πt(Xt)

(X0 = x0 given)

Here Φt, Ψt are most commonly PSD matrices, Wt is noise with zero
mean and bounded variances that are independent across t.

When we run DP, every Q-function can be verified to be quadratic,
and thus the optimal action is a linear function of the state

Ut = −KtXt. (2.6)

To be specific, consider only the time-invariant quadratic costs
Φt = Φ, Ψt = Ψ, and that the underlying dynamics are time-invariant

reinforcement learning i 5

as well At = A and Bt = B. Define

QT→T(x, u) = x⊤Φx + u⊤Ψu

QT−1→T(x, u) = x⊤Φx + u⊤Ψu + E
W
[min

u′
QT→T(Ax + Bu + W, u′)]

= x⊤Φx + u⊤Ψu + (Ax + Bu)⊤ Φ︸︷︷︸
:=M1

(Ax + Bu) + const.

The optimal decision UT−1 = −(Ψ + B⊤M1B)−1B⊤M1 A · XT−1. At
time T − 2,

QT−2→T(x, u) = x⊤Φx + u⊤Ψu + E
W
[QT−1→T(x̃,−(Ψ + B⊤M1B)−1B⊤M1 A · x̃)] where x̃ = Ax + Bu + W

= x⊤Φx + u⊤Ψu + E
W
[x̃⊤ (Φ + A⊤M1 A − (A⊤M1B)(Ψ + B⊤M1B)−1(B⊤M1 A))︸ ︷︷ ︸

:=M2

x̃] + const.

= x⊤Φx + u⊤Ψu + (Ax + Bu)⊤M2(Ax + Bu) + const.

By induction, one can show that the Q function at time t satisfies

Qt→T(x, u) = x⊤Φx + u⊤Ψu + (Ax + Bu)⊤MT−t(Ax + Bu) + const.
(2.7)

with the optimal control decision

ut = −(Ψ + B⊤MT−tB)−1B⊤MT−t A · xt (2.8)

Here the PSD matrix M satisfies the recursion

M0 = 0

Mt+1 = Φ + A⊤Mt A − (A⊤MtB)(Ψ + B⊤MtB)−1(B⊤Mt A) .

In the large T limit, the optimal control policy is static, linear state
feedback with

ut = −Kxt

K := (Ψ + B⊤MB)−1B⊤MA

where M is the fixed point to the Discrete Algebraic Riccati Equation

M = Φ + A⊤MA − (A⊤MB)(Ψ + B⊤MB)−1(B⊤MA)

When all of the eigenvalues of A− BK lie strictly inside the unit circle
of the complex plane, the M is the unique solution to the Riccati
Equation.

3 Policy and Value Iteration

In this section, we describe two celebrated methods for solving dis-
counted infinite time horizon SDM.

reinforcement learning i 6

Value Iteration considers the following updating scheme, for
k = 1, 2, . . .

Qk+1(x, u) = E
W

[
R(x, u, W) + γ max

u′
Qk

(
f (x, u, W), u′)] ∀x, u (3.1)

In words, this simply solves the Bellman equation by running a fixed
point iteration. The method works if the iteration is indeed a contrac-
tive mapping, namely ∥Qk+1 − Q′

k+1∥∞ < ∥Qk − Q′
k∥∞ TL: Insert a proof for the MDP case.

Policy Iteration is a two-step procedure: policy evaluation followed
by policy improvement. For k = 1, 2, . . ., and for the current policy πk

policy evaluation Qeval
k+1(x, u) = E

W

[
R(x, u, W) + γQeval

k
(
x′ = f (x, u, W), πk(x′)

)]
(3.2)

policy improvement πk+1(x) = arg max
u

Qeval
k+1(x, u) (3.3)

Oftentimes, several steps of policy evaluation are performed (to reach
a fixed point) before optimizing the policy.

For tabular MDPs, LQR, the above iterations can be carried out
exactly in an efficient way.

4 Unknown Dynamics and/or Rewards: A Brief Overview

So far, we know the underlying dynamical system which models how
the state evolves after taking actions. What if the dynamics model or
even the reward function is unknown?

There are three mainstream approaches (1) Principle of Certainty
Equivalence, namely one fits a model from some collected data and
then uses this model as if it were true in the SDM problem. (2) Ap- TL: Explore then Commit

proximate Dynamic Programming, which uses Bellman’s principle of
optimality and stochastic approximation to learn Q-functions from
data. (3) Direct Policy Search, where one directly searches for poli- TL: Q-Learning

cies by using data from previous episodes in order to improve the
reward. Each of these has its advantages and disadvantages, as we
now explore. TL: Policy Gradient

4.1 Principle of Certainty Equivalence

The principle of certainty equivalence 4 refers to a simple yet effective 4 Herbert A Simon. Dynamic pro-
gramming under uncertainty with a
quadratic criterion function. Economet-
rica, Journal of the Econometric Society,
pages 74–81, 1956; and Henri Theil. A
note on certainty equivalence in dy-
namic planning. Econometrica: Journal of
the Econometric Society, pages 346–349,
1957

strategy for reinforcement learning, that is to estimate a predictive
model for the dynamical system, and then use the fit model as if it
were the true model in the subsequent optimal control problem.

Estimating the model from data is also referred to as system iden-
tification in the dynamical system and control literature. System
identification differs from conventional estimation because one needs

reinforcement learning i 7

to choose the right inputs u to stimulate the system, and the outputs
are correlated over time.

Suppose we want to build a predictor of the state evolution from
a trajectory history of the past observed states and actions. A simple,
classic strategy in system identification is to inject a random probing
sequence ut for control and then measure how the state responds,
conceptually

xt+1 ≈ ψ(xt, ut) (4.1)

One can fit the state transition function using supervised learning
techniques, for instance,

ψ̂ = arg min
ψ

1
T

T−1

∑
t=0

∥xt+1 − ψ(x, ut)∥2
norm (4.2)

After the exploration phase, with the estimated transition model
ψ̂ that approximates the dynamic system, one solves the optimal
control "conditioned on" the estimated ψ̂,

max
πt

E
Wt

[T

∑
t=0

R(Xt, Ut, Wt)
]

s.t. Xt+1 = ψ̂(Xt, Ut) + Wt

Ut = πt(Xt)

(X0 = x0 given)

Albeit naive in hindsight, we emphasize that this is standard engi-
neering practice.

4.2 Approximate Dynamic Programming

Approximate Dynamic Programming methods typically try to infer
Q-functions directly from data. The standard assumption in most
practical implementations of Q-learning is that the Q-functions are
time-invariant, as would be the case in the infinite horizon, dis-
counted optimal control problem.

One appealing thing for Q-learning is that one operates directly on
the Q-function using stochastic approximations, without requiring a
priori model for the underlying state evolution, the intuition is based
on the fact that based on a trajectory of data (xt, ut)t=1,2,... based on
the optimal policy that solves the Bellmann equation

Qγ(xt, ut) ≈ R(xt, ut) + γ max
u′

Qγ(xt+1, u′) . (4.3)

Taking to data, Q-learning simply attempts to solve value iteration
using stochastic approximation. Namely, draw a trajectory based on

reinforcement learning i 8

policy Qold
γ , then update

Qnew
γ (xt, ut) = (1 − η)Qold

γ + η

(
R(xt, ut) + γ max

u′
Qold

γ (xt+1, u′)

)
(4.4)

Another way is to use function approximation techniques: sup-
pose the Q function can be approximated by a parametric family
Q := {Q(x, u; θ), θ ∈ Θ}, then one can solve gradient descent based
on the following criteria

ft(θ) :=
(label︷ ︸︸ ︷

R(xt, ut) + γQ(xt+1, ut+1; θ)−Q(xt, ut; θ)
)2 (4.5)

a stochastic gradient update to solve minθ
1
T ∑T−1

t=0 ft(θ) is to update

θt+1 = θt − ηt · ∇ ft(θt)

where ∇ ft(θ) := −
(

R(xt, ut) + γ · Q(xt+1, ut+1; θ)− Q(xt, ut; θ)
)
· ∇Q(xt, ut; θ)

Other acceleration techniques with momentum (Nesterov) can also
be incorporated: with λ ≥ 0,

mt = λmt−1 − ηt · ∇ ft(θt + λmt−1)

θt+1 = θt + mt .

4.3 Policy Gradient
TL: https://spinningup.openai.com/
en/latest/spinningup/rl_intro3.html

leave as HW
The most ambitious form of control without models attempts to di-
rectly learn a policy function from episodic experiences without ever
building a model or appealing to the Bellman equation. From the
oracle perspective, these policy-driven methods turn the problem of
RL into a pure optimization problem: either a derivative-free method,
or a gradient based method using the "log density trick".

Let us setup the generic problem: consider a finite horizen SDM
with trajectory τ := (x0, u0, . . . , xT , uT), and a parametric family of
distributions that generate τ, denoted as πθ . How a certain policy πθ

performs can be written as

J(πθ) := E
τ∼πθ

[R(τ)] . (4.6)

Ideally, one wishes to search over the space of policies and do opti-
mzation in that realm, namely, either calculating or approximating

θk+1 = θk + α · ∇θ J(πθ)|θk (4.7)

The cucial quantity is on how to get the policy gradient ∇θ J(πθ).

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html

reinforcement learning i 9

The first method is based on log density trick: define pθ(τ) as the
density of trajectory induced by πθ . Note that

∇θ J(πθ) = ∇θ

∫
pθ(τ)R(τ)dτ

=
∫

pθ(τ)R(τ)∇θ pθ(τ)
pθ(τ)

dτ

=
∫

pθ(τ)R(τ)∇θ log pθ(τ)dτ

= E
τ∼πθ

[R(τ)∇θ log pθ(τ)]

The above expression makes it ammendable to optimize with-
out the numeric differentiation, as long as we know analytically the
expression of log pθ(τ): note pθ(τ) = ∏T−1

t=0 p(xt+1|xt, ut)πθ(ut|xt)

∇θ log pθ(τ) =
T−1

∑
t=0

∇θ log πθ(ut|xt)

Put things together, we know

∇θ J(πθ) = E
τ∼πθ

[
R(τ)

T−1

∑
t=0

∇θ log πθ(ut|xt)
]

(4.8)

and the optimization is now amendable to stochastic approximation:
sample m trajectories τ(j) with policy πθk , and then update the policy

θk+1 = θk + α · 1
m

m

∑
j=1

R(τ(j))
T−1

∑
t=0

∇θ log πθ(u
(j)
t |x(j)

t) (4.9)

The second method is based on zeroth order approximation to
gradients, namely

lim
ϵ→0

E
g∼N (0,I)

[
g · f (θ + ϵ · g)− f (θ)

ϵ

]
= ∇θ f (θ) (4.10)

Implementing such stochasic zeroth order search is similar: sample m
trajectories τ(j) with policy πθk+ϵgj (let τ(0) denote the trajectory with
policy πθk), and then update the policy

θk+1 = θk + α · 1
m

m

∑
j=1

gj ·
R(τ(j))− R(τ(0))

ϵ
. (4.11)

References

Moritz Hardt and Benjamin Recht. Patterns, Predictions, and Actions: A
Story about Machine Learning. Princeton University Press, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge
University Press, 2020.

reinforcement learning i 10

Herbert A Simon. Dynamic programming under uncertainty with a
quadratic criterion function. Econometrica, Journal of the Econometric
Society, pages 74–81, 1956.

Henri Theil. A note on certainty equivalence in dynamic planning.
Econometrica: Journal of the Econometric Society, pages 346–349, 1957.

	Sequential Decision Making Framework
	Dynamic Programming
	Policy and Value Iteration
	Unknown Dynamics and/or Rewards: A Brief Overview

