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Abstract
We propose a computationally efficient method to con-
struct nonparametric, heteroscedastic prediction bands
for uncertainty quantification, with or without any
user-specified predictive model. Our approach provides
an alternative to the now-standard conformal predic-
tion for uncertainty quantification, with novel the-
oretical insights and computational advantages. The
data-adaptive prediction band is universally appli-
cable with minimal distributional assumptions, has
strong non-asymptotic coverage properties, and is easy
to implement using standard convex programs. Our
approach can be viewed as a novel variance interpola-
tion with confidence and further leverages techniques
from semi-definite programming and sum-of-squares
optimization. Theoretical and numerical performances
for the proposed approach for uncertainty quantification
are analysed.
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1 INTRODUCTION

A plausible criticism from the statistics community of modern machine learning is the lack of rig-
orous uncertainty quantification, with perhaps the exception in conformal prediction (Lei et al.,
2018; Romano et al., 2019; Vovk et al., 2005). Instead, the machine learning community would
argue that conventional uncertainty quantification based on idealized distributional assumptions
may be too restrictive for real data. Nevertheless, without a doubt, uncertainty quantification for
predictive modelling is essential to statistics, learning theory and econometrics. This paper will
resolve the above inference dilemma by introducing a new method with provable uncertainty
quantification via semi-definite programming. This paper provides an alternative approach to the
now-standard conformal prediction for uncertainty quantification, with novel theoretical insights
and computational advantages. The proposed method learns a data-adaptive, heteroscedastic pre-
diction band that is: (a) universally applicable without strong distributional assumptions, (b) with
desirable theoretical coverage with or without any user-specified predictive model and (c) easy
to implement via standard convex programs (when used in conjunction with a wide range of
positive-definite kernels).

Let (x, y) ∈  ×R be the covariates and response data pair drawn from an unknown
probability distribution  . There are plenty of regression or predictive models—denoted
by m0(x)—that estimate m(x) ∶= E[y |x = x] sufficiently well with finite data. However, to
make downstream decisions reliable, a good prediction band quantifying the uncertainty in
|y −m0(x)| with provable coverage is urgently needed. The prediction band is of particular rele-
vance to complex machine learning models that construct m0(x) in a less transparent way, such
as deep neural networks and boosting machines. This paper makes progress in filling in such
a gap: we estimate a nonparametric, heteroscedastic prediction band ̂PI(x) that enjoys provable
coverage with minimal data assumptions for any predictive model. Our approach can be viewed
as a novel variance interpolation with confidence and leverages techniques from sum-of-squares
relaxations for nonparametric variance estimation. On a non-technical level, this paper enriches
the toolbox of applied researchers with a theoretically justified new methodology for uncertainty
quantification and visualization, as in conformal prediction.

1.1 Semi-definite programs and prediction bands

We introduce our procedure for constructing the predictive band in this section. Let K(⋅, ⋅) ∶
 ×  → R be a continuous symmetric and positive-definite kernel function. Given n data pairs
{(xi, yi)}n

i=1 and the corresponding kernel matrix K ∈ Sn×n with Kij = K(xi, xj), our prediction band
is constructed based on the following semi-definite program (SDP)

min
B

Tr(KB)

s.t. ⟨Ki,BKi⟩ ≥ (yi −m0(xi))2, i = 1, … ,n
B ⪰ 0 (1)

where the optimization variable B ∈ Sn×n is a symmetric positive semi-definite (PSD) matrix,
m0(⋅) ∶  → R is a given predictive model (user-specified), and Ki ∈ Rn denotes the ith column
of the kernel matrix K. Given the estimated ̂B, the prediction band, ̂PI(x) that maps each x to an
interval, can be constructed accordingly
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̂PI(x, 𝛿) ∶=
[

m0(x) −
√
(1 + 𝛿) ⋅ v̂(x),m0(x) +

√
(1 + 𝛿) ⋅ v̂(x)

]

,∀x ∈  ,

where v̂(x) ∶= ⟨Kx, ̂BKx⟩,

and Kx ∶= [K(x, x1), … ,K(x, xn)]⊤ ∈ R
n
, (2)

with 𝛿 ∈ R being a scalar quantifying confidence. 𝛿 can be later calibrated for exact coverage
control, and may be set as 0 if n is large. Here v̂(x) estimates the variability in the ‘deviations’
ei ∶= yi −m0(xi). A few remarks on such deviations are in place.

1. First, ei’s can be computed based on any user-specified predictive model m0(x) that estimates
the conditional mean m0(x) ≈ E[y|x = x], be it accurate or not.

2. Second, in the absence of such a predictive model for the conditional mean, one can set m0(x) ≡
0 and learn a conditional second-moment function to assess uncertainty.

3. Last, as shown next in (3), in practice, one can simultaneously learn the conditional mean and
variance functions using a variant of the above SDP. Therefore, a pre-specified model m0(x) is
not required.

Let Km and Kv specify two kernel functions, corresponding to the conditional mean and vari-
ance functions respectively. Km

,Kv ∈ Sn×n denote empirical kernel matrices on finite data with
size n. For any 𝛾 ≥ 0, the following convex SDP program constructs the prediction band and the
conditional mean function simultaneously

min
𝛼,B

𝛾 ⋅ ⟨𝛼,Km
𝛼⟩ + Tr (KvB)

s.t.
⟨

Kv
i ,BKv

i
⟩
≥
(

yi −
⟨

Km
i , 𝛼
⟩)2

, i = 1, … ,n
B ⪰ 0 (3)

where the optimization variables are B ∈ Sn×n and 𝛼 ∈ Rn. Given the solution ̂B and 𝛼, the ̂PI(x)
is constructed as

̂PI(x, 𝛿) ∶=
[

m̂(x) −
√
(1 + 𝛿) ⋅ v̂(x), m̂(x) +

√
(1 + 𝛿) ⋅ v̂(x)

]

,∀x ∈  ,

where m̂(x) ∶= ⟨Km
i , 𝛼⟩ and v̂(x) ∶= ⟨Kv

x, ̂BKv
x⟩.

1.2 A numerical illustration

Before diving into the motivations behind the above SDPs (Section 1.3) and corresponding theory
(Section 2), let us first visually illustrate the empirical performance of the constructed predic-
tion bands on a toy numerical example. A complete simulation study comparing our methods
and conformal predictions will be deferred to Section 3.1. Details of the data generating processes
will be elaborated therein as well. The quick exercise here is to showcase that convex programs
(1) and (3) are easy to implement using standard optimization toolkits (say, CVX (Grant & Boyd,
2014)), and construct flexible prediction bands with desired coverage properties. As a motivat-
ing example, we try out the SDP (3), which simultaneously estimates the conditional mean and
variance functions. A minimal 10-line Python implementation is provided in Listing 1.

The first example is a linear model with heteroscedastic error: the conditional mean m(x)
being a linear function and variance v(x) being a quadratic (with the conditional variance
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(a) (b)

F I G U R E 1 From left to right: SLR, SDP1 and SDP2. For each plot, Blue dots denote training data
{(xi, yi)}n

i=1, Blue line denotes the estimated conditional mean m̂(x), and Blue band denotes the estimated
prediction band ̂PI(x). Red dots represent the unknown test distribution, and Red line denotes the true
conditional mean m(x) = E[y|x = x]. Here the training and test data share the same conditional distribution
y|x = x and thus m(x). The training and test data are shared in three plots. A good coverage corresponds to when
Blue band covers essentially all Red dots. Statistics are summarized in Table 1 [Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 1 Simulated examples

Coverage Median length Average length MSE

Figure 1a: linear m(x), quadratic v(x)

SLR 85.88% 8.2057 8.2658 0.6294

SDP1 91.13% 7.4689 7.7173 0.1146

SDP2 94.00% 7.2962 8.3361 0.1720

Figure 1b: rbf m(x), rbf v(x)

SLR 96.13% 4.8048 4.8185 0.2556

SDP1 99.25% 4.4138 4.6196 0.1916

SDP2 99.50% 3.3488 3.7506 0.1670

generated from a uniform distribution). We generate a training dataset of size n = 40 and com-
pare the coverage among three methods: (a) SLR, simple linear regression, (b) SDP1, a SDP (3)
with linear kernels Km and Kv for both mean and variance functions and (c) SDP2, a SDP (3) with
a linear Km and a (degree-3) polynomial kernel Kv. The coverage is compared on the same test
dataset of size N = 800. Here 𝛾 = 0.1. See Figure 1a for details and Table 1 for coverage statistics.

The second example is a non-linear, heteroscedastic error model: mean m(x) and variance
v(x) functions lying in a reproducing kernel Hilbert space (RKHS) with a radial basis function
(rbf) kernel. Here n= 60 training samples and N = 800 test samples are generated. Three methods
being compared are: (a) SLR, (b) SDP1, rbf kernel for Km and linear kernel for Kv and (c) SDP2,
rbf kernels for both Km and Kv, summarized in Figure 1b and Table 1. Here 𝛾 = 1.

These two numerical examples are minimal yet informative. In Figure 1a, SLR misspends
a wide prediction bandwidth on data where the conditional variances are small yet fails to
capture the large conditional variance cases, resulting in the overall coverage of 86% and a

http://wileyonlinelibrary.com
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median bandwidth of 8.21. SDP1∕SDP2 re-distributes the bandwidth budget leveraging the
heteroscedastic nature and achieves an improved coverage 91%∕94%, with a smaller median
bandwidth of 7.47∕7.30. Such an effect is even more pronounced in Figure 1b. Observe first that
in SDP2, the prediction band constructed by (3) almost perfectly contours the heteroscedastic
variances, thus achieving a >99% prediction coverage with a merely 3.35 median bandwidth, in
contrast to SLR with a 96% coverage and a 4.80 bandwidth. Second, a better conditional variance
estimate also improves performance in learning the conditional mean, as seen in the differences
between Blue lines and Red lines. The errors are also numerically summarized in the column
‘MSE’ of Table 1. Leveraging the heteroscedasticity in data, our prediction band distributes the
bandwidth in a data-adaptive way, thus improving the overall coverage.

1.3 Sum-of-squares, interpolation and connections to literature

The SDPs proposed in (1) and (3) are inspired by recent advancements in optimization and learn-
ing theory. We will elaborate on the connections to related works and explain the innovations in
our approach. We start with some basic observations about the SDPs. First, when 𝛼 is not an opti-
mization variable, (3) recovers (1). Second, the constraints set of (3) is always non-empty since
𝛼 = 0,B = maxi ||K

v
i ||
−2y2

i ⋅ I is feasible.

Sum-of-squares and phase retrieval As shown in Proposition 3, the infinite-dimensional SDP
with a nuclear norm minimization is equivalent to (3),

min
𝛽∈m

, A∶v→v
𝛾 ⋅ ||𝛽||2

m + ||A||⋆

s.t. ⟨𝜙v
xi
,A𝜙

v
xi
⟩v ≥ (yi − ⟨𝜙m

xi
, 𝛽⟩m )2, ∀i.

A ⪰ 0

Here m
,

v denote two RKHSs where the conditional mean and variance functions reside.
𝜙xi ∈  is the feature map w.r.t. the Hilbert space  and ⟨⋅, ⋅⟩ is the Hilbert space inner prod-
uct. We call it the infinite-dimensional SDP since the optimization variables (𝛽, A) are (function,
operator) rather than finite-dimensional (vector, matrix). A few remarks are in place. First, if the
kernel Km is universal, ⟨𝜙m

x , 𝛽⟩m is dense in L2 and hence can universally approximate all condi-
tional mean function m(x). Second, as for the conditional variance which has positivity constraints
over a continuum x ∈  with 0 ≤ v(x) = (y −m(x))2, we relax the positivity constraints using a
sum-of-squares form

0 ≤ ⟨𝜙v
x,A𝜙

v
x⟩v = (y −m(x))2, for some A ⪰ 0. (4)

It turns out that when Kv is universal, the above sum-of-squares function can approxi-
mate all smooth, positive functions (Bagnell & Farahmand, 2015; Fefferman & Phong, 1978;
Marteau-Ferey et al., 2020), thus explaining the name ‘universal’ in the title. Remark that
sum-of-squares optimization (Lasserre, 2001) for nonparametric estimation has recently been
considered; see (Bagnell & Farahmand, 2015; Curmei & Hall, 2020; Marteau-Ferey et al., 2020).
The further relaxation changing from equality in (4) to inequality will be discussed in the
next paragraph. Last, the minimum nuclear norm objective translates to a particular form of
“minimum bandwidth” in the prediction band as v(x) = ⟨𝜙v

x,A𝜙

v
x⟩v . In language, for all

prediction bands that shelter the data, (3) aims to find the one with minimum bandwidth.
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The curious reader may wonder where the nuclear norm ||A||
⋆

arises from. The first reason
is conceptual: the nuclear norm is a relaxation for rank, and the procedure is to minimize the
number of factors (rank) that explain the variance. The second reason is a connection to phase
retrieval: specify Km(x, x′) ≡ 0 and Kv(x, x′) = ⟨x, x′⟩ (the linear kernel with 𝜙

v
x = x), and force the

inequality constraints to be equal, our SDP in (3) is equivalent to phase retrievel

min
A⪰0
||A||

⋆
, s.t. ⟨xi,Axi⟩ = y2

i , ∀i = 1, … ,n.

Conceptually, the minimum nuclear norm procedure estimates the smallest number of factors
that could generate the variance.

Min-norm variance interpolation with confidence Now we discuss the tuning parameter
𝛾 ∈ [0, ∞] and reveal the connection to the recent min-norm interpolation literature (Bartlett
et al., 2020, 2021; Ghorbani et al., 2020; Liang & Rakhlin, 2020; Liang & Recht, 2021; Montanari
et al., 2020). In the limit of 𝛾→ 0, (3) reduces to the familiar min-norm interpolation with kernel
Km (whenever it has full rank, since optimal B = 0)

min
𝛼

⟨𝛼,Km
𝛼⟩

s.t. 0 =
(

yi −
⟨

Km
i , 𝛼
⟩)2

, ∀i.

In the limit of 𝛾→∞, (3) reduces to (since optimal 𝛼 = 0)

min
B

Tr(KvB)

s.t. ⟨Kv
i ,BKv

i ⟩ ≥ y2
i , ∀i.

B ⪰ 0

Now it is clear what the role of the tuning parameter 𝛾 is: it trades off the conditional mean m(x)
and variance v(x) to explain the variability in y’s witnessed on the data. A small 𝛾 aims to use a
complex mean m(x) and a parsimonious variance v(x) to explain the overall variability, and vice
versa.

From the above discussion, it is also clear that the SDP (3) can be viewed as a min-norm
variance interpolation with confidence. Instead of having the typical equality constraints in
interpolation

⟨
Kv

i ,BKv
i
⟩
=
(

yi −
⟨

Km
i , 𝛼
⟩)2

,

which violates the disciplined convex programming ruleset (due to the quadratic form on the
RHS), we further relax to inequality constraints to incorporate additional ‘confidence’ (and to
make the problem convex at the same time)

⟨
Kv

i ,BKv
i
⟩
≥
(

yi −
⟨

Km
i , 𝛼
⟩)2

.

As we shall see, the notion of confidence in this variance interpolation is closely related to the
notion of margin in classification (Bartlett et al., 1998; Liang & Sur, 2020).

Support vector regression We illustrate that minor modifications to our SDP formulation
lead to other problems, including support vector regression and kernel ridge regression.
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Specify the variance kernel as the trivial one Kv(x, x′) = 1(x = x′), then the decision variable
B only matters in its diagonal component, and our SDP (3) reduces to the kernel ridge regression

min
𝛼

𝛾 ⋅ ⟨𝛼,Km
𝛼⟩ +

n∑

i=1

(
yi −
⟨

Km
i , 𝛼
⟩)2

.

Moreover, a slight modification of (3) is to use the absolute deviation rather than the squared
deviation in the constraints, namely

⟨
Kv

i ,BKv
i
⟩
≥
|
|
|
yi −
⟨

Km
i , 𝛼
⟩|
|
|
.

In this case support vector regression is exactly our procedure with the specification Kv(x, x′) =
1(x = x′),

min
𝛼

𝛾 ⋅ ⟨𝛼,Km
𝛼⟩ +

n∑

i=1

|
|
|
yi −
⟨

Km
i , 𝛼
⟩|
|
|
.

In summary, our SDP generalize beyond support vector machines, with the new non-trivial
variance component for rigorous uncertainty quantification for heteroscedastic data.

1.4 Literature review

There are increasingly many approaches proposed to address the uncertainty quantification
dilemma in machine learning due to its significance and centrality. However, very few meth-
ods are theoretically grounded and universally applicable to the best of our knowledge. Many
approaches are merely heuristics or data visualization tools. This section divides related theoreti-
cal studies in the literature into two categories and discusses how our method significantly differs
from them and could potentially lead to a stronger theory.

Conformal prediction Based on the exchangeability of data and a user-specified nonconfor-
mity measure, Vovk et al. (2005); Shafer and Vovk (2008) pioneered the field of conformal
prediction, which uses past data to determine precise levels of confidence in new predic-
tions. To some extent, the elegant theory of conformal prediction, motivated by online learning
and sequential prediction, resolved the uncertainty quantification dilemma. The conformal
prediction algorithm (see, for instance Shafer and Vovk, 2008, section 4.3) usually requires
to enumerate over all the possibilities of z = (x, y) ∈  ×  , and for each possibility, calcu-
late n nonconformity measures via the leave-one-out method. Therefore, the total budget is
n × || × ||, which can be expensive for continuous y and multi-dimensional x. Much of the
above computation can be saved if additional information about the metric structure in x ∈ 
can be leveraged. In contrast, our SDP approach constructs the prediction band over all the
x’s at once, leverages the metric structure in  , and suffers at most a computational bud-
get of n2. An additional key feature in our approach is in the coverage theory established in
Theorem 1: the prediction band has coverage probability >95% on a new data point (x, y),
for 99.9999% dataset {(xi, yi)}n

i=1 of size n drawn from the same distribution. Such a distinc-
tion on ‘confidence’ versus ‘probability’ is discussed extensively in section 2.2 of Shafer and
Vovk (2008).
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There has been a vast line of recent work on extending the conformal prediction idea fur-
ther to address the bottlenecks above in the regression setting. The body of work proliferates,
and we certainly cannot do justice here. Lei et al. (2018) alleviates the computational burden of
the conformal prediction by introducing the sample-splitting technique. Remarkably, theory on
the bandwidth is also studied in Lei et al. (2018), thus providing an angle to probe the statistical
efficiency. Romano et al. (2019) studies the problem that existing conformal methods can form
nearly constant or weakly varying bandwidth and provide conservative results. Romano et al.
(2019) proposes conformalized quantile regression to address this issue. One shared feature of
our SDP approach and the method in Romano et al. (2019) is that the prediction band is fully
adaptive to heteroscedasticity. Finally, we would like to emphasize that conformal prediction con-
structs prediction bands in a numerical, black-box fashion without a structural understanding of
the variance function. In contrast, our SDP approach provides a transparent and efficient way of
learning the variance function, a complementary contribution to the conformal literature.

Residual subsampling and quantile regression An alternative approach for uncertainty
quantification that leverages the metric structure in x ∈  is to resample the residuals locally.
Typically, this is done by first fitting a predictive model m0(x), and defining a local neighbour-
hood around a new data x, then subsampling the residuals for uncertainty quantification via
(conditional) quantiles. The validity of the above approach crucially depends on how many ‘sim-
ilar residuals’ to pool information from. However, the curse of dimensionality comes in since
data points are far from each other in high dimensions, posing challenges in pooling the residu-
als. One can also use either the obtained residuals or the original responses y to fit a conditional
quantile regression model (Belloni & Chernozhukov, 2011; Belloni et al., 2019; Koenker & Bas-
sett Jr, 1978; Koenker & Hallock, 2001), ̂𝜉𝜏(⋅) ∶= arg min

𝜉

1
n

∑n
i=1𝜌𝜏(yi − 𝜉(xi)) where 𝜏 ∈ (0, 1) is

a quantile parameter, 𝜌
𝜏
(⋅) ∶ R → R+ is the tilted absolute value function, and ̂

𝜉

𝜏(⋅) ∶  → R is
the estimated conditional quantile function. However, it is not guaranteed that over all x ∈  , the
estimated conditional quantile function satisfies ̂𝜉𝜏1(x) < ̂

𝜉

𝜏2(x) for two quantiles 𝜏1 < 𝜏2. In other
words, it is entirely possible that for several x’s, the conditional prediction intervals are empty
(Chernozhukov et al., 2010).

2 THEORY FOR UNCERTAINTY QUANTIFICATION

In this section, we develop a theory for the coverage property of the prediction band constructed
above, under the mild assumption that the data are i.i.d. drawn with (x, y) ∼  . To highlight the
main arguments in a simple form, let us consider the setting m0(x) ≡ 0. Otherwise, the same
proof follows by replacing y with y −m0(x). Define the corresponding prediction band, with a
confidence parameter 𝛿 ∈ (0, 1]

̂PI(x, 𝛿) =
[

±
√
(1 + 𝛿) ⋅ v̂(x)

]

. (5)

We need the following assumptions before stating the theorem, where (x, y) ∼  and C > 0
denotes a universal constant.

[S1] (Kernel and RKHS) The continuous symmetric kernel K is positive definite and satisfies
supx∈K(x, x) ≤ C. In addition, eigenvalues of the associated integral operator  ∶  → 
satisfy 𝜆j( ) ≤ Cj−𝜏 , j ∈ N for some constant 𝜏 > 1.
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[S2] (Non-trivial uncertainty) There exist constants 𝜂 ∈ (0,1), 𝜉 > 0 such that P[y2
> 𝜉 ⋅

K(x, x) |x = x] > 𝜂 holds for all x ∈  .
[S3] (Non-wild uncertainty) There exists a constant 𝜔 > 0 such that P[y2

> t ⋅ K(x, x)] <
exp(−Ct𝜔) for all t ≥ 1.

Discussion of Assumptions All the above assumptions are mild. The eigenvalue decay in [S1]
is almost identical to Tr( ) < ∞ (bounded trace integral operator). [S2] is also minimal, since it
is only not true when there is no variability in y | x = x. [S3] is the most stringent one, which
requires the variability of y to exhibit a certain tail-decay. For small 𝜔 ∈ (0, 1), [S3] can be
much milder than exponential tail-decay. Bounded or Gaussian y | x = x satisfies [S3] with arbi-
trarily large 𝜔 or 𝜔 = 2 respectively. With some extra work, [S3] can be relaxed to the case
of a sufficiently rapid polynomial tail-decay. [S2] can be relaxed to restricting only to x with
P[y2

> 0 |x = x] = 1.

Theorem 1. Define the objective value of the SDP in (1)

̂Optn ∶= min
B

Tr(KB)

s.t. ⟨Ki,BKi⟩ ≥ y2
i , i = 1, … ,n.

B ⪰ 0

Assume that [S1]–[S3] hold. For any 𝛿 ∈ (0, 1], the following non-asymptotic, data-dependent
prediction band coverage guarantee holds,

P
(x,y)∼

[

y ∈ ̂PI(x, 𝛿)
]

≥ 1 − 𝛿

−1(̂Optn ∨ 1)
√

C
𝜏,𝜉,𝜂,𝜔

⋅ log(n)
n

,

and ̂Optn ≤
[
log(n)

]c
𝜔

,

with probability at least 1 − n−10 on {(xi, yi)}n
i=1. Here the constants C

𝜏,𝜉,𝜂,𝜔
, c

𝜔
only depend on

parameters in [S1]–[S3].

2.1 What does the theorem entail

A few remarks are in order before we sketch the proof of Theorem 1.

Coverage First, the above theorem says that the prediction band constructed using the SDP based
on a dataset of size n, will correctly cover a fresh data point (x, y) ∼  drawn from the same
distribution, with a non-asymptotic coverage probability (on the new data x, y)

1 − 𝛿

−1

√

log3(n)
n

.

With 𝛿 = 0.5, the bandwidth Length[̂PI(x)] = 2.45
√

v̂(x) is at a heteroscedastic level adaptive to x

with corresponding coverage probability at least 1 − O⋆

(√
1
n

)

. Here O⋆ hides polylog factors.

The coverage can be arbitrary close to 1 with large n without the need of increasing 𝛿, which
is in clear distinction to the conventional wisdom that coverage 1 can only be possible with an
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increasing 𝛿 regardless of n. Again, we emphasize that the above coverage guarantee holds essen-
tially on 99.9999%≪ 1 − n−10 of the datasets {xi, yi}n

i=1. In Section 2.2, we propose a rigorous
calibration algorithm to choose 𝛿

⋆(𝛼) to achieve a constant coverage level 1−𝛼 ∈ (0, 1).

Optimality If one wishes to obtain the classic 95% coverage probability, then choosing 𝛿 =

O⋆

(√
1
n

)

suffices, which translates to

Length
[
̂PI(x)
]

=

(

1 + O⋆

(√
1
n

))

⋅
√

v̂(x). (6)

Recall that in classic simple linear regression, the prediction interval is of length

⎛
⎜
⎜
⎝

1 +

√

1
n
+ (x − x)2

Σi(xi − x)2

⎞
⎟
⎟
⎠

⋅ 3.92ŝ (7)

with ŝ =
√

Σi ê
2
i

n−2
being the estimated residual standard error. The fact that (6) and (7) share the

√
1
n

fluctuation seems to indicate the optimality of our Theorem (in terms of the dependence on n).

Data adaptivity Curiously, the objective value of the convex optimization program quantifies the
uncertainty of the prediction band: a smaller ̂Optn implies (a) a better confidence∕coverage guar-
antee and (b) a narrower prediction band overall. More importantly, the ̂Optn can be calculated
directly from data! We find such an optimization∕inference interface exciting: the data-adaptive
bound lets us know the coverage guarantee specific to the current dataset. Put differently, the
convex program constructs the prediction band via its solution and at the same time, reveals the
confidence via its objective value. Since ̂Optn is a function of the dataset, our Theorem reveals
which dataset allows for a better prediction band. Remark that ̂Optn = ||̂v(⋅)||2⋆ is also a particular
norm of the heteroscedastic variance function, quantified by the nuclear norm of the associated
PSD operator ̂A ⪰ 0 with v̂(x) = ⟨𝜙x,A𝜙x⟩ . Curiously, a simpler variance function v̂(x) (with a
small norm) will simultaneously result in a narrower band and better coverage. We emphasize
that the above discussion is in sharp contrast to the conventional wisdom that a narrow band
usually leads to poor coverage guarantees.

2.2 Calibration and coverage control

One nice feature about conformal prediction is that it directly operates on a user-specified cover-
age level (e.g. 95%), albeit the resulting procedure only achieves some form of coverage guarantee
in the marginal sense. In contrast, the coverage level guarantee of the current SDP approach
in Theorem 1 is in an inequality form with a mild dependence on the non-explicit universal
constant C

𝛾,𝜉,𝜂,𝜔
; however, the coverage is in a stronger conditional sense conditioned on

{(xi, yi)}n
i=1. The constant will not significantly affect the coverage guarantee in the large n setting;

nevertheless, curious readers may wonder if more transparent control could be achieved by
tuning 𝛿. This section provides a theoretically justified calibration procedure in choosing 𝛿

(in the SDP band) to control coverage at a user-specified level 1−𝛼 ∈ (0,1), as in conformal
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prediction. Such fine calibration on 𝛿 can be helpful numerically in the moderate n and constant
𝛼 setting (e.g. 5%).

The calibration idea is based on sample-splitting. Split the samples into two parts, the training
set {(xi, yi)}n

i=1 and the calibration set {x′j , y′j}
m
j=1, with in total n+m data points drawn i.i.d. from

 . The training set will be used to construct prediction band ̂PI(⋅, 𝛿). The calibration dataset will
be used to choose 𝛿 to calibrate coverage.

Calibration procedure Suppose that there exists large enough constants Δ, L > 0 such that

P
(x,y)∼

[

y ∈ ̂PI(x,Δ)
]

= 1,
|
|
|
|

d
d𝛿

P
(x,y)∼

[

y ∉ ̂PI(x, 𝛿)
]|
|
|
|
< L.

The calibration uses a dyadic search to select 𝛿⋆(𝛼) ∈ [−1,Δ] with the set {x′j , y′j}
m
j=1. The goal of

the calibration is to ensure P(x,y)∼

[

y ∈ ̂PI(x, 𝛿⋆(𝛼))
]

≥ 1 − 𝛼.

The following result derives the theoretical ground for the calibration procedure. We defer the
proof to Section A.2.

Lemma 2 (Calibration). Consider the calibration procedure in Algorithm 1 and L, Δ, 𝛼 specified
therein. If the size of the calibration set m is large enough such that

√
√
√
√ log

(

⌈log2

(
2L(Δ+1)

𝛼

)

⌉ + 1
)

+ 10 log(m)

m
≤

1
4
𝛼,

then the calibrated 𝛿

⋆(𝛼) satisfies the coverage control

P
(x,y)∼

[

y ∈ ̂PI(x, 𝛿⋆(𝛼))
]

≥ 1 − 𝛼,

with probability at least 1 − 2m−10 on the calibration set {x′j , y′j}
m
j=1.

2.3 Intuition and proof sketch

We first explain the key intuition before presenting the details of the proof sketch. The proof
first leverages a representation theorem that relates the finite-dimensional (kernelized) SDP to
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an infinite-dimensional SDP to decouple the dependencies among xi’s. Next, we propose to use
empirical process theory to analyse the prediction coverage, inspired by the margin-based analysis
originally done in analysing classification. Finally, in controlling the uniform deviations between
empirical and population coverage, we use properties of the PSD operators and conditional quan-
tile functions. The additional calibration procedure in fine-tuning the confidence parameter 𝛿⋆(𝛼)
for a fixed coverage level 1 − 𝛼 ∈ (0, 1) also hinges on uniform deviation arguments. Our anal-
ysis fundamentally relies on empirical process theory and is crucially different from conformal
prediction analysis (based on exchangeability). Since the SDP provides a rigorous coverage guar-
antee as conformal prediction, we hope the new proof idea opens new doors to study uncertainty
quantification.

Now we sketch the proof of Theorem 1. Observe that by definition

(LHS) ∶= P
(x,y)∼

[

y ∉ ̂PI(x, 𝛿)
]

= E
(x,y)∼

[

1
(

y−2v̂(x) < 1
1 + 𝛿

)]

.

Define a hinge function h
𝛿
(t) ∶ t → max

{
1+𝛿
𝛿

(1 − t), 0
}

, we have

1
(

t < 1
1 + 𝛿

)

≤ h
𝛿
(t), ∀t ∈ R,

and thus

(LHS) ≤ E
(x,y)∼

[
h
𝛿
(y−2v̂(x))

]
. (8)

Define a real positive function (indexed by A) on the data z = (x, y), fA(z) ∶ z →
⟨

𝜙x
y
,A𝜙x

y

⟩



.

Here 𝜙x
y
∈  lies in the RKHS, and A ∶  →  is a PSD operator. Define a sequence of func-

tion spaces according to its nuclear norm radius k ∶= {fA ∶ 2k−1
< ||A||

⋆
≤ 2k} for all k ∈ N and

0 ∶= {fA ∶ ||A||⋆ ≤ 1}.
With the Proposition 3 establishing the equivalence between the kernelized SDP and the

infinite-dimensional SDP, ̂A =
∑

i,j
̂Bij𝜙xi ⊗𝜙xj , we know that y−2v̂(x) = f

̂A(z). There exists a k ∈ N

such that f
̂A ∈ k with 2k−1

≤̂Optn < 2k, and thus we continue to bound

(LHS) ≤ E
(x,y)∼

[
h
𝛿
◦ f

̂A(z)
]

≤ ̂E
[
h
𝛿
◦ f

̂A(z)
]

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

(i)

+ sup
f∈k

(E − ̂E)[h
𝛿
◦ f ]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(ii)

.

For term (i), recall the optimality condition of (1),

⟨Ki, ̂BKi⟩ ≥ y2
i ⇔ f

̂A(zi) ≥ 1

which further implies h
𝛿
◦f

̂A(zi) = 0 for all i = 1, · · ·, n. Therefore term (i) is zero.
For term (ii), we will use the high probability symmetrization in Proposition 4. Introduce i.i.d.

Rademacher variables {𝜖i}n
1 independent of the data. Note that we only need to consider k ≤ k0

such that 2k0 = [log(n)]c𝜔 , where we use the upper estimate on ̂Optn obtained in Proposition 5,
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which is implied by Assumption [S3]. With probability at least 1−2 exp (−t) on the data {zi}n
1 ,

uniformly over all k ≤ k0

(ii) ≤ 2 ⋅ E
{𝜖i}n

1

sup
f∈k

1
n

n∑

i=1
𝜖i (h𝛿

◦f ) (zi) + (iii)

≤ 2 ⋅ Lip(h
𝛿
) ⋅ E

{𝜖i}n
1

sup
f∈k

1
n

n∑

i=1
𝜖if (zi) + (iii)

= 2(1 + 𝛿)
𝛿

E
{𝜖i}n

1

sup
||A||

⋆

≤2k

⟨

1
n

n∑

i=1
𝜖i
𝜙xi

yi
⊗

𝜙xi

yi
,A

⟩

+ (iii)

≤
2(1 + 𝛿)

𝛿

2k
E
{𝜖i}n

1

‖
‖
‖
‖
‖

1
n

n∑

i=1
𝜖i
𝜙xi

yi
⊗

𝜙xi

yi

‖
‖
‖
‖
‖op

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(iv)

+ (iii)

where the last step follows from the duality between the nuclear norm and operator norm. Before
getting into the deviation term (iii) (originated by Proposition 4, formally upper bounded in (15)),
first recall 2k

≤ 2(̂Optn ∨ 1), we know

(ii) ≤ 4(1 + 𝛿)
𝛿

(̂Optn ∨ 1) ⋅ (iv) + (iii). (9)

Similarly by Proposition 4, the deviation term (iii) can be bounded by 6(̂Optn ∨ 1) ⋅ sup
x,y

‖
‖
‖

𝜙x
y
‖
‖
‖

2



⋅
√

k0+t
n

with k0 = c
𝜔

log log(n).
To bound the expected operator norm for the above random matrix, namely term (iv), we rely

on matrix Bernstein’s inequality plus a truncation technique. Observe that

E
𝜖

[

𝜖

𝜙x

y
⊗

𝜙x

y

]

= 0, and ‖‖
‖
𝜖

𝜙x

y
⊗

𝜙x

y
‖
‖
‖op
≤ sup

x,y

‖
‖
‖

𝜙x

y
‖
‖
‖

2



a.s.,

and that

‖
‖
‖
‖
‖
‖

n∑

i=1
E
𝜖

[(

𝜖i
𝜙xi

yi
⊗

𝜙xi

yi

)2
]‖
‖
‖
‖
‖
‖op

≤

(

sup
x,y

‖
‖
‖

𝜙x

y
‖
‖
‖

2



)2

⋅ n.

Naively applying the matrix Bernstein inequality, one would expect the term (iv) to behave
like sup

x,y

‖
‖
‖

𝜙x
y
‖
‖
‖

2



⋅
(√

t
n
∨ t

n

)

with probability 1 − dim(𝜙x) ⋅ exp(−t) on {𝜖i}n
1 . This is educative yet

wrong, since dim(𝜙) is infinity. To make things rigorous, we rely on a truncation technique to look
at a finite-dimensional version 𝜙

≤m
x truncated at a level m = poly(n) to apply matrix Bernstein,

and then estimate the remaining contribution from 𝜙

>m
x by the eigenvalue decay in Assumption

[S1]. With details given in Proposition 6, we derive that

(iv) ≤ C
𝜏
⋅ sup

x,y

‖
‖
‖

𝜙x

y
‖
‖
‖

2



⋅

(√
log(n)

n
∨

log(n)
n

)

. (10)
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The final piece of the puzzle lies in the term sup(x,y)∈dom()||
𝜙x
y
||2


, which appears in both
the main term (iv) and deviation term (iii). It is not true that a.s. for all x, y, the above term is
bounded. To resolve this issue, we rely on a conditional quantile technique. Introduce the con-
ditional quantile function Qy2|x=x(⋅) ∶ [0, 1]→ R+ for the conditional random variable y2 |x = x.
Let’s only look at data (xi, yi)’s lying in the region

Ω ∶= {(x, y)|y2
> Qy2|x=x(1 − 𝜂)},

and denote |Ω as the conditional distribution of data (x, y) conditioning on the regionΩ. Claim
that for any ̂PI(x, 𝛿)

P
(x,y)∼

[y ∉ ̂PI(x, 𝛿)] ≤ P
(x,y)∼|Ω

[y ∉ ̂PI(x, 𝛿)]. (11)

This is based on two facts. First,

P
[
y2

> (1 + 𝛿)̂v(x) |x = x
]

≤
P
[
y2

> (1 + 𝛿)̂v(x) ∨ Qy2|x=x(1 − 𝜂)|x = x
]

P
[
y2

> Qy2|x=x(1 − 𝜂)|x = x
]

= P
[
y2

> (1 + 𝛿)̂v(x) |x = x, (x, y) ∈ Ω
]
. (12)

regardless of the ordering of Qy2|x=x(1 − 𝜂) and (1 + 𝛿)̂v(x). Second, conditioning on Ω does
not change the marginal distribution of x due to the quantile construction, namely x|Ω ≡ x.
Marginalizing (12) over x proves the above claim.

The inequality (11) makes the analyses upper bounding (LHS) from (8) and (9) applicable,
with the changes: (a)|Ω replacing , and (b) ̂E denoting average over data points insideΩ rather
than the whole dataset. With the conditioning on Ω, Assumption [S2] implies Qy2|x=x(1 − 𝜂) ≥
𝜉 ⋅ K(x, x), and thus

sup
(x,y)∈dom(|Ω)

‖
‖
‖

𝜙x

y
‖
‖
‖

2



≤
K(x, x)

Qy2|x=x(1 − 𝜂)
≤ 𝜉

−1
. (13)

Now, we only need to estimate the effective sample size insideΩ to complete the analyses. By the
quantile construction, P(x,y)∼ [(x, y) ∈ Ω] = 𝜂, a simple Bernstein’s inequality asserts that

|{i ∶ (xi, yi) ∈ Ω}| >
𝜂

2
⋅ n

with probability at least 1 − exp(−c
𝜂
⋅ n) on {zi}n

1 .
Finally, plug (13) into upper bounds on terms (iii) and (iv), with 𝜂

2
⋅ n replacing n in (10) and

(9), we have proved that

(LHS) ≤ 𝛿

−1(̂Optn ∨ 1)
√

C
𝜏,𝜉,𝜂

log(n)
n

(main term) (14)

+(̂Optn ∨ 1)
√

C
𝜉,𝜂,𝜔

(log log(n) + t)
n

(deviation term) (15)

with probability at least 1 − exp(−c
𝜂
⋅ n) − 2 exp(−t) on {zi}n

1 .
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3 NUMERICAL STUDIES

We now study the numerical performance of our procedure.

3.1 Empirical example: Comparison to conformal prediction

This section compares our SDP methods to the conformal prediction methods, measuring the cov-
erage and statistical efficiency of the prediction bands. We compare five methods on two simulated
datasets, including (a) standard prediction band using simple linear regression (SLR), without
accounting for heteroscedasticity, as a baseline; (b) SDP prediction bands proposed in this paper,
with two specifications of the kernels, denoted as SDP1 and SDP2; (c) conformal prediction bands,
including full conformal prediction (CF) and split conformal prediction (SplitCF), see (Lei et al.,
2018, Algorithms 1 and 2 respectively). For each method, we report the coverage probability, effi-
ciency statistics (including median length and average length) and finally, the mean squared error
(MSE) of the estimated conditional mean function.

We first explain the two simulated datasets. Here the x ∼ Unif([−
√

3,
√

3]), and the con-
ditional distribution y |x = x ∼ 𝜖 ⋅

√
v(x) where the independent error 𝜖 is either drawn from

a standard normal N(0, 1) (Figure 2b) or a uniform distribution Unif([−
√

3,
√

3]) (Figure 2b).
The conditional mean function m(x) = 0. The heteroscedastic variance function scales as v(x) =
1 + x + 4x2, depending on x. For each simulated dataset, we generate {(xi, yi)}n

i=1 i.i.d. from the
above data generating process (DGP), with n= 50 as the training data, marked by Blue dots. The
test dataset are drawn from the same DGP, with N = 500 marked by Red dots. For the SDP1∕SDP2,
and SplitCF, an independent calibration dataset with n = 50 is used. The calibration set is used to
choose 𝛿 in SDPs as in Algorithm 1, and the homoscedastic conformal bandwidth as in SplitCF.
We compare five methods that construct the prediction bands, illustrated by the Blue band, on
the Gaussian error dataset in Figure 2a, and Uniform error dataset in Figure 2b. For all methods,
the desired coverage is set at 1 − 𝛼 = 95%. For the SDPs in (3) 𝛾 = 10. Table 2 summarizes the
coverage, efficiency and estimation error.

(a) (b)

F I G U R E 2 From left to right: SLR, SDP1, SDP2, split conformal (SplitCF), and full conformal (CF). Same
style as in Figure 1a-b. Statistics are summarized in Table 2 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com


LIANG 1573

T A B L E 2 Simulated examples

Coverage Median length Average length MSE

Figure 2a: m(x) = 0, quadratic v(x), y|x ∼ Gaussian

SLR 97.40% 11.2272 11.2537 0.5554

SDP1 92.80% 6.5172 6.9019 0.0002

SDP2 94.20% 7.0025 7.6900 0.0272

SplitConformal 96.00% 9.3960 9.3960 0.5554

Conformal 97.40% 11.5152 11.5911 0.5554

Figure 2b: m(x) = 0, quadratic v(x), y|x ∼ Uniform

SLR 89.60% 7.6882 7.7077 0.4405

SDP1 95.40% 7.9161 8.1540 0.0000

SDP2 96.60% 7.3064 7.8175 0.0183

SplitConformal 97.80% 11.5199 11.5199 0.4405

Conformal 92.80% 8.0808 8.1651 0.4405

Nearly all methods achieve 95% desired coverage, with the only exception of SLR. The focus
will be on comparing efficiencies, namely, which method estimates a smaller, truly heteroscedas-
tic band in achieving the desired coverage. As seen visually in Figure 2a and b and numerically
in Table 2, the two conformal methods, SplitCF and CF, estimates a conservative, wide prediction
band that is almost homoscedastic. In contrast, both SDP approaches estimate desirable het-
eroscedastic bands that are on average much shorter, with the closest (94.20% and 95.40%) to the
desired 95% coverage. Finally, we would like to remark that all four methods SLR, SDP1, SDP2
and SplitCF are efficient to compute. Yet, the full conformal method CF involves discretizing
input space, which is computationally intensive. Our empirical results show that the two confor-
mal methods can be unnecessarily conservative and form bands of nearly constant width across
x (Romano et al., 2019).

3.2 Real data example: Fama-French factors

In this section, we apply our method of constructing the prediction band to the celebrated
three-factor dataset created by Fama and French (1993). We choose this dataset for three rea-
sons: (a) financial data are known to suffer severe heteroscedasticity, (b) the factors are believed
to be different sources explaining returns of diversified portfolios, thus when conditioned on
one factor, the other factors should have large, heteroscedastic conditional variability and (c) the
factors—Market, Size and Value—correspond nicely to our common sense about the financial
market for exploratory data analysis.

Let us first explain the data in plain language. The dataset consists of yearly and monthly
observations of four variables from July 1926 to December 2020. The four variables are (a)
Risk-free return rate (RF), the 1-month Treasury bill rate (i.e. interest rate), (b) Market factor
(MKT), the excess return on the market (i.e. market return minus interest rate), (c) Size fac-
tor (SMB, Small Minus Big), the average difference in returns between small and big portfolios
according to the market capitalization and (d) Value factor (HML, High Minus Low), the difference



1574 LIANG

(a) (b) (c)

F I G U R E 3 From left to right: response variable y corresponds to RF, SMB and HML, with x being MKT.
Blue dots denote n = 94 training data {(xi, yi)}n

i=1, Blue line denotes the estimated conditional mean m̂(x), and
Blue band denotes the estimated prediction band ̂PI(x). Red dots represent N = 1134 test data points [Colour
figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Real data: Fama-French

Kernel Coverage Median length Average length

RF lin m(x), quad v(x) 98.68% 4.3616 4.4358

RF rbf m(x), quad v(x) 98.59% 4.5693 4.6847

SMB lin m(x), quad v(x) 95.77% 5.2560 5.2798

SMB rbf m(x), quad v(x) 97.53% 5.5407 5.4290

HML lin m(x), quad v(x) 96.56% 5.2822 5.5556

HML rbf m(x), quad v(x) 97.27% 4.9180 5.3640

in returns between value and growth portfolios. We design two experiments, one focusing on the
prediction coverage and bandwidth, and the other on exploring the role of the tuning parameter
𝛾 in trading off mean and variance.

The first experiment aims to access the prediction coverage in the SDP (3), using MKT (as x)
to predict other variables (as y): RF and two other factors SMB and HML. Here we use yearly data
(n = 94 from 1927 to 2020, shown as Blue dots) to construct the prediction bands, each illustrated
in Figure 3a–c. As for the test data, we use the standardized monthly data (N = 1134, normal-
ized to zero mean and unit standard deviation, shown as Red dots) as a surrogate for test (x,y)
pairs. Namely, we match 12 test data to each training data. We verified that after standardiza-
tion, the histograms of yearly and monthly data match nicely for all four variables. For each type
of response variable, we run two SDPs with different kernels. The summary statistics about the
coverage probability, median and mean bandwidth are given in Table 3.

We note a few observations regarding the empirical results. First, all models achieve
desirable coverage (all >95%). Second, controlling for MKT, all other factors have signifi-
cant heteroscedastic error left unexplained. For the RF, a high MKT return implies a low
expected RF interest, and more importantly, a small variability, compared to the low MKT
return case. For the size factor SMB, the conditional variability is much larger when the
MKT is high versus low, so does the conditional expectation. The conditional variability in
SMB is roughly minimized when the market is significantly below average. While for the
value factor HML, conditional variability is minimized when the market is slightly below its
average.

http://wileyonlinelibrary.com
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F I G U R E 4 Cross-validate 𝛾 experiment. On the left is SMB as the response and on the right is HML. For
each response variable, we run two sub-experiments: the top row corresponds to a linear m(x) and a quadratic
v(x), and the bottom row corresponds to a degree-3 polynomial m(x) and a quadratic v(x). Each sub-figure
corresponds to a specific 𝛾 , noted in its title. The cv 𝛾 denotes the cross-validated optimal 𝛾 using the validation
dataset. Here the (train, valid, test) dataset has size proportional to 1:3:9, denoted by Blue dots, Red pluses, and
Red dots respectively [Colour figure can be viewed at wileyonlinelibrary.com]

The second experiment aims to verify the mean and variance trade-offs by tuning the parame-
ter 𝛾 , discussed in Section 1.3. Here we use the monthly return data, and for each sub-experiment,
we split the data into (train, valid, test) parts. We train models with different 𝛾 = 0.1, 1, 10 on the
training data, then valid their performances on the validation data. We finally evaluate the per-
formance using the test data with the cross-validated optimal 𝛾 (based on the validation data). A
nice feature about this experiment is that, one can visualize how the SDPs trade a complex∕large
conditional variance v(x) for a simple∕small conditional mean m(x) in explaining y|x= x as 𝛾

increases, illustrated by Figure 4.

4 SUMMARY

The current paper progresses to resolve the uncertainty quantification dilemma faced by modern
machine learning models. There are two innovative viewpoints we are taking. First, rather than
relying on idealized parametric distributional assumptions on error y −m(x), we make minimal
assumptions. Both the conditional mean and variance functions are modelled nonparametrically
and can universally approximate all functions. It is worth noting that such flexibility does not
hinder computational feasibility due to the sum-of-squares and convex relaxations. The compu-
tational complexity and statistical guarantee scale favourably with high-dimensional covariates
x. Second, rather than modelling the conditional mean only and giving up the variance (Frequen-
tist justification, the conditional mean is assumed inside an RKHS, see Caponnetto and De Vito
(2007), Liang and Rakhlin (2020), Liang et al. (2020)), or modelling the conditional variance func-
tion only (Bayesian justification of kriging∕Gaussian processes regression, the covariance func-
tion is specified by a kernel, see Handcock and Stein (1993), Stein (2005, 2012)) for the variability
in data, we model both the mean and the variance and prove strong, non-asymptotic Frequentist
coverage guarantees. Such a modelling advantage enables the uncertainty quantification with or
without any black-box predictive model, whether accurate or not.

To conclude, our Theorem 1 established a strong, non-asymptotic coverage guarantee in the
language of Neyman, yet with two distinct new features. First, the coverage probability can go

http://wileyonlinelibrary.com
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to 1 with a fixed confidence parameter 𝛿 as long as the sample size n is large enough. Second,
the data-adaptive quantity ̂Optn controls both the average bandwidth and the coverage guaran-
tee of the prediction band ̂PI(x). A small objective value of the SDP makes the prediction band
accurate and narrow simultaneously. Finally, our procedure for constructing prediction bands
can be viewed as a novel variance interpolation with confidence and further leverages techniques
from semi-definite programming and sum-of-squares optimization. We conducted simulated and
real data experiments to validate the prediction interval’s numerical performance for uncertainty
quantification. A minimal 10-line Python implementation is provided in Listing 1 for interested
readers.
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APPENDIX A

A.1. Remaining propositions
In this section, we collect the remaining propositions.

Proposition 3 (Representation). The kernelized version of the SDP as in (3) is equivalent to the
following infinite-dimensional SDP

min
𝛽∈m

, A∶v→v
𝛾 ⋅ ||𝛽||2

m + ||A||⋆

s.t. ⟨𝜙v
xi
,A𝜙

v
xi
⟩v ≥ (yi − ⟨𝜙m

xi
, 𝛽⟩m )2, ∀i.

A ⪰ 0

Proof. Noticing that the solution to the infinite-dimensional problem must lie in the span of
data, namely A =

∑
i,j Bij𝜙

v
xi
⊗𝜙

v
xj

with some PSD B ∈ Sn×n, and 𝛽 =
∑

i 𝛼i𝜙
m
xi

with some
𝛼 ∈ Rn. With the above representation, plug in the infinite-dimensional SDP and recall
Tr(A) = ||A||

⋆
, we can derive (3). When 𝛽 is not a decision variable, this representation

theorem applies to (1). ■

https://doi.org/10.1111/rssb.12542
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Proposition 4 (Symmetrization). Let  be a class of functions f ∶ → R, with supx∈|f (z)| ≤ M.
Then with probability at least 1−2 exp (−t) on {zi}n

i=1 i.i.d. drawn from a distribution, we have

sup
f∈
|E[f (z)] − ̂E[f (z)]| ≤ 2 ⋅ E

𝜖

sup
f∈

1
n

n∑

i=1
𝜖if (zi) + 3M

√
t

2n
.

Proof. First, with McDiarmid’s inequality, we know w.h.p.

sup
f∈
|E[f (z)] − ̂E[f (z)]| ≤ E

{zi}n
1

sup
f∈
|E[f (z)] − ̂E[f (z)]| +M

√
t

2n
.

Apply Giné-Zinn symmetrization to the first term on the RHS, then apply McDiarmid’s
inequality again, we can establish the claim. See Liang and Rakhlin (2020) for details. ■

Proposition 5 (Objective value estimate). Under [S3], the following holds with probability
at least 1 − n−10,

̂Optn ≤ [log(n)]c𝜔 .

Proof. Apply union bound on the tails given by [S3], with the choice t0 = [log(n)]c𝜔 we know

P
[
y2

i ≤ t0 ⋅ K(xi, xi),∀1 ≤ i ≤ n
]
≥ 1 − n ⋅ exp(−Ct𝜔0 ) ≥ 1 − n−10

.

In view of Proposition 3, the above certifies that A ∶= t0 ⋅ I lies in the feasibility set
⟨𝜙xi ,A𝜙xi⟩ = t0 ⋅ K(xi, xi) ≥ y2

i , which implies t0 being an upper bound on ̂Optn. ■

Proposition 6 (Operator-norm estimate). Under [S1], for any {xi}n
i=1, the following holds

E
{𝜖i}n

1

‖
‖
‖

1
n

n∑

i=1
𝜖i𝜙xi ⊗𝜙xi

‖
‖
‖op
≤ C

𝜏
⋅ sup

x
||𝜙x||

2

⋅

(√
log(n)

n
∨

log(n)
n

)

.

Proof. Recall [S1], due to the Mercer’s theorem, one can represent 𝜙x as an infinite-dimensional
vector, with each coordinate of 𝜙

j
x corresponding to the eigenfunction of the integral

operator, with j= 1,… , ∞ and 𝜆j ≤ Cj−𝜏 . To bound the operator norm, recall the Rayleigh
quotient form, for any h ∈  with ||h||2


= 1

⟨

h,

(

1
n
∑

i
𝜖i𝜙xi ⊗𝜙xi

)

h

⟩



= 1
n
∑

i
𝜖i⟨𝜙xi , h⟩2


. (A1)

Note ⟨𝜙x, h⟩ = ⟨𝜙≤m
x , h≤m⟩ + ⟨𝜙>m

x , h>m⟩ where the superscript indicates a truncation
on the coordinates of 𝜙x. By Cauchy–Schwarz

⟨𝜙xi , h⟩2

≤ 2⟨𝜙≤m

xi
, h≤m⟩2


+ 2⟨𝜙>m

xi
, h>m⟩2


.

Therefore LHS in (A1) can be upper bounded by

2
‖
‖
‖
‖
‖

1
n

n∑

i=1
𝜖i𝜙

≤m
xi

⊗𝜙

≤m
xi

‖
‖
‖
‖
‖op

+ 2 sup
i
||𝜙>m

xi
||2

.
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For the first term, now we can apply the matrix Bernstein inequality. With probability
1−2 exp (−t) the following upper bound on the first term holds

sup
x
||𝜙x||

2

⋅

(√
log(m) + t

n
∨

log(m) + t
n

)

.

For the second term, recall the eigenvalue decay 𝜆j ≤ Cj−𝜏 with 𝜏>1, we know it is upper
bounded by Cm−(𝜏−1). Choosing log(m) = C

𝜏
log(n)with a constant large enough, we know

the second term is dominated by the first term. By integrating the tail bound to obtain a
bound on the expected value, we complete the proof. ■

A.2. Proof of the calibration lemma

Proof of Lemma 2. Define the Bernoulli random variables zj(𝛿) ∶= 1[y′j ∉ ̂PI(x′j , 𝛿)], then for any
fixed 𝛿 ∈ [−1, Δ], we know by Hoeffding’s inequality that

|
|
|

P
(x,y)∼

[y ∉ ̂PI(x, 𝛿)] − 1
m

m∑

j=1
1[y′j ∉ ̂PI(x′j , 𝛿)]

|
|
|
≤

√
t

2m
(A2)

with probability 1−2 exp (−t) on {x′j , y′j}
m
j=1. Therefore, if we can identify a 𝛿 such that

1
m

m∑

j=1
1[y′j ∉ ̂PI(x′j , 𝛿)] ≤

3
4
𝛼, (A3)

and for some later specified choice of t that

√
t

2m
≤

1
4
𝛼, (A4)

the proof will complete. Observe that both P(x,y)∼ [y ∉ ̂PI(x, 𝛿)] and its empirical coun-
terparts 1

m

∑m
j=11[y′j ∉ ̂PI(x′j , 𝛿)] are monotonic in 𝛿. We claim that the Algorithm 1 will

terminate with at most log2

(
2L(Δ+1)

𝛼

)

iterations (namely, disjoint choices of 𝛿 in the while
loop). To prove this claim, we note that the algorithm must terminate in the interval
𝛿 ∈ [Δ − 𝛼

2L
,Δ] since we know

1
m

m∑

j=1
1
[

y′j ∉ ̂PI
(

x′j ,Δ −
𝛼

2L

)]

≤ P
(x,y)∼

[

y ∉ ̂PI
(

x,Δ − 𝛼

2L

)]

+
√

t
2m
≤ L 𝛼

2L
+ 1

4
𝛼 ≤

3
4
𝛼, (A5)

by the mean value theorem and the upper bound on the Lipschitz constant. With the dyadic
search, the algorithm will terminate after at most

⌈

log2

(
2L(Δ+1)

𝛼

)⌉

pre-determined dyadic

grids of 𝛿’s with the form Gdyadic ∶=
{(

1 − 1
2k

)

Δ − 1
2k |k = 0, 1, … ,

⌈

log2

(
2L(Δ+1)

𝛼

)⌉}

.
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Therefore, take t = log
(⌈

log2

(
2L(Δ+1)

𝛼

)⌉

+ 1
)

+ 10 log(m) and recall that m is large enough
such that

√
√
√
√ log

(⌈

log2

(
2L(Δ+1)

𝛼

)⌉

+ 1
)

+ 10 log(m)

m
≤

1
4
𝛼,

then uniformly over the fixed dyadic grid 𝛿 ∈ Gdyadic,

sup
𝛿∈Gdyadic

P
(x,y)∼

[y ∉ ̂PI(x, 𝛿)] − 1
m

m∑

j=1
1[y′j ∉ ̂PI(x′j , 𝛿)] ≤

1
4
𝛼 (A6)

with probability at least 1 − 2m−10. It is easy to see that 𝛿⋆(𝛼) ∈ Gdyadic, and thus on the
same event,

P
(x,y)∼

[
y ∉ ̂PI(x, 𝛿⋆(𝛼))

]
≤

1
m

m∑

j=1
1[y′j ∉ ̂PI(x′j , 𝛿

⋆(𝛼))] + 1
4
𝛼 ≤ 𝛼. (A7)

▪

A.3. Remaining experimental details
All experiments are conducted using the Python language. The minimal implementation is
provided below

Listing 1: Minimal python code
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