
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Training Neural Networks as Learning Data-
adaptive Kernels: Provable Representation and
Approximation Benefits

Xialiang Dou & Tengyuan Liang

To cite this article: Xialiang Dou & Tengyuan Liang (2021) Training Neural Networks as Learning
Data-adaptive Kernels: Provable Representation and Approximation Benefits, Journal of the
American Statistical Association, 116:535, 1507-1520, DOI: 10.1080/01621459.2020.1745812

To link to this article: https://doi.org/10.1080/01621459.2020.1745812

View supplementary material Published online: 23 Apr 2020.

Submit your article to this journal Article views: 817

View related articles View Crossmark data

Citing articles: 5 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2020.1745812
https://doi.org/10.1080/01621459.2020.1745812
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2020.1745812
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2020.1745812
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2020.1745812
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2020.1745812
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1745812&domain=pdf&date_stamp=2020-04-23
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1745812&domain=pdf&date_stamp=2020-04-23
https://www.tandfonline.com/doi/citedby/10.1080/01621459.2020.1745812#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/01621459.2020.1745812#tabModule

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
2021, VOL. 116, NO. 535, 1507–1520: Theory and Methods
https://doi.org/10.1080/01621459.2020.1745812

Training Neural Networks as Learning Data-Adaptive Kernels: Provable
Representation and Approximation Benefits

Xialiang Doua and Tengyuan Liangb

aDepartment of Statistics, University of Chicago, Chicago, IL; bBooth School of Business, University of Chicago, Chicago, IL

ABSTRACT
Consider the problem: given the data pair (x, y) drawn from a population with f∗(x) = E[y|x = x], specify
a neural network model and run gradient flow on the weights over time until reaching any stationarity.
How does ft , the function computed by the neural network at time t, relate to f∗, in terms of approximation
and representation? What are the provable benefits of the adaptive representation by neural networks
compared to the prespecified fixed basis representation in the classical nonparametric literature? We answer
the above questions via a dynamic reproducing kernel Hilbert space (RKHS) approach indexed by the
training process of neural networks. First, we show that when reaching any local stationarity, gradient flow
learns an adaptive RKHS representation and performs the global least-squares projection onto the adaptive
RKHS, simultaneously. Second, we prove that as the RKHS is data-adaptive and task-specific, the residual
for f∗ lies in a subspace that is potentially much smaller than the orthogonal complement of the RKHS.
The result formalizes the representation and approximation benefits of neural networks. Finally, we show
that the neural network function computed by gradient flow converges to the kernel ridgeless regression
with an adaptive kernel, in the limit of vanishing regularization. The adaptive kernel viewpoint provides
new angles of studying the approximation, representation, generalization, and optimization advantages of
neural networks. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received January 2019
Accepted March 2020

KEYWORDS
Adaptive estimation;
Representation learning;
Gradient flow dynamics;
Algorithmic approximation;
Neural networks;
Reproducing kernel Hilbert
spaces.

1. Introduction

Consider iid data pairs drawn from a joint distribution (x, y) ∼
P = Px × Py|x on the space X × Y . At the intersection of
statistical learning theory (Vapnik 1998) and approximation
theory (Cybenko 1989), the following approximation problem
requires to be first understood, before any further statistical
results to be established. For a model classF , one is interested in
whether there exists f ∈ F : X → Y such that the population
squared loss is small,

L(f) = E
(x,y)∼P

1
2

(
y − f (x)

)2 = E
x∼Px

1
2

(
f∗(x) − f (x)

)2

+ E
(x,y)∼P

1
2

(
y − f∗(x)

)2 , (1)

with the conditional expectation (or Bayes estimator) defined
as f∗(x) := E[y|x = x]. Equation (1) generally reads as
approximating f∗ in the mean squared error sense.

Statistically, researchers approach the above question mainly
in two ways. The first is by assuming that the conditional expec-
tation f∗ lies in the correct model class F . For example, say
F consists of linear models or splines with a particular order
of smoothness, or more broadly functions lying in a repro-
ducing kernel Hilbert space (RKHS). Conceptually, this “well-
specification” assumption requires substantial knowledge about
what model class F might be suitable for the regression task

CONTACT Tengyuan Liang tengyuan.liang@chicagobooth.edu Booth School of Business, University of Chicago, Chicago, IL 60637.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

at hand, which is often unavailable in practice. Within each
framework, minimax optimal rates and extensive study have
been established in Stone (1980) and Wahba (1990). The second
way, which extends the first approach further, considers all f∗
under some mild conditions. Building upon certain universal
approximation theorem, one studies a sequence of model classes
Fε called sieves with ε changing (Geman and Hwang 1982),
such that the class Fε contains an ε-approximation to any f∗
under some metric. A final result usually requires a careful
balancing of the approximation and stochastic error by tuning
ε. Particular cases for the latter approach include polynomials
(Stone–Weierstrass, Bernstein), radial-basis (Park and Sandberg
1991; Niyogi and Girosi 1996), and two-layer and multilayer
neural networks (Cybenko 1989; Hornik, Stinchcombe, and
White 1989; Rahimi and Recht 2008; Anthony and Bartlett 2009;
Daniely, Frostig, and Singer 2016; Bach 2017; Poggio et al. 2017;
Farrell, Liang, and Misra 2018; Koehler and Risteski 2018).

However, the following significant drawbacks of the above
current theory make it inadequate to present an adaptive and
realistic explanation of the practical success of neural networks.
First, the function computed in practice could be very different
from that claimed in the approximation theory, either by the
existence or by constructions. To see this, consider the mul-
tilayer neural networks. It is hard to conceive that the func-
tion, computed in practice via now-standard stochastic gradient
descent (SGD) training procedure, is close to the one asserted

© 2020 American Statistical Association

https://doi.org/10.1080/01621459.2020.1745812
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1745812&domain=pdf&date_stamp=2021-08-20
mailto:tengyuan.liang@chicagobooth.edu
http://www.tandfonline.com/r/JASA

1508 X. DOU AND T. LIANG

by the universal approximation results. Second, in practice,
researchers usually explore different model classes F to learn
which representation best suits the data. For example, using
different kernels machines, random forests, or specify certain
architectures then run SGD on neural networks. In this case,
strictly speaking, the choice of the model class depends on the
data in an adaptive way, without prior knowledge about the
basis. There have been substantial advances made to address the
above two concerns—for instance, Jones (1992) on the first and
Huang, Cheang, and Barron (2008) and Barron et al. (2008) on
the second—for F being a linear span of a library of candidate
functions (union of various set of basis that can be correlated),
with greedy selection rules. Nevertheless, the current theory
still falls short of describing the approximation and adaptivity
for the non-convex and possibly nonsmooth gradient descent
training on all-layer weights of the neural networks, as done in
practice.

We take a step to bridge the above mismatch in the current
theory and practice for neural networks and to establish a theo-
retical framework where the model classes adapt to the data. In
particular, we answer the following algorithmic approximation
question:

Given data pair (x, y) ∼ P, denote f∗(x) = E[y|x = x].
Specify a neural networks model, and run gradient flow until
any stationarity (t → ∞). Denote the computed function to
be ft(x). How does ft(x) relate to f∗(x), in terms of approxi-
mation and representation?

Also, we aim to formalize and shed light on the representation
benefits of neural networks:

What are the provable benefits of the adaptive representation
learned by training neural networks compared to the classical
nonparametric prespecified fixed basis representation?

The intimate connection between two-layer neural networks
and RKHSs has been studied in the literature (see, e.g., Rahimi
and Recht 2008; Cho and Saul 2009; Daniely, Frostig, and Singer
2016; Bach 2017; Jacot, Gabriel, and Hongler 2018). However,
to the best of our knowledge, known results are mostly based
on a fixed RKHS (in our notation K0 in Section 5.1). In that
sense, random features for kernel learning (Rahimi and Recht
2008, 2009; Rudi and Rosasco 2017) can be viewed as neu-
ral networks with fixed random sampled first layer weights,
and tunable second layer weights. From the neural networks
side, Rotskoff and Vanden-Eijnden (2018), Mei, Montanari, and
Nguyen (2018), and Sirignano and Spiliopoulos (2019) studied
the mean-field theory for two-layer neural networks, and Jacot,
Gabriel, and Hongler (2018); Du et al. (2018); Chizat and Bach
(2018); Ghorbani et al. (2019) studied the linearization of neural
networks around the initialization and draw connections to
RKHS K0 in various over-parameterized settings. In contrast,
we will establish a general theory with the dynamic and data-
adaptive RKHS Kt obtained via training neural networks, with
standard gradient flow on weights of both layers. Connections
and distinctions to the literature that motivates our study are
further discussed with details in Section 5. As a distinctive
feature of the adaptive theory, we emphasize that all f∗ ∈ L2(Px)
is considered, without prespecified structural assumptions.

1.1. Problem Formulation

In this article, we consider the time-varying function ft to
approximate f∗, parameterized by a two-layer rectified linear
unit (ReLU) neural network (NN).

ft(x) :=
m∑

j=1
wj(t)σ (xTuj(t)). (2)

The time index t corresponds to the evolution of parameters
driven by the gradient flow/descent (GD) training dynamics.
Here, each individual pair (wj ∈ R, uj ∈ R

d) in the summation
is associated with a neuron. Consider the gradient flow as the
training dynamics for the weights of the neurons: for the loss
function �(y, f) = (y − f)2/2 and the random variable z :=
(x, y), the parameters (wj, uj) evolve with time as follows

dwj(t)
dt

= −Ez

[
∂�(y, ft)

∂f
σ(xTuj(t))

]
,

duj(t)
dt

= −Ez

[
∂�(y, ft)

∂f
wj(t)1xT uj(t)≥0x

]
. (3)

Equivalently, we can rewrite the function computed by NN
at time t as

ft(x) :=
∫

σ(xTu)τt(du), (4)

where τt = ∑m
j=1 wj(t)δuj(t) is a signed combination of delta

measures. We will define a careful rescaling of τt denoted as
ρt (Equation (19)), then derive the corresponding distribution
dynamic for ρt driven by the gradient flow later in Section 5.2.
The rescaled formulation naturally extends to the infinite neu-
rons case with m → ∞.

In this article, by considering various distributions of z, we
study two following problems: approximation and empirical risk
minimization (ERM).

1.1.1. Function Approximation
The data pair z ∼ P is sampled from the population joint dis-
tribution. We are going to answer how ft approximates f∗(x) =
E[y|x = x] in function spaces, induced by the gradient flow on
neuron weights

E
z∼P

(y − ft(x))2 = ‖ft − f∗‖2
L2

μ
+ E

z∼P
(y − f∗(x))2. (5)

Here, we denote μ := Px, and remark that all f∗ ∈ L2
μ are

considered without additional assumptions.

1.1.2. ERM and Interpolation
The data pair z ∼ 1

n
∑n

i=1 δx=xi,y=yi follows the empirical
distribution. We will study gradient flow for the ERM

1
2n

n∑
i=1

(yi − ft(xi))
2. (6)

In this case, the target reduces to Ê[y|x = xi] = yi with
Ê as the empirical expectation. When the minimizer of Equa-
tion (6) achieves the zero loss, we call it the interpolation prob-
lem (Zhang et al. 2016; Ma, Bassily, and Belkin 2017; Belkin et al.
2018; Belkin, Ma, and Mandal 2018; Liang and Rakhlin 2018;

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1509

Rakhlin and Zhai 2018). Here, we are interested in when and
how ft(xi) interpolates yi, for 1 ≤ i ≤ n.

Finally, we remark that in practice, extending the gradient
flow results to the (1) positive step size GD, and (2) mini-batch
stochastic GD, are standalone interesting research topics. The
reasons are that the optimization is nonsmooth for the ReLU
activation and that the interplay between the batch size and step
size is less transparent in nonconvex problems.

2. Preliminaries and Summary

2.1. Notations

We use the boldface lower case x to denote a random variable
or vector. The normal letter x can either be a scalar or a vector
when there is no confusion. The transpose of a matrix A, resp.
vector u is denoted by AT , resp. uT . A+ denotes the Moore
Penrose inverse. For n ∈ N, let [n] := {1, . . . , n}. We use
A[i, j] to denote the i, jth entry of a matrix. We denote 1D
as the indicator function of set D. We call symmetric positive
semidefinite functions K(·, ·), H(·, ·) : X × X → R kernels,
and use calligraphy letter K,H to denote Hilbert spaces. We use
〈f , g〉μ = ∫

f (x)g(x)μ(dx) to denote the inner product in L2
μ (or

L2(Px)). μ̂ denotes the empirical distribution for μ. Notation Ex
is the expectation w.r.t. random variable x, and Ex,x̃ h(x, x̃) =∫ ∫

h(x, x̃)μ(dx)μ(dx̃). For a signed measure ρ = ρ+ − ρ−
with the positive and negative parts, define |ρ| = ρ+ + ρ−.

2.2. Preliminaries

We use the signed measure ρt , defined by the neuron weights at
training time t collectively, to construct a dynamic RKHS. The
mathematical definition of ρt is deferred to Sections 5.1 and 5.2
(specifically, Equation (19)). The stationary signed measure at
t → ∞ is denoted as ρ∞. For completeness, we walk through
the construction of the dynamic kernel and RKHS with ρt .
Define the linear operator T : L2

μ(x) → L2|ρt |(), such that
for any f (x) ∈ L2

μ(x)

(T f)() :=
∫

f (x)‖	‖σ(xT)μ(dx), ∀	 ∈ supp(ρt).

One can define the adjoint operator T
 : L2|ρt |() → L2
μ(x),

such that for p() ∈ L2|ρt |(),

(T
p)(x) :=
∫

p()‖	‖σ(xT)|ρt|(d).

Note that both T and T
 are compact operators under the finite
total variation and compact support assumptions. For the finite
neurons case (2), the operator is of finite rank. We define the
compact integral operator T
T with the corresponding kernel

Ht(x, x̃) =
∫

‖	‖2σ(xT)σ(x̃T)|ρt|(d), and

(T
T f)(x) :=
∫

Ht(x, x̃)f (x̃)μ(dx̃). (7)

The dynamic RKHS Ht can be readily constructed via Ht . Let
the eigen decomposition of T
T be the countable sum T
T =∑E

i=1 λieie∗
i . Here, E can be a nonnegative integer or ∞, and

Table 1. Nature of the results studied in this article.

Finite neurons m Infinite neurons
m → ∞

Finite samples n Interpolation (finite rank
kernel, Theorems 3.1,
3.2, and
Proposition 4.1)

Interpolation (finite rank
kernel, Theorems 3.1,
3.2, and
Proposition 4.1)

Infinite samples
n → ∞

Approximation (finite
rank kernel,
Theorems 3.1 and 3.2)

Approximation (possibly
universal kernel,a
Theorems 3.1 and 3.2)

aWhether the kernel is universal in the m, n → ∞ case still depends on f∗ and the
data distribution P. See the simulations of Maennel, Bousquet, and Gelly (2018).

λi > 0. ei without confusion can represent either an eigen
function or a linear functional. Similarly, we have the singular
value decomposition for T = ∑E

i=1
√

λitie∗
i . and T
 as well.

For a detailed discussion (see, e.g., Casselman 2014). Again, ti is
a function in L2|ρt |() or a linear functional. The RKHS can be
specified as follows.

Ht =
{

h | h(x) =
∑

i
hiei(x),

∑
i

h2
i

λi
< ∞

}
.

We refer to H∞ as the stationary RKHS kernel, and H∞ as the
stationary RKHS. One can view that the gradient flow training
dynamics—on the parameters of NN—induces a sequence of
functions {ft : t ≥ 0} and dynamic RKHS {Ht : t ≥ 0}, indexed
by the time t.

2.3. Organization and Summary

We will prove three results, which are summarized informally in
this section (see also Table 1). We remark that Theorems 3.1 and
3.2 are stated for the approximation problem. However, as done
in Corollary 3.1, by substituting P , μ by the empirical coun-
terparts, one can easily state the analog for the ERM problem.
Recall f∗(x) = E[y|x = x].

2.3.1. Gradient Flow on NN Converges to Projection Onto
Data-Adaptive RKHS

Theorem 3.1 shows that has done in practice training NN
with simple gradient flow, in the limit of any local stationarity,
learns the adaptive representation, and performs the global least
squares projection simultaneously. Define f∞ = limt→∞ ft as
the function computed by ReLU networks (defined in (2), or
more generally in (20)) until any stationarity of the gradient
flow dynamics (defined in (3), with the squared loss) for the
population distribution (x, y) ∼ P. Define the corresponding
stationary RKHS H∞ = limt→∞ Ht (defined in (7)).

[Informal version of Theorem 3.1] Consider f∗ ∈ L2
μ, for

any local stationarity of the gradient flow dynamics (3) on
the weights of neural networks (2), the function computed
by NN at stationarity f∞ satisfies

f∞ ∈ arg min
g∈H∞

‖f∗ − g‖2
L2

μ
.

1510 X. DOU AND T. LIANG

2.3.2. Representation Benefits of Data-Adaptive RKHS
Theorem 3.2 illustrates the provable benefits of the learned data-
adaptive representation/basis H∞. We emphasize that H∞, as
obtained by training neural networks on the data (x, y) ∼ P,
depends on the data in an implicit way such that there are
advantages of representing and approximating f∗.

[Informal version of Theorem 3.2] Consider f∗ ∈ L2
μ and the

same setup as Theorem 3.1. Decompose f∗ into the function
f∞ computed by the neural network and the residual �∞

f∗ = f∞ + �∞.

Then there is another RKHS (defined in (11)) K∞ ⊃ H∞,
such that

f∞ ∈ H∞, �∞ ∈ Ker(K∞) ⊂ Ker(H∞),

with a gap in the spaces H∞ ⊕ Ker(K∞) �= L2
μ.

2.3.3. Convergence to Ridgeless Regression With Adaptive
Kernels

Proposition 4.1 establishes that in the vanishing regularization
λ → 0 limit, the neural network function computed by gradient
flow converges to the kernel ridgeless regression with an adap-
tive kernel (denoted as f̂ rkhs∞ (x)). Consider using the gradient
flow on the weights of the neural network function ft(x) =∑m

j=1 wj(t)σ (xTuj(t)), to solve the �2-regularized ERM

1
2n

n∑
i=1

(yi − ft(xi))
2 + λ

2m

m∑
j=1

[
wj(t)2 + ‖uj(t)‖2] .

Denote the function computed by NN at any local stationarity
of ERM as f̂ nn,λ(x), we answer the extrapolation question at a
new point x, with the generalization error discussed in Proposi-
tion 4.2. The result is extendable to the infinite neurons case.

[Informal version of Proposition 4.1] Consider only
the bounded assumption on initialization that |w2

j (0) −
‖uj‖2(0)| < ∞ for all 1 ≤ j ≤ m. At stationarity, denote the
corresponding adaptive kernel as Ĥλ∞. The neural network
function f̂ nn,λ∞ (x) has the following expression,

lim
λ→0

f̂ nn,λ∞ (x) = Ĥ∞(x, X)Ĥ∞(X, X)+Y

=: f̂ rkhs∞ (x) (ridgeless regression with kernel Ĥ∞).

3. Main Results: Benefits of Adaptive Representation

We formally state two main results of the article, Theorems 3.1
and 3.2.

3.1. Gradient Flow, Projection and Adaptive RKHS

We study how the function ft computed from gradient flow
on NN represents f∗ when reaching any stationarity, under the
squared loss. Consider the gradient flow dynamics (23) reaching
any stationarity. Assume that the corresponding signed measure
in (19) satisfies TV(ρ∞) < ∞ with a compact support. The
mathematical details about ρ∞ are postponed to Section 5.2.

We employ the notation ρ∞ since reaching stationarity can be
viewed as t → ∞.

We would like to emphasize that this stationary signed mea-
sure ρ∞ is task adaptive: it implicitly depends on the regression
task f∗ and the data distribution P, rather than being prespecified
by the researcher as in Bach (2017), Daniely, Frostig, and Singer
(2016), and Cho and Saul (2009). With the RKHS established in
Section 2.2, we are ready to state the following theorem.

Theorem 3.1 (Approximation). For any conditional mean
f∗(x) = E[y|x = x] ∈ L2

μ, consider solving the approximation
problem (5), with the ReLU NN function ft defined in (2)
where wj(t) and θj(t) are the weights for t ≥ 0, 1 ≤ j ≤ m.
For any signed measure ρ0 with TV(ρ0) < ∞, consider the
infinitesimal initialization weights uj(0) = 	j/

√
m, and

wj(0) = sgn(ρ0(j))‖	j‖/√m, with 	j ∼ ρ0 sampled
independently. When the training dynamics (3) reaches any
stationarity, it defines a stationary signed measure ρ

(m)∞ (on the
collective weights) with TV(ρ

(m)∞) < ∞, and a corresponding
stationary RKHS H∞ with the kernel defined in Equation (7),
such that:

1. the function computed by neural networks at stationarity has
the form

f∞(x) =
∫

‖	‖σ(xT)ρ(m)∞ (d); (8)

2. f∞ is a global minimizer of approximating f∗ within the
RKHS H∞

f∞ ∈ arg min
g∈H∞

‖f∗ − g‖2
L2

μ
. (9)

In addition, the same results extend to the infinite neurons case
with m → ∞ where the limit for ρ

(m)∞ can be defined in the
weak sense.

Remark 3.1. The above theorem shows that limt→∞ ft obtained
by training on two-layer weights over time until any stationarity,
is the same as projecting f∗ onto the stationary RKHS H∞.
The projection is the solution to the classic nonparametric
least squares, had one known the adaptive representation H∞
beforehand. Conceptually, this is distinct from the theoretical
framework in the current statistics and learning theory litera-
ture: we do not require the structural knowledge about f∗ (say,
smoothness, sparsity, reflected in F). Instead, we run gradient
descent on neural networks to learn an adaptive representation
for f∗, and show how the computed function represents f∗ in this
adaptive RKHS H∞.

In other words, as done in practice training NN with simple
gradient flow, in the limit of any local stationarity, learns the
adaptive representation, and performs the global least-squares
projection simultaneously. Training NN is learning a dynamic
representation (quantified byHt), at the same time updating the
predicted function ft , as shown in Figure 1.

A final note on the infinite neuron case: for any fixed time t,
with the proper random initialization, setting m → ∞ defines
a proper distribution dynamics on the weak limit ρt shown in
Lemma 5.3. Then set t → ∞ to obtain the stationarity RKHS
H∞.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1511

Figure 1. Illustration of Theorem 3.1. Red dotted line denotes the function ft com-
puted along the gradient flow dynamics on the weights of NN. Along training, one
learns a sequence of dynamic RKHS representation Ht ’s. Over time, ft converges to
the projection of f∗ onto H∞ . We emphasize that the initial function f0 computed
by NN is very different from the projection of f∗ onto the initial RKHS H0.

From the above, we have the following natural decomposi-
tion,

�∞(x) = f∗(x) − f∞(x) ∈ Ker(H∞). (10)

Surprisingly, as we show in the next section, �∞ actually lies
in a smaller subspace of Ker(H∞), characterized by Ker(K∞).
We call this the representation and approximation benefits of the
data-adaptive RKHS learned by training neural networks.

Before moving next, we briefly discuss the above theorem
when applied to the empirical measure, to solve the ERM prob-
lem. First, as a direct corollary, the following holds.

Corollary 3.1 (ERM). Consider the ERM problem (6), with the
other settings the same as in Theorem 3.1. One can define the
finite dimensional RKHS Ĥ∞ (at most rank n) as in (7) with
μ̂ = 1

n
∑n

i=1 δxi substituting μ. When reaches any stationarity,
the solution satisfies

f̂∞ ∈ arg min
g∈Ĥ∞

1
n

n∑
i=1

(yi − g(xi))
2.

More importantly, we will show in Proposition 4.1 that the
function computed by training neural networks with gradient
descent on the empirical risk objective f̂∞(x) until any station-
arity (with vanishing �2 regularization), can be shown to be the
kernel ridgeless regression with the data-adaptive RKHS Ĥ∞.
Hence, studying the out of sample performance for GD on NN
reduces to the generalization of kernel ridgeless regression with
adaptive kernels.

3.2. Representation Benefits of Adaptive RKHS

We now define another adaptive RKHS K∞ named as the GD
kernel, which turns out to be different from H∞ in (7). Inter-
estingly, the difference in these two kernels sheds light on the
representation benefits of the adaptive RKHS. The new RKHS
K∞ is motivated by the gradient training dynamics. Recall the
associated signed measure ρ∞ at the stationarity, the GD kernel

is defined as

K∞(x, x̃) =
∫ (‖	‖21xT	≥01x̃T	≥0xTx̃ + σ(xT)σ(x̃T)

)
× |ρ∞|(d) �= H∞(x, x̃), (11)

which is different than the stationary RKHS kernel H∞ in (7).
We use Kt : L2

μ(x) → L2
μ(x) to denote the integral operator

associated with Kt ,

(Ktf)(x) :=
∫

Kt(x, x̃)f (x̃)μ(dx̃).

With a slight abuse of notation, we denote the corresponding
RKHS to be Kt as well. Now we are ready to state the main
theorem on the representation benefits.

Theorem 3.2 (Representation benefits). Consider f∗ ∈ L2
μ and

the same setting as in Theorem 3.1. Consider the approxima-
tion problem (5) with either finite or infinite neurons, and the
gradient flow dynamics (23) (equivalently (3)) with data pair
(x, y) ∼ P drawn from the population distribution. When
reaching any stationary signed measure ρ∞, f∗ is decomposed
into the function f∞ computed by the neural network and the
residual �∞

f∗ = f∞ + �∞.

Recall the RKHS H∞ in (7) and the GD RKHS K∞ in (11), all
learned from the data (x, y) ∼ P and f∗ adaptively. The following
holds,

f∞ ∈ H∞, �∞ ∈ Ker(K∞) ⊂ Ker(H∞),

with H∞ ⊕ Ker(K∞) �= L2
μ. In other words, GD on NN

decomposes f∗ into two parts, and each lies in a space that is
NOT the orthogonal complement to the other.

Remark 3.2. As we can see Ker(K∞) and Ker(H∞) are not the
same. Therefore, the decomposition f∞ + �∞ is not a trivial
orthogonal decomposition to the RKHS H∞ and its comple-
ment.

Recall Theorem 3.1, projecting f∗ to the RKHS H∞ with the
data-adaptive kernel

H∞(x, x̃) =
∫

σ(xT)σ(x̃T)|ρ∞|(d)

associated with |ρ∞| is the same as the function constructed by
neural networks (GD limit as t → ∞). However, the residual
lies in a possibly much smaller space due to Theorem 3.2, which
is the null space of the RKHS K∞

K∞(x, x̃) =
∫ (‖	‖21xT	≥01x̃T	≥0xTx̃ + σ(xT)σ(x̃T)

)
× |ρ∞|(d).

In other words, as the learned adaptive basis H∞ (from GD)
depends on the data distribution and the task f∗ implicitly, it
has the advantage of representing f∗ by squeezing the residual
into a smaller subspace in the null space of H∞. A pictural
illustration can be found in Figure 2. This representation and
approximation benefit helps with explaining the better interpo-
lation results obtained by neural networks (Zhang et al. 2016;

1512 X. DOU AND T. LIANG

Liang and Rakhlin 2018; Belkin et al. 2018; Belkin, Ma, and
Mandal 2018): (1) the adaptive basis is tailored for the task f∗,
thus the residual/interpolation error lies in a smaller space; (2)
in view of the ODE in Corollary 5.2, the second layer of NN
adds implicit regularization to the smallest eigenvalues of Kt ,
thus improving the converging speed of �t to zero.

Before concluding this section, we remark that a similar
result holds for the ERM problem (6). As we shall discuss in the
next section, the gap between H∞ and K∞ can be large, even
for the ERM problem.

4. Implications of the Adaptive Theory

In this section, we will discuss some direct implications of the
adaptive kernel theory for neural networks established in this
article.

4.1. Example: Gap in Spaces H∞ and K∞
In Theorem 3.2, it is established that Ker(K∞) ⊂ Ker(H∞).
We now construct a concrete case to illustrate the potentially
significant gap in these two spaces as follows. Consider only one
neuron with m = 1, solving ERM problem (6) with n samples,
and x with dimension d. In this case, ρ∞ is supported on only
one point, noted as 	∞ ∈ R

d. Denote X ∈ R
n×d as the data

matrix, one can show that

H∞(X, X) = σ(X	T∞)︸ ︷︷ ︸
n×1

σ(X	T∞)T︸ ︷︷ ︸
1×n

has rank 1. In contrast,

K∞(X, X) � diag(1X	T∞≥0)X︸ ︷︷ ︸
n×d

XTdiag(1X	T∞≥0)︸ ︷︷ ︸
d×n

can be of rank d ∧ |{i : xT
i 	∞ ≥ 0}|. Hence, the null space of

K∞ is much smaller than that of H∞. The gap can be large for
many other settings of (n, m, d).

4.2. Connections to Min-norm Interpolation

The following result establishes the connections between the
solution of gradient descent on neural networks (at local sta-
tionarity), and the kernel ridgeless regression (Belkin, Ma, and
Mandal 2018; Liang and Rakhlin 2018; Hastie et al. 2019) with
an adaptive kernel Ĥλ∞. Empirical evidence on the similarity
between the interpolation with kernels and neural networks was
discovered in Belkin, Ma, and Mandal (2018). The following
proposition provides a novel way of studying the generalization
property of neural networks via adaptive kernels.

Proposition 4.1 (Interpolation: Connection to kernel ridge-
less regression). Consider the gradient flow dynamics on
all the weights of the neural network function ft(x) =∑m

j=1 wj(t)σ (xTuj(t)), to solve the �2-regularized ERM

1
2n

n∑
i=1

(yi − ft(xi))
2 + λ

2m

m∑
j=1

[
wj(t)2 + ‖uj(t)‖2] .

Consider only the bounded assumption on initialization that
|w2

j (0) − ‖uj‖2(0)| < ∞ for all 1 ≤ j ≤ m. At stationar-
ity, denote the signed measure as ρ̂λ∞ and the corresponding
adaptive kernel as Ĥλ∞. Then the neural network function at
stationarity f̂ nn,λ∞ (x) satisfies,

f̂ nn,λ∞ (x) = Ĥλ∞(x, X)
[n

m
λ · In + Ĥλ∞(X, X)

]−1
Y .

In the vanishing regularization λ → 0 limit, the neural
network function converges to the kernel ridgeless regression
with the adaptive kernel, when Ĥ∞(X, X) := limλ→0 Ĥλ∞ exists,

lim
λ→0

f̂ nn,λ∞ (x) = Ĥ∞(x, X)Ĥ∞(X, X)+Y = f̂ rkhs∞ (x).

Note that the generalization theory for the kernel ridgeless
regression has been established in Liang and Rakhlin (2018) and
Hastie et al. (2019). Here, the kernel Ĥ∞(X, X) is data-adaptive
(that adapts to f∗) learned along training, instead of being fixed
and prespecified.

4.3. Connections to Random Kitchen Sinks

Let us introduce two function spaces, with the base measure ρ0
(fixed representation)

�2(ρ0) :=
{

f (x) | f (x) =
∫

σ(xT)w()ρ0(d), w ∈ L2
ρ0

}
,

�1(ρ0) :=
{

f (x) | f (x) =
∫

σ(xT)w()ρ0(d), w ∈ L1
ρ0

}
.

In random kitchen sinks studied in Rahimi and Recht (2008,
2009), by assuming f∗ ∈ �2(ρ0) that lies in the RKHS, the
approximation error can be controlled by the existence of the
following function with θj, j ∈ [m] iid sampled from ρ0

f̂ (x) = 1
m

m∑
j=1

σ(xT	j)w(j) ∈ �1(ρ0), but f̂ (x) /∈ �2(ρ0).

Note that f̂ lies in a possibly much larger space �1(ρ0) though
the target only lies in f∗ ∈ �2(ρ0). Similarly for two-layer neural
networks function ft(x) considered in Bach (2017, sec. 2.3), the
RKHS space �2(ρ0) can be more restrictive compared to ft ∈
�1(ρ0).

In contrast, with the adaptive RKHS representation H∞, we
have shown that

f∞(x) ∈ �1(|ρ∞|), and f∞(x) ∈ �2(|ρ∞|).

The extreme case of fully adaptive function space �2(|ρ∗|)
is defined with ρ∗ tailored for f∗, f∗ = ∫

σ(xT)ρ∗(d).
The adaptive representation learned by neural networks can be
viewed as in between the fixed and the fully adaptive represen-
tation.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1513

Figure 2. Illustration of Theorem 3.2: fixed basis versus adaptive learned basis. In classic statistics, one specifies the fixed function space/basis H0 then decompose f∗ into
the projection f̂0 and residual �0 ∈ Ker(H0). However, for GD on NN, one learns the adaptive basis H∞ that depends on f∗ . Therefore, the residual �∞ lies in a subspace
of Ker(H∞).

4.4. Adaptive Generalization Theory

Now we attempt to provide a new decomposition to study the
generalization of NN via adaptive kernels. Recall we have shown
that f̂ rkhs∞ (x) = limλ→0 f̂ nn,λ∞ (x) = Ĥ∞(x, X)Ĥ∞(X, X)+Y ,
where Ĥ∞(x, x̃) := ∫

σ(xT)σ(x̃T)ρ̂
(n,m)∞ (d). Define the

population limit ρ
(m)∞ (d) := limn→∞ ρ̂

(n,m)∞ and H∞(x, x̃) :=∫
σ(xT)σ(x̃T)ρ

(m)∞ (d). Denote the ridgeless regression
with the population adaptive kernel H∞,

f rkhs∞ (x) = H∞(x, X)H∞(X, X)+Y .

Assume (y − f∗(x))2 ≤ σ 2 a.s. (can be relaxed). One can derive
the following decomposition for generalization.

Proposition 4.2 (Adaptive generalization).

‖ lim
λ→0

f̂ nn,λ∞ − f∗‖2
μ

� ‖̂f rkhs∞ − f rkhs∞ ‖2
μ︸ ︷︷ ︸

adaptive representation error

+ ‖f∞ − f∗‖2
μ︸ ︷︷ ︸

adaptive approximation error

+ (n‖f∞ − f∗‖2
μ̂

+ σ 2) E
x∼μ

‖H∞(X, X)−1H∞(X, x)‖2︸ ︷︷ ︸
adaptive variance

+ ‖H∞(x, X)H∞(X, X)−1f∞(X) − f∞(x)‖2
μ︸ ︷︷ ︸

adaptive bias

.

Note this result holds without requiring global optimization
guarantees. The first term is the representation error, which
corresponds to the closeness of the adaptive RKHS Ĥ∞ (using
empirical distribution) and H∞ (using population distribu-
tion). The second term is the adaptive approximation error
studied in the current article. The third and fourth terms are
the variance and bias expressions studied in Liang and Rakhlin
(2018), Hastie et al. (2019), Rakhlin and Zhai (2018), Bartlett
et al. (2019), and Liang, Rakhlin, and Zhai (2020), as if assuming
the actual function lies in H∞. This decomposition suggests
the possibility of studying generalization without explicit global
understanding of the optimization, and providing rates that
adapts to f∗ without structural assumptions.

5. Time-Varying Kernels and Evolution

In this section, we lay out the mathematical details on the time-
varying kernels and the evolution of the signed measure ρt
supporting the main results. In the meantime, we will discuss
in depth the relevant literature motivating our proof ideas.

First, we describe the motivation behind the dynamic
RKHS Kt , and the GD kernel induced by the gradient descent
dynamics. Extensions to the multilayer perceptrons will be in
Appendix 1.2.

Lemma 5.1 (Dynamic kernel of finite neurons GD). Consider the
approximation problem (1) with a neural network function (2),
and the training process (3) with population distribution. Let
�t(x) = f∗(x) − ft(x) be the residual. Define the time-varying
kernel Kt(·, ·) : X × X → R,

Kt(x, x̃) =
m∑

j=1

[
σ(xTuj(t))σ (x̃Tuj(t))

+ wj(t)21xT uj(t)≥01x̃T uj(t)≥0xTx̃
]

. (12)

Then the residual �t driven by the GD dynamics satisfies,

dEx
[1

2�t(x)2]
dt

= −Ex,x̃ [�t(x)Kt(x, x̃)�t(x̃)] . (13)

When running GD to solve the empirical risk minimization
(ERM), the dynamics of the finite-dimensional sample resid-
ual ‖�t‖2

μ̂
has been established in Jacot, Gabriel, and Hongler

(2018) and Du et al. (2018). Here, we generalize the result to
optimize the weights of both layers, and to solve the infinite-
dimensional population approximation problem rather than
the empirical risk minimization problem. For a general loss
function �(y, f) with curvature (say, logistic loss), similar results
hold under slightly stronger conditions.

Corollary 5.1. Consider a general loss function �(y, f) that is
α-strongly convex in the second argument f , with Kt defined
in (12). Assume in addition 1

n Kt(X, X) ∈ R
n×n has smallest

eigenvalue λt > 0. Define �t(xi) := ∂�(yi,ft(xi))
∂f , then we have

1514 X. DOU AND T. LIANG

for all f∗ : Rd → R,

dÊ
[
�(y, ft(x))

]
dt

= −Êx,x̃ [�t(x)Kt(x, x̃)�t(x̃)]

≤ −2αλt · Ê
[
�(y, ft(x)) − �(y, f∗(x))

]
.

5.1. Initialization, Rescaling and K0

Now we describe the initialization and rescaling schemes used
in the main theorems. Rewrite (1) according to the signs of the
second layer weights

ft(x) :=
m+∑
j=1

w+,j(t)σ (xTu+,j(t)) +
m−∑
j=1

w−,j(t)σ (xTu−,j(t)).

5.1.1. Initialization
We consider the “infinitesimal” initialization drawn iid from
two probability measures ρ+,0 and ρ−,0 that do not depend on
m:

u+,j(0) = 1√
m

	+,j where 	+,j ∼ ρ+,0 ,

u−,j(0) = 1√
m

	−,j where 	−,j ∼ ρ−,0 . (14)

Here, m = m+ + m− with m+ � m−. The 1/
√

m rescaling
factor turns out to be crucial when defining the infinite neu-
rons limit for the evolution of signed measures. Remark that
such initialization is w.l.o.g., and accounts for the infinitesimal
nature used in practice when the number of neurons grows. For
the second layer weights, we impose the “balanced condition”
motivated by Maennel, Bousquet, and Gelly (2018),

w+,j(0) = ‖u+,j(0)‖ ≥ 0 , w−,j(0) = −‖u−,j(0)‖ ≤ 0. (15)

It turns out that with such initialization, the balanced condition
holds throughout the training process induced by gradient flow,
which is useful for the main theorems. Interestingly, in the proof
of Proposition 4.1, we show that such balanced condition always
holds at stationarity when training neural networks with �2
regularization, even for unbalanced initialization.

Proposition 5.1 (Balanced condition). For u+,j(t), u−,j(t), w+,j(t)
and w−,j(t), and the initialization specified above, at any time t,
we have

w+,j(t) = ‖u+,j(t)‖, w−,j(t) = −‖u−,j(t)‖.

5.1.2. Rescaling
To prepare for the distribution dynamic theory in the next
section, we introduce a parameter rescaling with the

√
m factor.

Let θ+,j(t) = √
mw+,j(t) and θ−,j(t) = √

mw−,j(t), also define
	+,j(t) = √

mu+,j(t) and 	−,j(t) = √
mu−,j(t) sampled from

ρ+,0 and ρ−,0 at t = 0. Under this representation,

ft(x) = 1
m

m+∑
j=1

θ+,j(t)σ (xT	+,j(t))

+ 1
m

m∑
j=1

θ−,j(t)σ (xT	−,j(t)). (16)

By the positive homogeneity of ReLU, we have the correspond-
ing dynamics on the rescaled parameters,

dθ·,j
dt

= √
m

dw·,j
dt

= −√
mEz

[
∂�(y, f (x))

∂f
σ(xTu·,j)

]
= −Ez

[
∂�(y, f (x))

∂f
σ(xT	·,j)

]
, (17)

d	·,j
dt

= √
m

du·,j
dt

= −√
mEz

[
∂�(y, f (x))

∂f
w·,j1xT u·,j≥0x

]
= −Ez

[
∂�(y, f (x))

∂f
θ·,j1xT	·,j≥0x

]
. (18)

Define at time t

ρ+,t := 1
m

m+∑
j=1

δ	+,j(t), ρ−,t := 1
m

m−∑
j=1

δ	−,j(t) (19)

as the empirical distribution over neurons on the parameter
space 	. The ρ+,t and ρ−,t converge weakly to proper dis-
tributions in the infinite neurons limit m → ∞ (see, e.g.,
Bach 2017; Mei, Montanari, and Nguyen 2018). Through the
balanced condition in Proposition 5.1 and Proposition 1.1 (see
Appendix), we know by substituting θj with ‖	j‖

ft(x) =
∫

‖	‖σ(xT)ρt(d),

where the signed measure ρt := ρ+,t − ρ−,t . (20)

The above motivates the study of the RKHS Ht as in Theo-
rem 3.1, with the kernel

Ht(x, x̃) =
∫

‖	‖2σ(xT)σ(x̃T)|ρt|(d). (21)

To conclude this section, we provide the explicit formula for
the initial kernel matrix K0 under such infinitesimal random
initialization. Specifically, consider the initialization with wj
being ±1/

√
m with equal chance and ui ∼ N(0, 1/m · Id) iid

sampled. The initial kernel K0 has the following expression, in
the infinite neurons limit.

Lemma 5.2 (Fixed kernel). With initialization specified above,
consider w.l.o.g. ‖x‖ = ‖x̃‖ = 1, and denote 	 ∼ π as the
isotropic Gaussian N(0, Id). By the strong law of large number,
we have almost surely,

lim
m→∞ K0(x, x̃)

= E	∼π

[
σ(xT)σ(x̃T) + 1xT	>01x̃T	>0xTx̃

]
=

[
π − arccos(t)

π
t +

√
1 − t2

2π

]
, where t = xTx̃.

Much known results (Bengio et al. 2006; Rahimi and Recht
2008; Cho and Saul 2009; Daniely, Frostig, and Singer 2016;
Bach 2017) on the connection between RKHS and two-layer
NN focus on some fixed kernel, such as K0. To instantiate
useful statistical rates, one requires f∗ to lie in the corresponding
prespecified RKHS K0, which is nonverifiable in practice. In
contrast, the dynamic kernel is less studied. We will establish
a dynamic and adaptive kernel theory defined by GD, without
making any structural assumptions on f∗ other than f∗ ∈ L2

μ.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1515

5.2. Evolution of ρt

In this section, we derive the evolution of the signed measure
ρt defined by the neurons at the training t, which in turn deter-
mines the dynamic kernel Kt defined in (12). To generalize the
result to the case of infinite neurons, we follow and borrow tools
from the mean-field characterization (Jordan, Kinderlehrer, and
Otto 1998; Mei, Montanari, and Nguyen 2018; Rotskoff and
Vanden-Eijnden 2018). The rescaling described in the previous
section proves handy when defining such infinite neurons limit.
We define the velocity field driven by the regression task and the
interaction among neurons,

V() = E[yσ(xT)], U(, 	̃) = −E[σ(xT)σ(xT	̃)].
(22)

The following theorem casts the training process as distribution
dynamics on ρ+,t , ρ−,t .

Lemma 5.3 (Dynamic kernel and evolution). Consider the
approximation problem (1), and the gradient flow as the training
dynamic (3). For ρ+,t , ρ−,t and ρt defined in (19) with possibly
infinite neurons, we have the following PDE characterization on
distribution dynamics of ρ+,t , ρ−,t

∂tρ+,t() = −∇	 ·
[
ρ+,t() · ‖	‖

(
∇	V()

+ ∇	

∫
U(, 	̃)‖	̃‖ρt(d	̃)

)]
,

∂tρ−,t() = ∇	 ·
[
ρ−,t() · ‖	‖

(
∇	V()

+ ∇	

∫
U(, 	̃)‖	̃‖ρt(d	̃)

)]
. (23)

Moreover, the GD kernel Kt is defined as

Kt(x, x̃) =
∫ (‖	‖21xT	≥01x̃T	≥0xTx̃ + σ(xT)σ(x̃T)

)
× |ρt|(d). (24)

Remark 5.1. As in Mei, Montanari, and Nguyen (2018) and
Rotskoff and Vanden-Eijnden (2018), let’s first show that in the
infinite neurons limit m → ∞, ρ+,t , ρ−,t are properly defined,
with Equation (23) characterizing the distribution dynamics.
For simplicity, we assume the initialization ρ+,0, ρ−,0 is with
bounded support. Add the superscript m, ρ

(m)
+,t , ρ(m)

−,t , ρ(m)
t to

(19) to indicate their dependence on m. Consider that ∇	V(),
∇	U(, 	̃) in (22) are bounded and uniform Lipchitz contin-
uous as in Mei, Montanari, and Nguyen (2018, A3). With the
same proof as in Mei, Montanari, and Nguyen (2018, Theorem
3), one can show that with m → ∞, the initial distribution
ρ

(m)
0

d−→ ρ0 = ρ+,0 − ρ−,0 by law of large number. And by the
solution’s continuity w.r.t. the initial value, we have ρ

(m)
t

d−→ ρt
as m → ∞ well defined, for any fixed t.

Note that our problem setting is slightly different from that in
Mei, Montanari, and Nguyen (2018), where the authors consider
the NN with fixed second layer weights to be 1/m. We reiterate
that the reparameterization via θ and 	 is crucial: (1) weights
on both layers are optimized following the gradient flow; (2)
infinitesimal random initialization is employed in practice. In

the setting of Mei, Montanari, and Nguyen (2018, eq. (3)),
the training process is slightly different from the vanilla GD
on weights, with an additional m factor in the velocity term.
This subtlety is also mentioned in Rotskoff and Vanden-Eijnden
(2018). In short, the rescaling looks at the dynamics where 	’s
are on the invariant scale as m → ∞ for any fixed effective time
t (that does not depend on m). Here, we analyze the exact gra-
dient flow on the two-layer weights, with infinitesimal random
initialization as in practice, resulting in a different velocity field
(22) compared to that in Mei, Montanari, and Nguyen (2018).

The proof of Theorem 3.1 makes use of (20)–(21) and the
stationary condition implied by Lemma 5.3. The balanced con-
dition is crucial in both Theorem 3.1 and Proposition 4.1. The
details of the proof are deferred to Section 7.

5.3. Two RKHS: K∞ and H∞
In this section, we compare the two adaptive RKHS appeared
K∞ in (24), and H∞ in (21). The comparison will lead to the
proof of Theorem 3.2. We start with generalizing Lemma 5.1
with the possibly infinite neurons case via the distribution
dynamics in (23).

Corollary 5.2. Consider the same setting as in Lemma 5.1 with
possibly infinite neurons NN (20), and the training process (23).
Define the time-varying kernel matrix Kt(·, ·) : X × X → R,
with the signed measure ρt follows (23)

Kt(x, x̃) =
∫ (‖	‖21xT	≥01x̃T	≥0xTx̃ + σ(xT)σ(x̃T)

)
× |ρt|(d) (25)

=: K(0)
t (x, x̃) + K(1)

t (x, x̃). (26)

Then we still have dEx
[1

2�t(x)2]/dt = −Ex,x̃
[
�t(x)Kt(x, x̃)

�t(x̃)
]
.

It turns out that the kernels K∞ and H∞, defined in (11) and
(7), respectively, satisfy the following inclusion property.

Proposition 5.2. Consider the training process reaches any sta-
tionarity ρ∞ = ρ+,∞ − ρ−,∞ with compact support within
radius D and finite total variation. We have

K∞ � K(0)∞ � K(1)∞ � 1
D2 H∞, (27)

with K(0)∞ , K(1)∞ defined in (26). Combining with the fact that
H∞ �= K∞ implies

Ker(K∞) ⊂ Ker(H∞).

The proof of Theorem 3.2 uses the following fact: when
reaching stationarity, due to the ODE defined by GD in
Lemma 5.1, the residual must satisfy

�∞(x) = f∗(x) − f∞(x) ∈ Ker(K∞). (28)

The proof of Proposition 5.2 and Theorem 3.2 are deferred to
Section 7.

1516 X. DOU AND T. LIANG

Figure 3. Log of the sorted top 80% eigenvalues of kernel matrix along training with different f∗ .

6. Experiments

We run experiments to illustrate the spectral decay of the
dynamic kernels defined in Kt over time t. The exercise is to
quantitatively showcase that during neural network training,
one does learn the data-adaptive representation, which is
task-specific depending on the true complexity of f∗. The
training process is the same as the one we theoretically analyze:
vanilla gradient descent on a two-layer NN of m neurons, with
infinitesimal random initialization scales as 1/

√
m.

The first experiment is a synthetic exercise with well-
specified models. We generate {xi}50

i=1 from isotropic Gaussian
in R

5, and yi = f∗(xi) = ∑J
j=1 w∗

j σ(xT
i u∗

j) with different J.
In other words, we choose different target f∗ (task complexity)
by varying J. We select m = 500 in our experiment. The top
80% of the sorted eigenvalues of the kernel matrix Kt along the
GD training process are shown in Figure 3. The x-axis is the
index of eigenvalues in descending order, and the y-axis is the
logarithmic values of the corresponding eigenvalues. Different
color indicates the spectral decay of the Kt at different training
time t. The eigenvalue-decays stabilize over time t means that
the training process approaches stationarity. As we can see
with f∗ belongs to the NN family, the eigenvalues of the kernel
matrix, in general, become larger during the training process.
For a more complicated target function, it takes longer to reach
stationarity.

The second experiment is another synthetic test on fitting
random labels. We generate {xi}50

i=1 from isotropic Gaussian in
R

5, as yi takes ±1 with equal chance. We select m = 200, 500,
and n = 50, 200 to investigate those parameters’ influence on
the kernel Kt . We want to point out two observations. First, fixed

n, we investigate over-parameterized models (m = 200, 500
large). Shown from Figure 4 along the row, the kernels for
different m’s behave much alike. In other words, in the infinite
neurons limit, the kernel will stabilize. Second, fixed m, we vary
the number of samples n, to simulate different interpolation
hardness. As seen from Figure 4 along the column, the kernels
and the convergence over time are distinct, reflecting the differ-
ent difficulty of the interpolation.

The third experiment (Figure 5) is regression using the
MNIST dataset with different sample size n = 50, 200. We hope
to investigate the influence of sample size on the kernel matrix
along the training process. For a larger sample size N, it takes
longer to reach stationarity.

7. Main Proofs

Proof of Theorem 3.1. From the definition, we have T ∗p ∈ H∞
for any p ∈ L2|ρ∞|, and T ∗ is a surjective mapping. Suppose that
ĝ ∈ H∞ is a minimizer of (9), then we claim that for any p ∈
L2|ρ∞|, one must have

〈f∗ − ĝ, T ∗p〉μ = 0, ∀p ∈ L2|ρ∞|. (29)

This claim can be seen from the following argument. Suppose
not, then for p that violates the above, construct

ĝε = ĝ + εT ∗p ∈ H∞,

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1517

Figure 4. Log of the sorted top 80% eigenvalues of kernel matrix along training with random labels.

Figure 5. Log of sorted top 90% eigenvalues of kernel matrix along training process for mnist.

we know

‖f∗ − ĝε‖2
μ = ‖f∗ − ĝ‖2

μ − 2ε〈f∗ − ĝ, T ∗p〉μ + ε2‖T ∗p‖2
μ.
(30)

For ε with the same sign as 〈f∗−ĝ, T ∗p〉μ �= 0 and small enough,
one can see that ‖f∗ − ĝε‖2

μ < ‖f∗ − ĝ‖2
μ which validates that ĝ

is a minimizer. From the same argument, one can see that ĝ is a
minimizer if and only if (29) holds, in other words,

〈T (f∗ − ĝ), p〉|ρ∞| = 〈f∗ − ĝ, T ∗p〉μ = 0. (31)

From PDE characterization (23) with ReLU activation, one
knows that

V() = E[yσ(xT)] = E[f∗(x)σ (xT)]
U(, 	̃) = −E[σ(xT)σ(xT	̃)]

and the expression for the velocity field

‖	‖
(

∇	V() + ∇	

∫
U(, 	̃)‖	̃‖ρt(d	̃)

)
= ‖	‖

(∫
f∗(x)x1xT	>0μ(dx)

−
∫ ∫

x1xT	>0σ(xT	̃)‖	̃‖ρ∞(d	̃)μ(dx)

)
.

1518 X. DOU AND T. LIANG

We know that any stationary point
(
ρ+,∞, ρ−,∞

)
has the follow-

ing property (Mei, Montanari, and Nguyen 2018):

supp(ρ∞) ⊆
{
	 :

∫
f∗(x)x1xT	>0μ(dx)

=
∫ ∫

x1xT	>0σ(xT	̃)‖	̃‖ρ∞(d	̃)μ(dx)

}
.

(32)

Multiplying both sides by ‖	‖	T and recall the property of
ReLU, the above condition implies that for all 	 ∈ supp(ρ∞),
we have∫

f∗(x)‖	‖σ(xT)μ(dx)

=
∫ ∫

‖	‖σ(xT)σ(xT	̃)‖	̃‖ρ∞(d	̃)μ(dx). (33)

One can see the stationary condition on ρ∞ (fixed points of the
dynamics) (33) translates to

T f∗() =
(
T T
 dρ∞

d|ρ∞|
)

(), ∀	 ∈ supp(ρ∞). (34)

Here, the function dρ∞
d|ρ∞| is the Radon–Nikodym derivative. In

addition, one can easily verify that, as ρ∞ has bounded total
variation

dρ∞
d|ρ∞| ∈ L2|ρ∞|.

Therefore, combining all the above, one knows that

f∞(x) =
∫

‖	‖σ(xT)ρ∞(d) = T
 dρ∞
d|ρ∞| ∈ H∞

and that for any p ∈ L2|ρ∞|
〈f∗ − f∞, T ∗p〉μ = 〈T (f∗ − f∞), p〉|ρ∞|, (35)

=
〈
T f∗ − T T
 dρ∞

d|ρ∞| , p
〉
|ρ∞|

, (36)

=
∫ (

T f∗ − T T
 dρ∞
d|ρ∞|

)
()|ρ∞|(d) = 0

due to (34). (37)

We have proved that f∞ = T
 dρ∞
d|ρ∞| satisfies normal condition

for being a minimizer to (9).

Proof of Proposition 5.2. The first inequality in (27) is trivial.
For the second inequality, it suffices to show for any c =
(c1, . . . , cp)T , x1, . . . , xp, 	, we have∑

i,j
cicj‖	‖2xT

i xj1xT
i 	>01xT

j 	>0 ≥
∑

i,j
cicjσ(xT

i)σ(xT
j).

(38)
The RHS equals∑

i,j
cicjxT

i 	xT
j 	1xT

i 	>01xT
j 	>0 =

(∑
i

cixT
i 	1xT

i 	>0

)2

,

(39)

= 〈	,
∑

i
cixi1xT

i 	>0〉2 ≤ ‖	‖2

∥∥∥∥∥∑
i

cixi1xT
i 	>0

∥∥∥∥∥
2

= LHS.

(40)

For the last inequality, with compactness condition on ρ∞, we
have ∑

i,j
cicj

∫
‖	‖2σ(xT

i)σ(xT
j)|ρ∞|()

≤ D2
∑

i,j
cicj

∫
σ(xT

i)σ(xT
j)|ρ∞|(). (41)

Therefore, D2K(1)∞ � H∞.

Proof of Theorem 3.2. Let us rewrite Corollary 5.2 into

d
dt

‖�t‖2
μ = −2〈�t ,Kt�t〉μ = −2‖K1/2

t �t‖2
μ, (42)

here Kt : L2
μ(x) → L2

μ(x) denotes the integral operator
associated with Kt ,

(Ktf)(x) :=
∫

Kt(x, x̃)f (x̃)μ(dx̃). (43)

From (42)

d
dt

‖�∞‖2
μ = −2‖K1/2∞ �∞‖2

μ, (44)

we know that the RHS equals zero implies

‖K1/2∞ �∞‖2
μ = 0

〈K1/2∞ g, �∞〉μ = 〈g,K1/2∞ �∞〉μ = 0, ∀g ∈ L2
μ.

This further implies �∞ lies in the kernel of RKHS K∞ as
K∞ = {K1/2∞ g : g ∈ L2

μ}.

Proof of Proposition 4.1. The gradients on the original parame-
ters are,

dwj(t)
dt

= −Ê
[
∂�(y, ft)

∂f
σ(xTuj(t))

]
− 1

m
λwj(t),

duj(t)
dt

= −Ê
[
∂�(y, ft)

∂f
wj(t)1xT uj(t)≥0x

]
− 1

m
λuj(t).

Clearly, on the rescaled parameter, the following holds

dθj

dt
= √

m
dwj

dt
= −Ê

[
(ft(x) − y)σ (xT	j(t))

] − 1
m

λθj,

d	j

dt
= √

m
duj

dt
= −Ê

[
(ft(x) − y)θj1xT	j≥0x

]
− 1

m
λ	j.

Multiply the first equation by θj, and the second equation by θT
j ,

take the difference, we can verify that

d(θ2
j − ‖	j‖2)

dt
= −λ/m(θ2

j − ‖	j‖2), (45)

θj(t)2 − ‖	j(t)‖2 = (
θj(0)2 − ‖	j(0)‖2) exp(−λt/m). (46)

Therefore, the balanced condition still holds at stationarity for
arbitrary bounded initialization,

θj(∞)2 − ‖	j(∞)‖2 = 0, ∀j.

Now the optimality condition for the velocity field reads the
following, for any 	j(∞) ∈ supp(ρ̂λ∞) (we abbreviate the ∞

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1519

in the following display, note θ̃ (∞) corresponds to the second
layer weights w.r.t. to 	̃(∞))

θĵE[y1xT	j≥0x]
= θj

∫
θ̃ Ê[1xT	j≥0xσ(xT	̃)]|ρ̂λ∞|(d	̃) + 1

m
λ	j,

Multiply by 	T
j ,

=
∫

θjθ̃ Ê[σ(xT	j)σ (xT	̃)]|ρ̂λ∞|(d	̃) + λ

m
‖	j‖2,

=
∫

θjθ̃ Ê[σ(xT	j)σ (xT	̃)]|ρ̂λ∞|(d	̃)

+ λ

∫
θjθ̃1	̃=	j

|ρ̂λ∞|(d	̃),

where the last step uses the condition θ2
j (∞) = ‖	j(∞)‖2, and

the fact that |ρ̂λ∞| = 1
m

∑m
j=1 δ	j and

∫
θjθ̃1	̃=	j

|ρ̂λ∞|(d	̃) = 1
m

θ2
j = 1

m
‖	j‖2.

In the matrix form, where ρ̂λ∞ = 1
m

∑
l∈[m] sgn(θl)δ	l∑

l∈[m]

[
nÛ(j, 	l) + nλI	l=	j

]
θl/m = σ(T

j X)Y .

Therefore, define σ(xT�) := [σ(xT	1), . . . , σ(xT	m)] ∈
R

1×m, and σ(X�) := [σ(xT
1 �)T , . . . , σ(xT

n �)T] ∈ R
m×n, we

have

f̂ nn,λ∞ (x) =
∑

l∈[m]
θlσ(xT	l)/m

= σ(xT�)[σ(X�)σ(X�)T + nλIm]−1σ(X�)Y

= σ(xT�)σ(X�)[σ(X�)Tσ(X�) + nλIn]−1Y

= Ĥλ∞(x, X)
[
Ĥλ∞(X, X) + n/m · λIn

]−1 Y .

The last line follows as Ĥλ(x, x̃) := ∫
σ(xT)σ(x̃T)|ρ̂λ∞|

(d) = 1/m · σ(xT�)σ(x̃T�)T .

Supplementary Materials

The remaining proofs are designated to the appendix, which is included in
the supplementary materials.

Acknowledgments

We thank three anonymous referees for constructive feedback. Tengyuan
Liang would like to acknowledge Maxim Raginsky for pointing out relevant
references.

Funding

Liang gratefully acknowledges support from the George C. Tiao Fellowship.

References

Anthony, M., and Bartlett, P. L. (2009), Neural Network Learning: Theoreti-
cal Foundations, Cambridge: Cambridge University Press. [1507]

Bach, F. (2017), “Breaking the Curse of Dimensionality With Convex
Neural Networks,” Journal of Machine Learning Research, 18, 1–53.
[1507,1508,1510,1512,1514]

Barron, A. R., Cohen, A., Dahmen, W., and DeVore, R. A. (2008), “Approx-
imation and Learning by Greedy Algorithms,” The Annals of Statistics,
36, 64–94. [1508]

Bartlett, P. L., Long, P. M., Lugosi, G., and Tsigler, A. (2019), “Benign
Overfitting in Linear Regression,” arXiv no. 1906.11300. [1513]

Belkin, M., Hsu, D., Ma, S., and Mandal, S. (2018), “Reconciling Mod-
ern Machine Learning and the Bias-Variance Trade-Off,” arXiv no.
1812.11118. [1508,1512]

Belkin, M., Ma, S., and Mandal, S. (2018), “To Understand Deep Learn-
ing We Need to Understand Kernel Learning,” arXiv no. 1802.01396.
[1508,1512]

Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., and Marcotte, P. (2006),
“Convex Neural Networks,” in Advances in Neural Information Processing
Systems, pp. 123–130. [1514]

Casselman, B. (2014), “Essays in Analysis.” [1509]
Chizat, L., and Bach, F. (2018), “A Note on Lazy Training in Supervised

Differentiable Programming,” arXiv no. 1812.07956. [1508]
Cho, Y., and Saul, L. K. (2009), “Kernel Methods for Deep Learning,”

in Advances in Neural Information Processing Systems, pp. 342–350.
[1508,1510,1514]

Cybenko, G. (1989), “Approximation by Superpositions of a Sigmoidal
Function,” Mathematics of Control, Signals and Systems, 2, 303–314.
[1507]

Daniely, A., Frostig, R., and Singer, Y. (2016), “Toward Deeper Understand-
ing of Neural Networks: The Power of Initialization and a Dual View on
Expressivity,” in Advances in Neural Information Processing Systems, pp.
2253–2261. [1507,1508,1510,1514]

Du, S. S., Zhai, X., Poczos, B., and Singh, A. (2018), “Gradient Descent
Provably Optimizes Over-Parameterized Neural Networks,” arXiv no.
1810.02054. [1508,1513]

Farrell, M. H., Liang, T., and Misra, S. (2018), “Deep Neural Networks
for Estimation and Inference: Application to Causal Effects and Other
Semiparametric Estimands,” arXiv no. 1809.09953. [1507]

Geman, S., and Hwang, C.-R. (1982), “Nonparametric Maximum Likeli-
hood Estimation by the Method of Sieves,” The Annals of Statistics, 10,
401–414. [1507]

Ghorbani, B., Mei, S., Misiakiewicz, T., and Montanari, A. (2019), “Lin-
earized Two-Layers Neural Networks in High Dimension,” arXiv no.
1904.12191. [1508]

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J. (2019), “Surprises
in High-Dimensional Ridgeless Least Squares Interpolation,” arXiv no.
1903.08560. [1512,1513]

Hornik, K., Stinchcombe, M., and White, H. (1989), “Multilayer Feedfor-
ward Networks Are Universal Approximators,” Neural Networks, 2, 359–
366. [1507]

Huang, C., Cheang, G. H. L., and Barron, A. R. (2008), “Risk of Penalized
Least Squares, Greedy Selection and �1-Penalization for Flexible Func-
tion Libraries,” PhD thesis, Yale University. [1508]

Jacot, A., Gabriel, F., and Hongler, C. (2018), “Neural Tangent Kernel:
Convergence and Generalization in Neural Networks,” in Advances in
Neural Information Processing Systems, pp. 8571–8580. [1508,1513]

Jones, L. K. (1992), “A Simple Lemma on Greedy Approximation in Hilbert
Space and Convergence Rates for Projection Pursuit Regression and
Neural Network Training,” The Annals of Statistics, 20, 608–613. [1508]

Jordan, R., Kinderlehrer, D., and Otto, F. (1998), “The Variational Formu-
lation of the Fokker–Planck Equation,” SIAM Journal on Mathematical
Analysis, 29, 1–17. [1515]

Koehler, F., and Risteski, A. (2018), “Representational Power of ReLU
Networks and Polynomial Kernels: Beyond Worst-Case Analysis,” arXiv
no. 1805.11405. [1507]

Liang, T., and Rakhlin, A. (2018), “Just Interpolate: Kernel ‘Ridgeless’
Regression Can Generalize,” The Annals of Statistics (to appear).
[1508,1512,1513]

1520 X. DOU AND T. LIANG

Liang, T., Rakhlin, A., and Zhai, X. (2020), “On the Multiple Descent of
Minimum-Norm Interpolants and Restricted Lower Isometry of Ker-
nels,” arXi no. 1908.10292. [1513]

Ma, S., Bassily, R., and Belkin, M. (2017), “The Power of Interpolation:
Understanding the Effectiveness of SGD in Modern Over-Parametrized
Learning,” arXiv no. 1712.06559. [1508]

Maennel, H., Bousquet, O., and Gelly, S. (2018), “Gradient Descent Quan-
tizes ReLU Network Features,” arXiv no. 1803.08367. [1509,1514]

Mei, S., Montanari, A., and Nguyen, P.-M. (2018), “A Mean Field View of
the Landscape of Two-Layers Neural Networks,” arXiv no. 1804.06561.
[1508,1514,1515,1518]

Niyogi, P., and Girosi, F. (1996), “On the Relationship Between Generaliza-
tion Error, Hypothesis Complexity, and Sample Complexity for Radial
Basis Functions,” Neural Computation, 8, 819–842. [1507]

Park, J., and Sandberg, I. W. (1991), “Universal Approximation Using
Radial-Basis-Function Networks,” Neural Computation, 3, 246–257.
[1507]

Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., and Liao, Q. (2017),
“Why and When Can Deep-But Not Shallow-Networks Avoid the Curse
of Dimensionality: A Review,” International Journal of Automation and
Computing, 14, 503–519. [1507]

Rahimi, A., and Recht, B. (2008), “Random Features for Large-Scale Ker-
nel Machines,” in Advances in Neural Information Processing Systems,
pp. 1177–1184. [1507,1508,1512,1514]

(2009), “Weighted Sums of Random Kitchen Sinks: Replacing
Minimization With Randomization in Learning,” in Advances in Neural
Information Processing Systems, pp. 1313–1320. [1508,1512]

Rakhlin, A., and Zhai, X. (2018), “Consistency of Interpolation With
Laplace Kernels Is a High-Dimensional Phenomenon,” arXiv no.
1812.11167. [1509,1513]

Rotskoff, G. M., and Vanden-Eijnden, E. (2018), “Neural Networks as
Interacting Particle Systems: Asymptotic Convexity of the Loss Land-
scape and Universal Scaling of the Approximation Error,” arXiv no.
1805.00915. [1508,1515]

Rudi, A., and Rosasco, L. (2017), “Generalization Properties of Learning
With Random Features,” in Advances in Neural Information Processing
Systems, pp. 3215–3225. [1508]

Sirignano, J., and Spiliopoulos, K. (2019), “Mean Field Analysis of Neural
Networks: A Central Limit Theorem,” Stochastic Processes and Their
Applications, 130, 1820–1852. [1508]

Stone, C. J. (1980), “Optimal Rates of Convergence for Nonparametric
Estimators,” The Annals of Statistics, 8, 1348–1360. [1507]

Vapnik, V. (1998), Statistical Learning Theory (Vol. 3), New York: Wiley.
[1507]

Wahba, G. (1990), Spline Models for Observational Data (Vol. 59), Philadel-
phia, PA: SIAM. [1507]

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016), “Under-
standing Deep Learning Requires Rethinking Generalization,” arXiv no.
1611.03530. [1508,1511]

	Abstract
	1. Introduction
	1.1. Problem Formulation
	1.1.1. Function Approximation
	1.1.2. ERM and Interpolation

	2. Preliminaries and Summary
	2.1. Notations
	2.2. Preliminaries
	2.3. Organization and Summary
	2.3.1. Gradient Flow on NN Converges to Projection Onto Data-Adaptive RKHS
	2.3.2. Representation Benefits of Data-Adaptive RKHS
	2.3.3. Convergence to Ridgeless Regression With Adaptive Kernels

	3. Main Results: Benefits of Adaptive Representation
	3.1. Gradient Flow, Projection and Adaptive RKHS
	3.2. Representation Benefits of Adaptive RKHS

	4. Implications of the Adaptive Theory
	4.1. Example: Gap in Spaces H∞ and K∞
	4.2. Connections to Min-norm Interpolation
	4.3. Connections to Random Kitchen Sinks
	4.4. Adaptive Generalization Theory

	5. Time-Varying Kernels and Evolution
	5.1. Initialization, Rescaling and K0
	5.1.1. Initialization
	5.1.2. Rescaling

	5.2. Evolution of ρt
	5.3. Two RKHS: K∞ and H∞

	6. Experiments
	7. Main Proofs
	Supplementary Materials
	Acknowledgments
	Funding
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /ZapfDingbats
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 200
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.20
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.20
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ([Based on 'TandF-preview-FP'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

