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Summary. Modern statistical inference tasks often require iterative optimization methods to
compute the solution. Convergence analysis from an optimization viewpoint informs us only
how well the solution is approximated numerically but overlooks the sampling nature of the
data. In contrast, recognizing the randomness in the data, statisticians are keen to provide
uncertainty quantification, or confidence, for the solution obtained by using iterative optimiza-
tion methods. The paper makes progress along this direction by introducing moment-adjusted
stochastic gradient descent: a new stochastic optimization method for statistical inference. We
establish non-asymptotic theory that characterizes the statistical distribution for certain iterative
methods with optimization guarantees. On the statistical front, the theory allows for model mis-
specification, with very mild conditions on the data.For optimization, the theory is flexible for both
convex and non-convex cases. Remarkably, the moment adjusting idea motivated from ‘error
standardization’ in statistics achieves a similar effect to acceleration in first-order optimization
methods that are used to fit generalized linear models. We also demonstrate this acceleration
effect in the non-convex setting through numerical experiments.

Keywords: Acceleration; Diffusion process; Discretized Langevin algorithm; Model
misspecification; Non-asymptotic inference; Population landscape; Stochastic gradient
methods

1. Introduction

Statisticians are interested in inferring properties about a population based on independently
sampled data. In the parametric regime, the inference problem boils down to constructing
point estimates and confidence intervals for a finite number of unknown parameters. When
the data generation process is well specified by the parametric family, an elegant asymptotic
theory—credited to Ronald Fisher in the 1920s—has been established for maximum likelihood
estimation. This asymptotic theory is readily generalizable to the model misspecification setting,
for a properly chosen risk function l.θ, z/ and the corresponding empirical risk minimizer

θ̂ERM �arg min
θ

1
N

N∑
i=1

l.θ, zi/

(empirical risk minimizer) and
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θÅ �arg min
θ

Ez∼P [l.θ, z/]

(population minimizer), with
√

N.θ̂ERM −θÅ/
L→N{0, H.θÅ/−1Σ.θÅ/H.θÅ/−1}:

Here θ is the parameter of the model, zis are independent and identically distributed (IID)
draws from an unknown distribution P , Hessian H.θ/=� E[∇2

θ l.θ, z/] and Σ.θ/=� E[∇θl.θ, z/⊗
∇θl.θ, z/]. Define the population landscape L.θ/ as

L.θ/�Ez∼P [l.θ, z/]: .1/

(It is also called a loss function in the statistical learning literature. In generalized methods
of moments, Ez∼P [∇θl.θ, z/] = 0 is also called a moment condition. The maximum likelihood
estimator can be also viewed as a special case with l.θ, z/=− log{pθ.z/} and the data genera-
tion process being P =PθÆ

.). Note that the elegant statistical theory for inference holds under
rather mild regularity conditions, without requiring a convex L.θ/. However, it overlooks one
important aspect: the optimization difficulty of the landscape on θ.

Optimization techniques are required to solve for the above estimator θ̂, as they rarely take a
closed form. Global convergence and computational complexity are only well understood when
the sample analogue .1=N/ΣN

i=1l.θ, zi/ is convex. The optimization is done iteratively:

θt+1 =θt −η h.θt/, .2/

where the vector field h is based on the first- and/or second-order information and η is the step
size. For the non-convex case, the convergence becomes less clear, but in practice people still
employ these iterative methods. Nevertheless, in either case, the available convergence results
fall short of the statistical goal: after a certain number of iterations, we are interested in knowing
the sampling distribution of θt , for uncertainty quantification of the optimization algorithm.

The goal of the present work is to combine the strength of the two worlds in inference and
optimization: to characterize the statistical distribution of the iterative methods, with good
optimization guarantee. Specifically, we study particular stochastic optimization methods for the
(possibly non-convex) population landscape L.θ/ in the fixed dimension regime, and at the same
time characterize the sampling distribution at each step, through establishing a non-asymptotic
theory. We allow for model misspecification and require only mild moment conditions on the
data-generating process.

1.1. Motivation
Observe the simple fact that what we actually wish to optimize is the population objective
L.θ/=Ez∼P [l.θ, z/], not the sample version. Therefore, stochastic approximation pioneered by
Robbins and Monro (1951) and Kiefer and Wolfowitz (1952) stands out as a natural optimization
approach for the statistical inference problem. In modern practice, stochastic gradient descent
(SGD) with small batches of size n is widely used:

θt+1 =θt −ηÊn[∇θl.θt , z/], .3/

where Ên is the empirical expectation over n independently sampled minibatch data.
Our first observation follows from the intuition that a Gaussian approximation holds for each

step when n is not too small, which we shall make rigorous in a moment. Define

b.θ/=Ez∼P [∇θl.θ, z/], .4/
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V.θ/= cov{∇θl.θ, z/}1=2, .5/

then observe the following approximation (6) via the central limit theorem (CLT)

θt+1 =θt −ηÊn[∇θl.θt , z/]

=θt −ηE[∇θl.θt , z/]+η.E[∇θl.θt , z/]− Ên[∇θl.θt , z/]/

≈θt −ηb.θt/+√
.2β−1η/V.θt/gt , β �2n=η, .6/

where gt , t �0, are independent isotropic Gaussian vectors. (The CLT states that for Xi, i∈ [n]
IID sampled, asymptotically the following convergence in distribution holds:√

n

{
.1=n/

n∑
i=1

Xi −E[X]
}

L→N{0, cov.X/}:

If we substitute Xi = V.θt/
−1∇θl.θt , Zi/, conditional on θt , one can see where the isotropic

Gaussian distribution emerges.) The combination of n and η provides a stronger approximation
guarantee at each iteration for large n, in contrast with the asymptotic normal approximation
for the average trajectory in Polyak and Juditsky (1992) as t →∞. β−1 quantifies the ‘variance’
that is injected in each step (due to sampled minibatches), or the ‘temperature’ parameter: the
larger the β is, the closer the distribution is concentrated near the deterministic steepest gradient
descent updates. The scaling of the step size η relates to Cauchy discretization of the Itô diffusion
process (as η →0)

dθt =−b.θt/dt +√
.2β−1/V.θt/dBt:

Our second observation comes from a classic ‘standardization’ idea in statistics—we want to
adjust the stochastic gradient vector at step t by V.θt/ so that the conditional noise (conditioned
on θt) for each co-ordinate is independent and homogeneous:

θt+1 =θt −ηV.θt/
−1Ên[∇θl.θt , z/]

≈θt −ηV.θt/
−1b.θt/+√

.2β−1/ηgt : .7/

Namely, noisier gradient information is weighted less. This standardization trick in statistics
is similar to the Newton or quasi-Newton method in second-order optimization, though with
notable difference. The similarity lies in the fact that the noisy gradient information is weighted
according to some local version of ‘curvature’. However, the former uses the root of the second-
moment matrix, whereas the latter uses Hessians (second-order derivatives).

To answer the inference question about L.θ/ by using the ‘moment-adjusted’ iterative method
proposed in approximation (7), we need to know the sampling distribution of θt for a fixed t. One
hopes to describe the distribution directly in a non-asymptotic fashion, instead of characterizing
this distribution either through the asymptotic normal limit (Polyak and Juditsky, 1992) (passing
over data one at a time) in the convex scenario, or through the invariant distribution which
could in theory take exponential time to converge for general non-convex L.θ/ (Bovier et al.,
2004; Raginsky et al., 2017). One thing to note is that, at a fixed time t, the distribution is
distinct from Gaussian, for general b and V. From an optimization angle, we would like the
iterative algorithm to converge (to a local optimum) quickly. This is also important for inference:
given the distribution can be approximately characterized at each step, one hopes that the
distribution will concentrate near a local minimum of the population landscape L.θ/ within a
reasonable time budget, before the error accumulates in the stochastic process and invalidates
the approximation.
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1.1.1. Notation
For a vector v, ‖v‖=√

.vTv/ denotes the l2-norm, and v⊗ v= vvT denotes the outer product.
We use ‖M‖ to denote the operator norm for a matrix M. For a positive semidefinite matrix M,
〈v, w〉M =vTMw. We use t ∈ [T ] to denote indices 0� t �T , and ‘→L’ for convergence in distribu-
tion. For two matrices A and B, we use A⊗K B to represent the Kronecker product. Moreover,
O and o are Bachmann–Landau notation and Op denotes stochastic boundedness. In the dis-
cussion, we use Oε,δ.·/ to denote the order of magnitude for parameters ε and δ only, treating
others as constants. For two probability measures μ and ν, we use DKL.μ, ν/ and DTV.μ, ν/

to denote the Kullback–Leibler and total variation distance respectively. Throughout, we de-
note the population gradient b ∈Rp and moment matrix V,Σ∈Rp×p, using the bold typeface
notation, with the hope of emphasizing their role in the paper.

1.2. Contributions and organization
We propose the moment-adjusted SGD method called ‘MasGrad’, which is an iterative opti-
mization method that infers the stationary points of the population landscape L.θ/, namely
{θ∈Rp :‖∇L.θ/‖=0}. MasGrad is a simple variant of SGD that adjusts the descent direction
by using V.θt/

−1 (defined in equation (5), the square root of the inverse covariance matrix) at
the current location:

θt+1 =θt −ηV.θt/
−1Ên[∇θl.θt , z/]:

We summarize our main contributions in two perspectives. Extensions including estimation
and computation of the moment-adjusted gradients will be discussed later in Section 6.

1.2.1. Inference
The distribution of MasGrad updates θt ∈Rp, with n independently sampled minibatch data at
each step, can be characterized in a non-asymptotic fashion. Informally, for any data-generating
distribution z ∼P under mild conditions, the distribution of θt—denoted as μ.θt/—satisfies

DTV{μ.θt/, νt,η}�Ot,n

{√(
t

n

)}
⇒μ.θt/

L→νt,η,

converging in distribution as n→∞. Here νt,η is the distribution of ξt that follows the update
initialized with ξ0 =θ0:

ξt+1 = ξt −ηV.ξt/
−1b.ξt/+√

.2β−1/ηgt , gt ∼N .0, Ip/, β =2n=η: .8/

We remark that νt,η depends only on t and η, and the first and second moments b and V of
∇l.θ, z/, regardless of the specific data-generating distribution z ∼P . The rigorous statement is
deferred to theorem 1 in Section 3, and further extensions to the continuous time analogue are
discussed in Appendix A.

1.2.2. Optimization
Interestingly, in the strongly convex case such as in generalized linear models (GLMs), the
‘standardization’ idea achieves Nesterov acceleration (Nesterov, 1983, 2013). Informally, the
number of iterations for an ε-minimizer for gradient descent requires

TGD =Oε,κ

{
κ log

(
1
ε

)}
, for some κ> 1:
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We show that, for GLMs under mild conditions, MasGrad reduces the number of iterations to

TMasGrad =Oε,κ

{√
κ log

(
1
ε

)}
,

which matches Nesterov’s acceleration in the strongly convex case. The formal statement is
deferred to Section 4, where extensions including proximal updates are discussed.

Combining the inference and optimization theory, we present informally the results for both
the convex and the non-convex cases. Recall that θ ∈Rp.

1.2.3. Convex
In the strongly convex case, MasGrad with a properly chosen step size and the following choice
of parameters

T =Oε

{
log

(
1
ε

)}
,

n=Oε,p

(
p

ε

)

satisfies

DTV{μ.θT /, μ.ξT /}�Oε[
√{ε log.1=ε/}]

(inference) and

E[L.θT /]−min
θ

L.θ/� ε,

E[L.ξT /]−min
θ

L.θ/� ε, ξT ∼νT ,η,

(optimization) where the evolution of ξt is defined in expression (8). Here the total number of
samples needed is nT =Oε{ε−1 log.1=ε/}. The formal result is stated in theorem 2 in Section 4.

1.2.4. Non-convex
Under mild smoothness conditions, MasGrad with a proper step size and the following choice
of parameters

T =Oε,δ,p

(
1∨pδ2

ε2

)
,

n=Oε,δ,p

(
δ−2 ∨p

ε2

)

satisfies

DTV{μ.θt , t ∈ [T ]/},

μ{ξt , t ∈ [T ]}�Oδ.δ/

(inference) and

E[min
t�T

‖∇L.θt/‖]� ε,

E[min
t�T

‖∇L.ξt/‖]� ε, ξt ∼νt,η, for t ∈ [T ]
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(optimization). Here the total number of samples needed is nT =Oε,δ.ε−4δ−2/. The formal result
is deferred to theorem 4 in Section 5.

2. Relationships to the literature

In the case of a differentiable convex L.θ/, finding a minimum is equivalent to solving ∇L.θ/=0.
This simple equivalence reveals that the vanilla SGD, which takes the form

θt+1 =θt −ηt∇θl.θt , zt/, .9/

is an instance of stochastic first-order approximation methods. (Realize that ∇θl.θt , zt/ is an
unbiased estimate of the population gradient as ∇θL.θt/=Ez∼P [∇θl.θt , z/].) This class of meth-
ods is iterative algorithms that attempt to solve fixed point equations (e.g. ∇L.θ/=0) provided
noisy observations (e.g. ∇θl.θt , zt/) (Robbins and Monro, 1951; Kiefer and Wolfowitz, 1952;
Toulis and Airoldi, 2017; Chen et al., 2016; Li et al., 2017). Using slowly diminishing step sizes
ηt =O.1=tα/ (α< 1), Ruppert (1988) and Polyak (1990) showed that acceleration using the av-
erage over trajectories of this recursive stochastic approximation algorithm attains the optimal
convergence rate for a strongly convex L (see Polyak and Juditsky (1992) for more details). Re-
cently, the running times of stochastic first-order methods have been considerably improved by
using combinations of variance reduction techniques (Roux et al., 2012; Johnson and Zhang,
2013) and Nesterov’s acceleration (Ghadimi and Lan, 2012, 2016; Cotter et al., 2011; Jofré and
Thompson, 2017; Arjevani and Shamir, 2016).

Despite the celebrated success of stochastic first-order methods in modern machine learning
tasks, researchers have kept improving the per-iteration complexity of second-order methods
such as Newton or quasi-Newton methods, because of their faster convergence. A fruitful line
of research has focused on how to improve the asymptotic convergence rate as t →∞ through
preconditioning: a technique that involves approximating the unknown Hessian H.θ/=∇2

θ L.θ/

(see, for instance, Bordes et al. (2009) and references therein). Utilizing the curvature infor-
mation that is reflected by various efficient approximations of the Hessian matrix, stochastic
quasi-Newton methods (Moritz et al., 2016; Byrd et al., 2016; Wang et al., 2017; Schraudolph
et al., 2007; Mokhtari and Ribeiro, 2015; Becker and Fadili, 2012), Newton sketching or sub-
sampled Newton methods (Pilanci and Wainwright, 2015; Xu et al., 2016; Berahas et al., 2017;
Bollapragada et al., 2016) and stochastic approximation of the inverse Hessian via Taylor series
expansion (Agarwal et al., 2017) have been proposed to strike a balance between convergence
rate and per-iteration complexity.

In the information geometry literature, one closely related method is the natural gradient
(Amari, 1998, 2012). When the parameter space enjoys a certain structure, it has been shown that
the natural gradient method outperforms the classic gradient descent method both theoretically
and empirically. To adapt the natural gradient to our setting, we relate the loss function to
a generative model l.θ, z/ = − log{pθ.z/}. The Riemannian structure of the parameter space
(manifold) of the statistical model is defined by the Fisher information

I.θ/=Ez∼P [∇θl.θ, z/⊗∇θl.θ, z/]:

The natural gradient can be viewed as the steepest descent induced by the Riemannian metric

θt+1 =arg min
θ

{
L.θt/+〈∇θL.θt/, θ −θt〉+ 1

2ηt
‖θ −θt‖2

I.θt /

}

=θt −ηtI.θt/
−1∇θL.θt/:
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Note the intimate connection between natural gradient descent and the approximate second-
order optimization method, as the Fisher information can be heuristically viewed as an approx-
imation of the Hessian (Schraudolph, 2002; Martens, 2014).

Another popular and closely related example as such is ‘AdaGrad’ (Duchi et al., 2011), which
is a variant of SGD that adaptively determines learning rates for different co-ordinates by
incorporating the geometric information of past iterates. In its simplest form, AdaGrad records
previous gradient information through

Gt =
t∑

i=1
∇l.θi, zi/⊗∇l.θi, zi/,

and this procedure then updates iterates according to

θt+1 =θt −γG
−1=2
t ∇l.θt , zt/,

where γ > 0 is fixed. In large-scale learning tasks, evaluating G
−1=2
t is computationally pro-

hibitive and thus it is often suggested to use diag.Gt/
−1=2 instead. It should be noted, however,

that the theoretical derivation of the regret bound for AdaGrad considers G
−1=2
t . AdaGrad is

a flexible improvement on SGD and can easily extend to non-smooth optimization and non-
Euclidean optimization such as mirror descent. With the geometric structure Gt learned from
past gradients, AdaGrad assigns different learning rates to different components of the parame-
ter, allowing infrequent features to take relatively larger learning rates. This adjustment is shown
to speed up convergence dramatically in a wide range of empirical problems (Pennington et al.,
2014).

Stochastic gradient Langevin dynamics have been an active research field in sampling
and optimization in recent years (Welling and Teh, 2011; Dalalyan, 2017; Bubeck et al., 2015;
Raginsky et al., 2017; Mandt et al., 2017; Brosse et al., 2017; Tzen et al., 2018; Durmus et al.,
2018). Stochastic gradient Langevin dynamics inject additional

√
.2β−1η/-level isotropic Gaus-

sian noise to each step of SGD with step size η, where β is the inverse temperature parameter.
Besides similar optimization benefits to those of SGD such as convergence and chances of es-
caping stationary points, the injected randomness of stochastic gradient Langevin dynamics
provides an efficient way of sampling from the targeted invariant distribution of the continuous
time diffusion process, which has been shown to be useful statistically in Bayesian sampling
(Welling and Teh, 2011; Mandt et al., 2017; Durmus et al., 2018).

In the current paper, we take a distinct approach: we motivate and analyse a variant of SGD
through the lens of Langevin dynamics, from a frequentist point of view, and then present
the optimization benefits as a by-product of the statistical motivation. The approximation in
equation (6) relates the density evolution of θs to a discretized version of an Itô diffusion process
(as η →0)

dθs =−b.θs/ds+√
.2β−1/V.θs/dBs:

The invariant distribution π.θ/ satisfies the Fokker–Planck equation

β−1 ∑
i,j

@2

@xi@xj
.πaij/+∑

i

@

@xi
.πbi/=0

where aij.x/ = .V.x/V.x/′/ij. In general, the stationary distribution is difficult to characterize
unless both V and b take special simple forms. For example, when b.x/ is linear and V.x/ is inde-
pendent of x as in Mandt et al. (2017), the diffusion process reduces to an Ornstein–Uhlenbeck
process with a multivariate Gaussian distribution as the invariant distribution. Another simple
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case is, when V.x/= I, the diffusion process is also referred to as Langevin dynamics, with the
Gibbs measure π.θ/∝exp{−βL.θ/} as the unique invariant distribution (Welling and Teh, 2011;
Dalalyan, 2017; Raginsky et al., 2017).

3. Statistical inference via Langevin diffusion

In this section we shall explain why MasGrad produces recursive updates whose statistical dis-
tribution can be characterized. We mention that MasGrad at the same time achieves significant
acceleration in optimization in the strongly convex case (detailed in Section 4). For the general
non-convex case, we provide non-asymptotic theory for inference and optimization in Section 5.
We first present the simplest version of the algorithm, assuming that V.θ/−1 can be evaluated at
any given θ. Statistical estimation and efficient direct computation of V.θ/−1 will be discussed
in Section 6.

Recall the moment-adjusted SGD that we introduced, which adjusts the gradient direction
by using the root of the inverse covariance matrix at the current location:

θt+1 =θt −ηV.θt/
−1Ên[∇θl.θt , z/]: .10/

As we have heuristically outlined in equation (6), MasGrad can be approximated by the following
discretized Langevin diffusion:

ξt+1 = ξt −ηV.ξt/
−1b.ξt/+√

.2β−1η/gt : .11/

In this section, we establish non-asymptotic bounds on the distance between the distribution of
the MasGrad process L.θt , t ∈ [T ]/ and discretized diffusion process L.ξt , t ∈ [T ]/.

The proof is based on the entropic CLT (Barron, 1986; Bobkov et al., 2013, 2014). The classic
CLT based on convergence in distribution is too weak for our purpose: we need to translate
the non-asymptotic bounds at each step to the whole stochastic process. It turns out that the
entropic CLT couples naturally with the chain rule property of relative entropy, which together
provide non-asymptotic characterization on closeness of the distributions for the stochastic
processes.

We first state the standard assumptions for entropic CLT. These assumptions can be found
in Bobkov et al. (2013). We remark that we are focusing on the fixed dimension setting.

Assumption 1 (absolute continuity to Gaussian). Assume that random vector X ∈ Rp has
bounded entropic distance to the Gaussian distribution, for some constant D1:

DKL{μ.X/||μ.g/}<D1, g ∼N .0, Ip/:

Assumption 2 (finite .4+ δ/th moments). Assume that there is a constant D2,

E‖X‖4+δ <D2, for some small δ > 0:

Define, ∀ i, the stochastic component of the adjusted gradient direction:

Xi.θ/=V.θ/−1 .∇θl.θ, zi/−Ez∼P [∇θl.θ, z/]/: .12/

It is clear that Xis are IID with E[Xi.θ/]=0 and cov{Xi.θ/}= Ip. Here Xi.θ/ is defined on the
same σ-field as zi drawn from P .

Theorem 1 (non-asymptotic bound for inference). Let μ.θt , t ∈ [T ]/ denote L.θt , t ∈ [T ]/, the
joint distribution of the MasGrad process, and μ.ξt , t ∈ [T ]/ be the joint distribution of the
discretized diffusion process (11). Consider the same initialization θ0 = ξ0.
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Assume that, uniformly for any θ, X.θ/ defined in equation (12) satisfies assumptions 1
and 2 with constants D1 and D2 that depend only on p. Then the following bound holds:

DTV{μ.θt , t ∈ [T ]/, μ.ξt , t ∈ [T ]/}�C

√[
T

n
+o

{
T log.n/{p−.4+δ/}=2

n1+δ=2

}]
, .13/

where C is some constant that depends on D1 and D2 only.

Remark 1. Theorem 1 characterizes the sampling distribution of MasGrad—θt , using a
measure that depends only on the first and second moments of ∇l.θ, z/, namely V.θ/−1b.θ/,
regardless of the specific data-generating distribution z∼P . Observe that the distribution close-
ness is established in a strong total variation distance sense, for the two stochastic processes
{θt , t ∈ [T ]} and {ξt , t ∈ [T ]}. If we dig into the proof, we can easily obtain the following marginal
result:

DTV{μ.θT /, μ.ξT /}�√
[2DKL{μ.θT /||μ.ξT /}]�√

[2DKL{μ.θt , t ∈ [T ]/||μ.ξt , t ∈ [T ]/}],

where the last inequality follows from the chain rule of relative entropy. Therefore, we can as
well prove for the last step distribution

DTV{μ.θT /, μ.ξT /}�C

√(
T

n

)
:

Remark 2. One important fact about theorem 1 is that it holds for any step size η, which
provides us with the additional freedom of choosing the optimal step size for the optimization
purpose. Theorem 1 is stated in the fixed dimensional setting when p does not change with
n. We remark in addition that the Gaussian approximation at each step still holds with high
probability, in the moderate dimensional setting when

p=o

[
log.n/

log{log.n/}
]
,

as shown in the non-asymptotic bound in theorem 1. We emphasize that the current paper
considers only the fixed dimension setting, while considering the minibatch sample size n and
running time T varying. Assumptions 1 and 2 are standard assumptions in the entropic CLT:
assumption 1 states that the distribution for each stochastic gradient is non-lattice with bounded
relative entropy to Gaussian; assumption 2 is the standard weak moment condition. Note here
that the constants D1 and D2 depend on the dimension implicitly.

For statistical inference, we can always approximately characterize the distribution of Mas-
Grad by using theorem 1. As an additional benefit, the result naturally provides us with an
algorithmic way of sampling this target universal distribution μ.ξt/. For some particular tasks,
it remains of theoretical interest to characterize the distribution of MasGrad analytically by
using the continuous time Langevin diffusion and its invariant distribution. We defer the anal-
ysis of the discrepancy between the discretized diffusion to the continuous time analogue to the
on-line appendix A.

4. Convexity and acceleration

In this section, we shall demonstrate that the ‘moment adjusting’ idea motivated from standard-
izing the error from an inference perspective achieves a similar effect to those of acceleration
in convex optimization. We shall investigate GLMs as the main example. Later, we shall also
discuss the case with non-smooth regularization. Using first-order information to achieve accel-
eration was first established in the seminal work by Nesterov (1983, 2013) based on the ingenious
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notion of an estimating sequence. Before diving into the technical analysis, we point out that
in MasGrad the moment adjusting matrix V.θ/ can be estimated by using only first-order in-
formation; however, as we shall see, MasGrad achieves acceleration for GLMs in a way that
resembles the approximate second-order method such as the quasi-Newton method.

4.1. Inference and optimization for optima
Now we are ready to state the theory for inference and optimization using MasGrad in the
strongly convex case. Let L.w/ :Rp →R be a smooth convex function. Recall that b.w/=∇L.w/,
H.w/=∇2L.w/ and V.w/∈Rp×p are positive definite matrices. Define

α�min
v,w

λmin{V.w/−1=2H.v/V.w/−1=2}> 0,

γ �max
v,w

λmax{V.w/−1=2H.v/V.w/−1=2}> 0:
.14/

Theorem 2 (MasGrad: strongly convex). Let α and γ be defined as in expression (14). Con-
sider the MasGrad updates θt in equation (10) with step size η =1=γ, and the corresponding
discretized diffusion ξt ,

ξt+1 = ξt −ηV.ξt/
−1b.ξt/+√

.2β−1η/gt , β =2n=η:

Then, for any precision ε> 0, we can choose

T = γ

α
log

[
2{L.θ0/−minθ L.θ/}

ε

]
,

n= 4p maxθ ‖V.θ/‖
αε

,

.15/

such that

(a) DTV {μ.θt , t ∈ [T ]/, μ.ξt , t ∈ [T ]/}�Oε[
√{ε log.1=ε/}] and

(b) E[L.θt/]−minθ L.θ/� ε and E[L.ξt/]−minθ L.θ/� ε,

with in total Oε{ε−1 log.1=ε/} independent data samples.

Remark 3. In plain language, the discretized diffusion process ξt , t ∈ [T ], whose distribu-
tion depends on only the adjusted moments V−1b, approximates the sampling distribution of
MasGrad θt , t ∈ [T ], in a strong sense, i.e. the distributions of paths are close in total variation
distance. In addition, as a stochastic optimization method, MasGrad’s optimization guarantee
depends on the ‘modified’ condition number defined in expression (14). We sketch the proof.
Using lemma B.1 in the on-line appendix B, for all t> 0, one can prove that

E[L.ξt/]−min
θ

L.θ/�
(

1− α

γ

)t

{L.θ0/−min
θ

L.θ/}+max
θ

‖V.θ/‖γ

α
β−1p:

Therefore we can define the condition number of MasGrad as

κMasGrad = maxw,v λmax{V.w/−1=2H.v/V.w/−1=2}
minw,v λmin

{
V.w/−1=2H.v/V.w/−1=2

} ,

κGD = maxv λmax{H.v/}
minv λmin{H.v/} ,

.16/

in contrast with the condition number in gradient descent.
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If β =2n=η and T and n are chosen as in expression (15), we know that E[L.ξT /]−L.θÅ/� ε.
Recall the result that we established in theorem 1; the total variation distance between MasGrad
and the discretized diffusion in this case is bounded by

√
.T=n/=Oε[

√{ε log.1=ε/}], and the total
number of samples used is of the order nT =Oε,p{p=ε log.1=ε/}. This result can be contrasted
with the classical asymptotic normality for maximum likelihood estimation or the empirical
risk minimizer to achieve an ε-minimizer,

ε�L.θ̂N/−L.θÅ/�‖θ̂N −θÅ‖2 � p

N
⇔N =Oε,p.p=ε/,

the asymptotic sample complexity scales Oε,p.p=ε/. Similar calculations also hold with the
Ruppert–Polyak average on stochastic approximation with a carefully chosen decreasing step
size. As we can see, our result holds non-asymptotically, and it achieves both the optimization
and the inference goal, with an additional logarithmic factor.

4.2. Acceleration for generalized linear models
Now we take GLMs as an example to articulate the effect of acceleration. We shall first use
an illustrating toy example to show the intuition in an informal way, and then we present the
rigorous acceleration result for GLMs.

4.2.1. Toy example (informal)
Consider yi =〈xi, θÅ〉+ εi, εi ∼N .0, σ2/ IID for i∈ [N]. We focus on the fixed design case (where
the expectation is over y only); the loss l{θ, .x, y/}= 1

2 .〈x, θ〉−y/2. Denote X∈ RN×p; then we
have

b.θ/=E

[
1
N

N∑
i=1

.xT
i θ −yi/xi

]
= 1

N

N∑
i=1

xix
T
i .θ −θÅ/= 1

N
XTX.θ −θÅ/,

V.w/=
(

1
N

N∑
i=1

xix
T
i σ2

)1=2

=σ

(
1
N

XTX

)1=2

,

and the Hessian is H.w/=XTX=N: Therefore, in this case, we have

κMasGrad =√
κGD:

By applying lemma B.1 in the on-line appendix B, we achieve the same effect as Nesterov’s
acceleration in the strongly convex case (Nesterov, 2013). We remark that the above analysis
is to demonstrate the intuition and is not rigorous—as MasGrad is designed for the random
design.

4.2.2. Generalized linear models, random design and misspecified model
Now we provide a rigorous and unified treatment for GLMs. Consider the GLM (McCullagh,
1984) where the response random variable y follows from the exponential family parameterized
by .θ, φ/:

f.y; θ, φ/=b.y, φ/exp
{

yθ − c.θ/

d.φ/

}
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where μ=E[y|x=x]=c′.θ/, c′′.θ/> 0 and the natural parameter satisfies the linear relationship
θ=θ.μ/=xTw. In this case, we choose the loss function according to the negative log-likelihood:

l{w, .x, y/}=−yix
T
i w + c.xT

i w/:

Special cases include

(a) the Bernoulli model (logistic regression), c.θ/ = log{1 + exp.θ/}, where xT
i w = θ =

log{μ=.1−μ/},
(b) the Poisson model (Poisson regression), c.θ/= exp.θ/, where xT

i w =θ = log.μ/, and
(c) the Gaussian model (linear regression), c.θ/= 1

2θ2, where xT
i w =θ =μ.

We are interested in inference even when the model can be misspecified. Consider the statis-
tical learning setting where zi = .xi, yi/∼P =Px ×Py|x, i∈ [N] IID, from some unknown joint
distribution P . We are trying to infer the parameters w by fitting the data by using a paramet-
ric exponential family; however, we allow the flexibility that the exponential family model for
P.y|x=x/ can be misspecified. Specifically, the true regression function mÅ.x/=E[y|x=x] may
not be c′.xTw/ for all w, namely, it may not be realized by any model in the exponential family
model class. We have the population landscape

L.w/=E.x,y/∼P [−yxTw + c.xTw/]: .17/

Define the conditional variance ξ.x/=var.y|x =x/∈R and the bias

β.x, w/� c′.xTw/−mÅ.x/∈R;

we have the following acceleration result for GLMs.

Theorem 3 (acceleration). Consider the condition number defined in expression (16) for
MasGrad and gradient descent and assume that there is a constant C > 1 such that, for any
x, w and v,

0 < max
{

ξ.x/2 +β.x, w/2

c′′.xTv/
,
c′′.xTv/

ξ.x/2

}
<C1=3:

Then, for the optimization problem that is associated with GLMs defined in equation (17),
the following inequality holds:

κMasGrad <C
√

κGD:

Remark 4. Theorem 3 together with lemma B.1 in the on-line appendix B states that, in the
noiseless setting, the time complexity for MasGrad is O{√

κGD log.1=ε/} in contrast with the
complexity of gradient descent—O{κGD log.1=ε/}, which is crucial when the condition number
is large. The proof is based on matrix inequalities and the analytic expressions

b.w/=E[−yx + c′.xTw/x]=E[{c′.xTw/−mÅ.x/}x],

V.w/={E[ξ.x/2xxT]+ cov[β.x, w/x]}1=2,

H.w/=E[c′′.xTw/xxT]:

4.3. Non-smooth regularization
In this section, we extend the acceleration result to problems with non-smooth regularization.
The main results are based on a simple modification called moment-adjusted proximal gradient
descent, ‘MadProx’.
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Consider the population loss function that can be decomposed into

L.w/=g.w/+h.w/ .18/

where g.w/ is a smooth and convex function in w, and h.w/ is a non-smooth regularizer that is
convex. Special cases include

(a) sparse regression with l{w, .xi, yi/}= 1
2 .xT

i w −yi/
2 +λ‖w‖1 and

L.w/=E.x,y/∼P [ 1
2 .xTw −y/2]+λ‖w‖1 :=g.w/+h.w/

and
(b) low rank matrix trace regression with l{W , .Xi, yi/}= 1

2 .〈Xi, W〉−yi/
2 +λ‖W‖Å

L.W/=E.X,y/∼P [ 1
2 .〈X, W〉−y/2]+λ‖W‖Å :=g.W/+h.W/:

Now we shall show the role of moment matrix V in ‘speeding up’ the convergence of proximal
gradient descent in the following proposition. Here we focus on an easier case when V.w/ does
not depend on w (as in the linear regression fixed design case, where V.w/=E[ξ.x/2xxT]1=2 does
not depend on w).

Define the moment-adjusted proximal function and MadProx:

proxη,V.w/=arg min
u

{
1

2η
‖u−w‖2

V +h.u/

}
, .19/

wt+1 =proxη,V{wt −ηV−1∇g.wt/}: .20/

(MadProx).

Proposition 2 (moment-adjusted proximal). Consider L.w/=g.w/+h.w/ as in equation (18).
Denote H as the Hessian of g, and define

α�min
v

λmin{V−1=2H.v/V−1=2}> 0,

γ �max
v

λmax{V−1=2H.v/V−1=2}> 0:

Consider the MadProx updates that are defined in equation (20) with step size η = 1=γ and
adjusting matrix V. If

T � γ

α
log

(
α

2ε
‖w0 −wÅ‖2

V +1
)

,

we have L.wT /−minw L.w/� ε:

Remark 5. We can see that MadProx implements a moment-adjusted gradient (using implicit
updates) because wt+1 satisfies the implicit equation

wt+1 =wt −ηV−1{∇g.wt/+ @h.wt+1/},

in comparison with the subgradient step (explicit updates)

wt+1 =wt −ηV−1{∇g.wt/+ @h.wt/}:

We remark that, as in the GLMs case, the moment adjustment idea speeds up the computation
as the number of proximal steps scales with the adjusted condition number κMadProx ≈√

κGD.
However, to be fair, it can be computationally difficult to implement each proximal step for a
non-diagonal V. Motivated from the diagonalizing idea in AdaGrad (Duchi et al., 2011), we
can substitute V by diag.V/ to save the per-iteration computation.

mailto:g.wt/+@h.wt+1/
mailto:g.wt/+@h.wt+1/
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5. Non-convex inference

In this section, we study non-asymptotic inference and optimization for stationary points of a
smooth non-convex population landscape L.θ/, via our proposed MasGrad method.

5.1. Inference and optimization for stationary points
First we state a theorem that quantifies how well our proposed MasGrad method achieves both
the inference and the optimization goal.

Theorem 4 (MasGrad: non-convex). Let L.w/ : Rp → R be a smooth function. Recall that
b.w/=∇L.w/, and H.w/ is the Hessian matrix of L. V.w/∈Rp×p is a positive definite matrix.
Assume that

γ �max
v,w

λmax{V.w/−1=2H.v/V.w/−1=2}> 0:

Consider the MasGrad updates θt in equation (10) with step size η = 1=γ, and the corre-
sponding discretized diffusion ξt ,

ξt+1 = ξt −ηV.ξt/
−1b.ξt/+√

.2β−1η/gt , β =2n=η:

Then for any precision ε, δ > 0, we can choose

T = 2γ{L.θ0/−minθ L.θ/}+pδ2

ε2 .max
θ

‖V.θ/‖∨1/,

n= T

δ2 ,

.21/

such that

(a) DTV{μ.θt , t ∈ [T ]/, μ.ξt , t ∈ [T ]/}�Oδ.δ/ and
(b) E[mint�T ‖∇L.θt/‖]� ε and E[mint�T ‖∇L.ξt/‖]� ε,

with in total Oε,δ.ε−4δ−2/ independent data samples.

Remark 6. We would like to contrast the optimization part of theorem 4 with the sample
complexity result of classic SGD. To obtain an ε-stationary point w such that in expectation
‖∇L.w/‖� ε, SGD needs Oε.ε

−4/ iterations for non-convex smooth functions (with step size
ηt =min{1=γ, 1=

√
t}). Here we show that, we can achieve this accuracy with the same dependence

on ε with MasGrad, while being able to make statistical inference at the same time. And the
additional price that we pay for δ-closeness in distribution for statistical inference is a factor
of δ−2.

The result can also be compared with theorem 2 (the strongly convex case). In both cases, sta-
tistically, we have shown that the discretized diffusion ξt tracks the non-asymptotic distribution
of MasGrad θt , as long as the data-generating process satisfies conditions like weak moment
and bounded entropic distance to Gaussian. The distribution of ξt is universal regardless of the
specific data-generating distribution and depends only on the moments V.θ/−1b.θ/. In terms of
optimization, to obtain an ε-minimizer, the discretized diffusion approximation to MasGrad—
with the proper step size η, and inverse temperature β =2n=η—achieves the acceleration in the
strongly convex case and enjoys the same dependence on ε as SGD in the non-convex case in
terms of sample complexity.

5.2. Why local inference
For a general non-convex landscape, we shall discuss why we focus on inference about local
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optima, or more precisely stationary points. Our theorem 4 can be read as, within a reasonable
number of steps, MasGrad converges to a population stationary point, and the distribution is
well described by the discretized Langevin diffusion. One can argue that the random perturba-
tion that is introduced by the isotropic Gaussian noise in Langevin diffusion makes the process
difficult to converge to a typical saddle point. Therefore, intuitively, MasGrad will converge to
a distribution that is well concentrated near a certain local optimum (depending on the initial-
ization) as the temperature parameter β−1 =η=2n is small. In this asymptotic low temperature
regime, the Eyring–Kramer law states that the transition time from one local optimum to another
local optimum, or the exit time from a certain local optimum, is very long—roughly exp.βh/

where h is the depth of the basin of the local optimum (Bovier et al., 2004; Tzen et al., 2018).
Therefore, a reasonable and tangible goal is to establish statistical inference for population local
optima, for a particular initialization.

6. Estimation and computation of MasGrad direction

We address in this section how to estimate and approximate efficiently the MasGrad direction
V.θ/−1b.θ/ at a current parameter location θ. The estimation part involves a plug-in approach re-
lying on the theory of self-normalized processes (Peña et al., 2008). For efficient computation of
the preconditioning matrix, we devise a fast iterative algorithm to approximate directly the root
of the inverse covariance matrix, which in a way resembles the advantage of quasi-Newton meth-
ods (Wright and Nocedal, 1999), however, with noticeable differences. The quasi-Newton meth-
ods approximate a Hessian with first-order information, whereas MasGrad uses stochastic gra-
dient information to approximate the root of the inverse covariance matrix as preconditioning. In
this section we deliberately state all propositions working with general sample covariance matrix
Σ̂ with dimension d, to emphasize that the results extend beyond the discussions for MasGrad.

6.1. Statistical estimation and self-normalized processes
Recall that V.θ/ is the matrix root of the covariance. We estimate the moment-adjusted gradient
direction V.θ/−1b.θ/ at current location θ, based on a minibatch of size n. This section con-
cerns this estimation part, borrowing tools from self-normalized processes. Define the sample
estimates based on IID data zi as

b̂.θ/� 1
n

n∑
i=1

∇θl.θ, zi/,

Σ̂.θ/� 1
n−1

n∑
i=1

[{∇θl.θ, zi/− b̂.θ/}⊗{∇θl.θ, zi/− b̂.θ/}]

and V̂.θ/ satisfies V̂.θ/V̂.θ/T = Σ̂.θ/; we shall show that the plug-in approach V̂.θ/−1b̂.θ/ es-
timates the population moment-adjusted gradient direction V.θ/−1b.θ/ consistently at a para-
metric rate, in the fixed dimension setting.

Proposition 3 (connection to self-normalized processes). Consider {xi ∈ Rd , 1 � i � n} IID
with mean μ, x̄ and Σ̂ the sample mean vector and sample covariance. Consider d � n and Σ̂
invertible. Denote the centred moments

Sn �
n∑

i=1
.xi −μ/,

V 2
n �

n∑
i=1

{.xi −μ/⊗ .xi −μ/}
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and the multivariate self-normalized process

Mn �V −1
n Sn ∈Rd:

Then there exists V̂ , which satisfies V̂ V̂ T = Σ̂ such that

√
nV̂

−1
.x̄−μ/=Mn

√(
n−1

n−‖Mn‖2

)
:

Remark 7. In the case d =1, proposition 3 reduces to a standard result in Peña et al. (2008).
In our matrix version, the proof relies on the Sherman–Morrison–Woodbury matrix identity,
together with a rank 1 update formula for matrix roots that we derive in lemma B.4 in the on-line
appendix B. Recall the law of the iterated logarithm on the norm of a self-normalized process
‖Mn‖2 ∼ log{log.n/} (theorem 14.11 in Peña et al. (2008)), in the case when the dimension is
fixed; a direct application of the above formula implies that

V̂.θ/−1{b̂.θ/−b.θ/}= 1√
n

Mn

√(
n−1

n−‖Mn‖2

)
= 1+Op[log{log.n/}=n]√

n
Mn,

where Mn is a self-normalized process with asymptotic distribution N .0, Ip/. By lemma B.2 in
appendix B, when p�n, the following approximation holds

V̂.θ/−1b̂.θ/−V.θ/−1b.θ/=
self-normalized processes︷ ︸︸ ︷
V̂.θ/−1{b̂.θ/−b.θ/}+Op

[√{
p log.n/

n

}]
,

where the approximation is with respect to l2-norm. Altogether, this implies that we can estimate
V.θ/−1b.θ/ consistently in the fixed dimension p and large n setting.

6.2. Efficient computation via direct rank 1 updates
In this section we devise a fast iterative formula for calculating V̂.θ/−1 directly via rank 1 updates.

Recall the brute force approach of calculating Σ̂.θ/ first and then solving for the inverse
root V̂.θ/−1 involves O.np2 +p3/ complexity in the computation. Instead, we shall provide an
algorithm that approximates V̂.θ/−1 directly through iterative rank 1 updates that is only O.np2/

in complexity, utilizing the fact that the sample covariance is a finite sum of rank 1 matrices. To
the best of our knowledge, this direct approach of calculating the root of the inverse covariance
matrix is new.

Proposition 4 (iterative rank 1 updates of matrix inverse root). Initialize H0 = Id , and define
the recursive rank 1 updates for the matrix inverse root, for vi ∈Rd :

Hi+1 =Hi − 1
αi

Hivi+1vT
i+1HT

i Hi .22/

with

αi �{1+√
.1+vT

i+1HT
i Hivi+1/}√

.1+vT
i+1HT

i Hivi+1/∈R:

Then, for all n, Hn is the matrix inverse root of Id +Σn
i=1vi ⊗vi. In other words, define Vn =� H−1

n ;
then VnV T

n = Id +Σn
i=1vi ⊗vi:

Remark 8. One can directly apply the above result to evaluate V̂.θ/−1 efficiently. Define
vi =∇θl.θ, zi/− b̂.θ/; we can use equation (22) in proposition 4 for fast iterative calculations, and

{√
.n−1/Hn}−1{√

.n−1/HT
n }−1 = 1

n−1
Id + Σ̂≈ Σ̂:
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Therefore V̂.θ/−1 is approximated by
√

.n−1/Hn. We remark that the quality of the approxi-
mation depends on the spectral decay of the true covariance Σ.

For each iteration, the computational complexity for equation (22) is 4d2, with some careful
design in calculation: it takes d2 operations to calculate Hivi+1 ∈ Rd , then an additional d2 to
calculate .Hivi+1/THi ∈Rd , another d2 operations for multiplication of rank 1 vectors Hivi+1 ×
.Hivi+1/THi and finally d2 operations for matrix addition. Hence, the total complexity is O.nd2/

(for MasGrad, simply substitute d =p).

6.3. Optimal updates for on-line least squares
In the case of a least squares loss l.θ, z/= 1

2 .y−xTθ/2, we offer a simple and efficient on-line rule
for estimating V.θ/ without any loss of accuracy compared with offline counterparts. This is
based on the fact that the data points zi and the parameter θ can be ‘decoupled’ in least squares.
To show this, first write the covariance as

V.θ/2 = cov{.y −xTθ/x}
= cov.xxTθ/+ cov.yx/−2 cov.xxTθ, xy/:

To estimate cov.xxTθ/ efficiently in an on-line fashion, we observe that

cov.xxTθ/=Ez∼P [xxTθθTxxT]−Ez∼P [xxTθ].Ez∼P [xxTθ]/T: .23/

Recalling that ‘⊗K’ denotes the Kronecker product and letting vec.X/ be the vector that is
formed by stacking the columns of X into a single column, we express xxTθθTxxT as

vec.xxTθθTxxT/={.xxT/⊗K .xxT/}.θ ⊗K θ/:

This expression shows that

vec.Ez∼P [xxTθθTxxT]/=Ez∼P [.xxT/⊗K .xxT/].θ ⊗K θ/:

Accordingly, we can simply keep track of Σt
i=1{.xixT

i / ⊗K .xixT
i /} in the on-line setting and

estimate Ez∼P [xxTθθTxxT] through mapping the vector

t∑
i=1

{.xixT
i /⊗K.xixT

i /}
t

.θ ⊗K θ/

to its associated matrix. It remains to estimate Ez∼P [xxTθ] in equation (23). Recognizing that
Ez∼P [xxTθ]=Ez∼P [xxT]θ, this can be done by simply recording the sum x1xT

1 + : : :+xtxT
t in an

on-line manner and replacing Ez∼P [xxT] by the average .x1xT
1 + : : :+xtxT

t /=t. Likewise, cov.yx/

and cov.xxTθ, xy/ can be estimated in the on-line setting regardless of a varying θ. We omit this
part for brevity.

7. Numerical experiments

In this section we present results for numerical experiments. Full details of the experiments are
deferred to the on-line appendix C.

7.1. Linear models
The first numerical example is simple linear regression, as in Fig. 1. Here we generate two plots
as a proof of concept. Fig. 1(a) summarizes the trajectory of several methods for inference—
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our proposed MasGrad , the discretized diffusion approximation diff_MasGrad , as well as the
classical SGD, and the diffusion approximation diff_SGD—with the confidence intervals (95%
coverage) at each time step t. In this convex setting, we can solve for the global optimum, which
is labelled as the truth. Here the minibatch size is n = 50. We run 100 independent chains to
calculate the confidence intervals at each step. We look at the low dimensional case p=4, and
the four subfigures (in Fig. 1(a)) each correspond to one co-ordinate of the parameter wi, i∈ [p].
The x-axis is t, the evolution time, and the y-axis is the value of the parameter w. We remark
that MasGrad and diff_MasGrad are pathwise close in terms of distribution, which verifies our
statistical theory in theorem 1. This also holds for GD and diff_GD. We remark that, in this
simulation, the condition number of the empirical Gram matrix is 30:98, and the first and third
co-ordinates have very small population eigenvalues, which explains why in those co-ordinates
MasGrad has significant acceleration compared with SGD as shown in Fig. 1. To be fair, at
each time step, both MasGrad and SGD sample the same amount of data, and the step size is
chosen as in theorem 3. All four chains start with the same random initialization.

To examine the optimization side of the story, we plot the logarithm of the l2-error according
to time t, for diff_MasGrad and diff_SGD, in Fig. 1(b). We remark that the error bar quantifies
the confidence interval for the log-error. In theory, we should expect that the slope of MasGrad is
twice that of the slope of SGD. In simulation, it seems that the acceleration is slightly better than
what the theory predicts. We remark that compared with gradient descent, in which different
co-ordinates make uneven progress (fast progress in the second and fourth co-ordinates, but
slow in the others), MasGrad adaptively adjusts the relative step size on each co-ordinate for
synchronized progress. This effect has also been observed in AdaGrad and natural gradient
descent.

7.2. Logistic model
Fig. 2 illustrates the acceleration for inference in logistic regression. Fig. 2 should be read
the same way as in the linear case. In this case, we sample a much larger number of samples
(N = 500) and then use the GLMs package in R (R Development Core Team, 2012) to fit the
global optimum. For MasGrad and SGD, we generate bootstrap subsamples (n=25) to evaluate
stochastic descents at each iteration. Again, we run 100 independent chains to calculate the
confidence interval at each step. In this case, there is no theoretically optimal way of choosing
the step size, so we choose the same step size (η =0:2) for both MasGrad and SGD.

Statistically, MasGrad and diff_MasGrad are close in distribution when t<100, and they both
reach a stationary distribution after around 50 steps, simultaneously for all p=4 co-ordinates.
Then the distribution fluctuates around stationarity. However, GD and diff_GD make much
slower progress, and they fail to reach the global optimum in 100 steps. For optimization,
empirically the acceleration in the log-error plot seems to be better than what the theoretical
results predict. We remark that the confidence intervals are on the scale of log-error; therefore,
it is negative skewed.

7.3. Gaussian mixture
Here we showcase inference via MasGrad for the non-convex case, using the Gaussian mixture
model. We shall consider a simple setting: the data zi ∈Rn, 1� i� [N], generated from a mixture
of p Gaussian distributions, with mean .θ1, θ2, : : : , θp/=� θ and variance σ2. The goal is to infer
the unknown mean vector θ ∈ Rp. The problem is non-convex because of the mixture nature:
the maximum likelihood is multimodal, as we can shuffle the co-ordinates of θ to obtain the
equivalent class of local optima.
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Fig. 3 illustrates the acceleration for inference in the Gaussian mixture model. Here we run
two simulations, according to the difficulty (or separability) of the problem defined as the signal-
to-noise ratio

SNR�min
i�=j

|θi −θj|=σ:

Fig. 3(a) is for the easy case with SNR=3:3 and Fig. 3(b) is for the difficult case with SNR=1.
In both simulations, θ = .1, 2, 3/ ∈ R3, and we choose a random initial point to start the
chains. The plot is presented as before. At each iteration, we subsample n = 20 data points
to calculate the direction of descent, and the step size is fixed to be η = 0:05. We remark that
there are many population local optima (at least 3!=6), and both MasGrad and diff_MasGrad
seem to be able to find a good local optimum relatively quickly (which concentrates near a per-
mutation of 1, 2, 3 for each co-ordinate), compared with SGD and diff_SGD. The acceleration
effect in both cases is apparent. Again, we want to emphasize that the convergence for each
co-ordinate in MasGrad seems to happen around the same number of iterations, which is not
true for SGD.

7.4. Shallow neural networks
We also run MasGrad on a two-layer rectified linear unit neural network, as a proof of concept
for non-convex models. Define the rectified linear unit activation σ.x/=max.x, 0/; a two-layer
neural network (with k hidden units) represents a function

fw.x/=σ{W2 σ.W1x/}, x∈Rd , w ={W1 ∈Rk×d , W2 ∈R1×k}:

In our experiment, we work with the square loss l{w, .x, y/}= 1
2{y−fw.x/}2: The gradients can

be calculated through back-propagation. In this case, it is more difficult to calculate the global
optimum; instead, to compare diff_MasGrad and SGD, we run 50 experiments with random
initializations to explore the population landscape.

For each experiment (as illustrated in Fig. 4(a)), we randomly initialize the weights by us-
ing standard Gaussian distributions. As usual, we run 100 independent chains with the same
initial points for diff_MasGrad and SGD to calculate the confidence interval. As expected, the
distribution is quite non-Gaussian (for instance, in co-ordinate 2 and 6). We run the chain for
100 steps and then evaluate the population loss function for the two methods. Out of the 50
experiments, 45=50 = 90% of the time the population loss that is returned by diff_MasGrad
is much smaller than that of SGD. Fig. 4(b) plots the histogram (a dot plot using ggplot2
(Wickham, 2009)) of the population error (test accuracy). Empirically, diff_MasGrad seems to
converge to ‘better’ local optima most of the time. There could be several explanations: first,
MasGrad uses better local geometry (similar to a natural gradient) so it induces better implicit
regularization; second, MasGrad as an optimization method accelerates the chain so that it
mixes to a local optimum faster, compared with SGD which may not yet converge within a
certain time budget.

8. Further discussions

We discuss more about V.θt/. In the fixed dimension setting, we can estimate the covariance
matrix of the gradient ∇l.θ, z/ by using the empirical version with N independent samples, when
N is large. Let us be more precise in this statement.

(a) When the population landscape is convex, then the global optima of L̂N.θ/ and L.θ/ are
within 1=

√
N. We can always treat L̂N.θ/ as the population version and at each step we
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bootstrap subsamples of size n to evaluate the stochastic gradients, adjusted by using the
empirical covariance V̂N calculated by using N data points. Intuitively, when η <O.n=N/

(so that β >N), we know that MasGrad will concentrate near the optimum of L̂N.θ/ with
better accuracy than 1=

√
N.

(b) In the non-convex case, things become unclear. However, under stronger conditions such
as strongly Morse (Mei et al., 2016), i.e. when there is nice one-to-one correspondence
between the stationary points of L̂N.θ/ and L.θ/, we may still use the bootstrap idea above
with V̂N .

(c) Computation of V̂N and its inverse could be burdensome; thus we may want to use the
efficient rank 1 updates designed in Section 6.3, or to calculate a diagonalized version of
V̂N as done in AdaGrad (Duchi et al., 2011).

(d) To have fully rigorous non-asymptotic theory in the case where V is known, we may
require involved tools from self-normalized processes (Peña et al., 2008) to establish a
similar version of entropic CLT for multivariate self-normalized processes, where we
standardize Ên[∇l.θ, z/] by the empirical covariance matrix V̂n calculated on the basis of
the same samples. To the best of our knowledge, this is an ambitious and challenging goal
that is beyond the scope and focus of the current paper.

We conclude this section by discussing the connections between preconditioning methods and
our moment adjusting method. Preconditioning considers performing a linear transformation
ξ = A−1θ on the original parameter space on θ. In other words, consider L̃.ξ/ =� L.Aξ/, and
perform the updates on ξ:

ξt+1 = ξt −η∇ξL̃.ξ/= ξt −ηAb.Aξt/⇒θt+1 =θt −ηA2b.θt/:

Therefore, in the noiseless case, the moment adjusting method is equivalent to preconditioning
when the moment matrix V.θ/ is a constant matrix with respect to θ. However, in Langevin
diffusion when the isotropic Gaussian noise is presented, the connection becomes more subtle—
as V−1.θ/b.θ/ may not be the gradient vector field for any function. The moment adjusting idea
motivated from standardizing noise in statistics is different from the preconditioning idea in
optimization. We would also like to point out that a nice idea using Hessian information to speed
up the Langevin diffusion for sampling from log-concave distributions has been considered
in Dalalyan (2017). We remark that we use the moment matrix at the current point θt (time
varying) instead of the optimal point θÅ (which is unknown). We also use the matrix root
instead of the covariance matrix itself. In the case when the model is well specified and the loss
function is chosen to be the negative log-likelihood, V.θÅ/ is the root of the Fisher information
matrix.

9. Supplemental materials

For brevity we have relegated further discussion of Langevin diffusion to the on-line appendix A,
detailed proofs to appendix B and remaining details about experiments to appendix C.
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Xu, P., Yang, J., Roosta-Khorasani, F., Ré, C. and Mahoney, M. W. (2016) Sub-sampled Newton methods with

non-uniform sampling. In Advances in Neural Information Processing Systems, pp. 3000–3008.

Supporting information
Additional ‘supporting information’ may be found in the on-line version of this article:

‘Supplement to “Statistical inference for the population landscape via moment-adjusted stochastic gradients”’.


