Randomization Inference When N = 1

Tengyuan Liang ¹ Benjamin Recht ²

¹The University of Chicago, Booth School of Business

²University of California Berkeley, EECS

Plan

Motivation and Literature RCTs vs. individualization causal inference: interference system identification: impulse response problem setup our contributions Theory and Methodology convolution models estimand and estimator moments: formulas and estimates inference: asymptotic normality Empirics

Motivation and Literature

Individualized Inference:

How can you be the treatment and the control group?

Individualized Inference:

How can you be the treatment and the control group?

- Manage mental health
- Physical therapy
- Learn an instrument/language
- Treat a chronic condition

Motivation

Evaluating three treatments for arthritis Lancet. 1954. 264(6852):1293-6.

CLINICAL COMPARISON OF DIAMORPHINE AND PHOLCODINE AS COUGH

BY A NEW METHOD OF SEQUENTIAL ANALYSIS

Order of administration		Preference for		
			Lipect	Placebo
Lipcet before placebo Placebo before lipect			11	1 1
Total			33	6
			Lipect	Heroin
Lipset before heroin Heroin before lipset			11 6	28
Total			17	10
(g' with conti-	mity o	orroctio	n = 3-11 ; P	- 0-07j
Planaho hofosa hansin			3	10
Heroin before placebo			2	10
Total			4	18

Armitage and Snell. Lancet. 1957. 272(6974):860-2.

The Patient as his own Control

In some instances it may be better to design the trial so that each patient provides his own control-by having various treatments in order. The advantages and disadvantages of that procedure will need careful thought. By such means me

"The Patient as his Own Control" in Bradford Hill's Principles of Medical Statistics, 1961

Clinical and biomedical research: N-of-1 trials

discovery of Vitamins

Nobel Laureates and their work with vitamins

Nobel Prize in Physiolog	y or Medicine	
Discovery of vitamins		
Christiaan Eijkman (1929)	Vitamin B ₁	
Sir Frederick Gowland Hopkins (1929)	Growth Stimulating Vitamins	
George Hoyt Whipple (1934)*	Vitamin B ₁₂	
George Richards Minot (1934)*	Vitamin B ₁₂	
William Parry Marphy (1934)*	Vitamin B ₁₂	
Henrik Carl Peter Dom (1943)	Vitamin K	
Isolation of vitamins		
Adolf One Brinhold Windows (1928)*	Vitamin D	
Albert von Szent-Györgyi Nagyrapolt (1937)	Vitamin C	
Richard Kohn (1938)	Vitamin $B_{\rm 2}$ and $B_{\rm 5}$	
Edward Adelbert Doby (1942)	Vitamin K	

Casimir Funk was nominated for the Nobel Prize four times but never received it.

Motivation

Online platforms and targeting: sequential A/B testing

Netflix's interleaving strategy

Interleaving at Netflix

At Netflix, we use interleaving in the first stage of experimentation to sensitively determine member preference between two ranking algorithms. The figure below depicts the differences between AB testing and interleaving. In traditional AB testing, we choose two groups of subaccibers, one to be exposed to ranking algorithm A and another to B. In interleaving, we select a single set of subacribers who are exposed to an interleaved ranking generated by blending the rankings of algorithms A and B. This allows us to present choices side-by-side to the user to determine their preference of ranking algorithms. Howhers are not algorithm their preference of ranking algorithm by comparing the share of hours viewed, with attribution based on which ranking algorithm for commended the video.

Fig. 3: A/B Testing vs. Interleaving, in traditional A/B testing, the population is spit into two groups, and exposed to ranking algorithm A and another to B. Core evaluation metriculiar testion and travening are measured and compared between the two groups. In contrast, Interleaving exposes one group of methers to a banded ranking of nakers A and B. User preference for a ranking algorithm is determined by comparing the share of viewing hours coming from videos encommended by ranking A or B. For example, imagine that LinkedIn develops a new algorithm for matching job seekers with job openings. To measure its effectiveness, LinkedIn would simultaneously expose all job postings and seekers in a given market to the new algorithm for 30 minutes. In the next 30-minute period, it would randomly decide to either switch to the old algorithm or stay with the new one. It would continue this process for at least two weeks to ensure that it sees all types of job search patterns. Netflix's interleaving strategy is a special application of this more general methodology.

Bojinov, Saint-Jacques, and Tingley, HDSR 2020

causal inference system identification/control

causal inference system identification/control

Causal inference

Neyman, 1923: On the Application of Probability Theory to Agricultural Experiments. Essay on principles. Section 9.

Potential Outcomes for Field Experiments

- Unknown potential yields indexed by varieties \times plots
- If randomize, mean outcome in treatment vs. control is estimable
- Formula for the variance (measurement precision) of the difference between average observed yields of two varieties
- Probability theory can be used even when yields from different plots do not follow Gaussian law.

Causal inference

Neyman, 1923: On the Application of Probability Theory to Agricultural Experiments. Essay on principles. Section 9.

Potential Outcomes for Field Experiments

- Unknown potential yields indexed by varieties \times plots
- If randomize, mean outcome in treatment vs. control is estimable
- Formula for the variance (measurement precision) of the difference between average observed yields of two varieties
- Probability theory can be used even when yields from different plots do not follow Gaussian law.

Opens up the Potential Outcome Framework for randomization inference: RCTs as measurement device for effects with uncertainty quantification.

- Measures treatment effect: how a policy works in a population
- Removes cofounding factors (identifiability), reasonable estimation of measurement precision (error bar)
- In particular, RCTs do **NO**T inform us: how a policy works for an individual? what happens over time?

- Measures treatment effect: how a policy works in a population
- Removes cofounding factors (identifiability), reasonable estimation of measurement precision (error bar)
- In particular, RCTs do **NO**T inform us: how a policy works for an individual? what happens over time?

Individual treatment effect? Ignorability assumption: effectively RCTs conditioning on covariates *x*.

Cross-sectional data:

- Potential outcomes: $y_i(0), y_i(1) \in \mathbb{R}$ for i = 1, ..., n.
- Observed outcome: $y_i = y_i(1) \cdot x_i + y_i(0) \cdot (1 x_i)$, binary treatment variable $x_i \in \{0, 1\}$, equiv.

$$y_i = \frac{y_i(1)+y_i(0)}{2} + \frac{y_i(1)-y_i(0)}{2} \cdot (2x_i - 1)$$
.

Neyman, 1923, Fisher, 1937, Imbens and Rubin, 2015

Cross-sectional data:

Estimand: average treatment effect

$$\tau := \frac{1}{n} \sum_{i=1}^{n} y_i(1) - y_i(0)$$

Cross-sectional data:

Estimand: average treatment effect

$$\tau := \frac{1}{n} \sum_{i=1}^{n} y_i(1) - y_i(0)$$

Estimator: Horvitz-Thompson

$$\widehat{\tau} := \frac{1}{n} \sum_{i=1}^{n} (2x_i - 1) \cdot 2y_i$$

Horvitz and Thompson, 1952

Cross-sectional data:

Estimand: average treatment effect

$$\tau := \frac{1}{n} \sum_{i=1}^{n} y_i(1) - y_i(0)$$

Estimator: Horvitz-Thompson

$$\widehat{\tau} := \frac{1}{n} \sum_{i=1}^{n} (2x_i - 1) \cdot 2y_i$$

Horvitz and Thompson, 1952

Unbiasedness, variance and asymptotic normality: design-based randomness, first moment $\mathbb{E}[2x_i - 1] = 0$ and $(2x_i - 1)^2 \equiv 1$

Stable Unit Treatment Value Assumption (SUTVA): <u>no interference</u> y_i only depends on x_i Time-series data: SUTVA is violated. N-of-1 clinical trials and macroeconomic studies. Granger, 1969, Sims, 1972

Interference: outcomes at time *t* depend on treatments assigned before, namely, the treatment path x_0, x_1, \ldots, x_t .

Time-series data: SUTVA is violated. N-of-1 clinical trials and macroeconomic studies. Granger, 1969, Sims, 1972

Interference: outcomes at time *t* depend on treatments assigned before, namely, the treatment path x_0, x_1, \ldots, x_t .

One approach extending Neyman-Fisher-Rubin framework: include all interactions $x_S := \prod_{s \in S} x_s$, for all subsets $S \subseteq \{0, 1, \dots, t\}$

$$y_t = \sum_{S:S \subseteq \{0,1,\ldots,t\}} \alpha_S^{(t)} \cdot x_S \; .$$

Time-series data: SUTVA is violated. N-of-1 clinical trials and macroeconomic studies. Granger, 1969, Sims, 1972

Interference: outcomes at time *t* depend on treatments assigned before, namely, the treatment path x_0, x_1, \ldots, x_t .

One approach extending Neyman-Fisher-Rubin framework: include all interactions $x_S := \prod_{s \in S} x_s$, for all subsets $S \subseteq \{0, 1, \dots, t\}$

$$y_t = \sum_{S:S \subseteq \{0,1,...,t\}} \alpha_S^{(t)} \cdot x_S .$$

Such representation is with full generality, analysis of Boolean functions $\ensuremath{\text{O'Donnell}}\xspace$, 2014

However, curse of dimensionality 2^t prevents meaningful statistical analysis

Granger-Sims causality framework: testing correlations in x's that canexplain yGranger, 1969, Sims, 1972, Angrist and Kuersteiner, 2011

 $y_t = \alpha_{\emptyset} + \alpha_0 \cdot x_t + \alpha_1 \cdot x_{t-1} + \ldots + \alpha_t \cdot x_0 + \operatorname{error}_t$.

Granger-Sims causality framework: testing correlations in x's that can explain y Granger, 1969, Sims, 1972, Angrist and Kuersteiner, 2011

 $y_t = \alpha_{\emptyset} + \alpha_0 \cdot x_t + \alpha_1 \cdot x_{t-1} + \ldots + \alpha_t \cdot x_0 + \operatorname{error}_t$.

Granger causality leverages time-invariance and linearity to provide practically useful answers to whether the time-series x forecast time-series y.

causal inference system identification/control

Control theory: model the input-output behavior of a dynamical system, design feedback policy

$$s_{t+1} = f_t(s_t, x_t, \epsilon_t)$$

 $y_t = h_t(s_t, x_t, \epsilon_t)$

 x_t input, y_t output

 ϵ_t exogenous noise, s_t state of the dynamical system

Control theory: model the input-output behavior of a dynamical system, design feedback policy

 $s_{t+1} = f_t(s_t, x_t, \epsilon_t)$ $y_t = h_t(s_t, x_t, \epsilon_t)$

- x_t input, y_t output
- ϵ_t exogenous noise, s_t state of the dynamical system

Policy evaluation and optimization

Find appropriate estimates of the function f_t and h_t so that inputs x_t can be planned to steer y_t to desired values.

linear dynamical systems

 f_t and h_t must not be too complicated to be identifiable: linear class

Ljung, 1998

 f_t and h_t must not be too complicated to be identifiable: linear class

Ljung, 1998

For linear dynamical systems, the input-output map as

$$y_t = \sum_{s \in [t]} G_s^{(t)} x_s + e_t$$

where $G_s^{(t)}$ are scalars and e_t are linear functions of the $\epsilon_s, s \in [t]$ and s_1 .

 f_t and h_t must not be too complicated to be identifiable: linear class

Ljung, 1998

For linear dynamical systems, the input-output map as

$$y_t = \sum_{s \in [t]} G_s^{(t)} x_s + e_t$$

where $G_s^{(t)}$ are scalars and e_t are linear functions of the $\epsilon_s, s \in [t]$ and s_1 .

further restriction: time-invariant linear dynamical systems: $f_t \equiv f$ and $h_t \equiv h$

$$y_t = \sum_{s \in [t]} g_{t-s} x_s + e_t$$

Here the sequence g is called the impulse response function, modeling interference.

Bakshi, Liu, Moitra, and Yau (2023), Oymak and Ozay (2019), and Simchowitz, Boczar, and Recht (2019)

causal inference system identification/control we model interference by impulse response function

- Two type of actions: A or B
- Each time t, pick one action x_t ∈ {A, B}, try it out, document outcome y_t
- At the end, infer the effect of A vs. B by "correlating" time-series y to x

- Two type of actions: A or B
- Each time t, pick one action x_t ∈ {A, B}, try it out, document outcome y_t
- At the end, infer the effect of A vs. B by "correlating" time-series y to x

Challenging: interference! y depends on the whole path of x

Problem setup

Treatment/Control variable x, Observed response y

Estimate/Inference: linear functionals of impulse response function g

impulse response g

treatment x, response y

300

Problem setup

Treatment/Control variable x, Observed response y

Estimate/Inference: linear functionals of impulse response function g

Robust to arbitrary oblivious error

counterfactual reasoning and control of the system

depends on the impulse response g

Robust to arbitrary error sequence : extends the Granger-Sims Potential outcomes for time-series : generalize Neyman, interference New unbiased estimator : generalize Horvitz-Thompson to time-series Asymptotic inference : new to the system identification and control
Theory and Methodology

$$\mathbf{y}_t = (\mathbf{x} * g + e)_t$$

- Linear convolution $(x * g)_t := \sum_{s=0}^t x_s g_{t-s}$
- adversarial error: $e \in \mathbb{R}^T$ is any error oblivious to the randomization **x**

Convolution models the interference effect.

• Consider time-invariant impulse response $g \in \mathbb{R}^T$.

- Consider time-invariant impulse response $g \in \mathbb{R}^T$.
- Estimands: linear functionals indexed by a time-invariant $q \in \mathbb{R}^T$

 $\Delta(\mathbf{q}) := \langle \mathbf{q}, \mathbf{g} \rangle$.

- Consider time-invariant impulse response $g \in \mathbb{R}^T$.
- **Estimands**: linear functionals indexed by a time-invariant $q \in \mathbb{R}^T$

$$\Delta(q) := \langle q, g \rangle$$
.

• Estimators: convolution estimator

$$\widehat{\Delta}(\mathbf{q}) = \frac{1}{T} \langle (2\mathbf{x} - 1) * \mathbf{q}^{\circ}, 2\mathbf{y} \rangle$$
.

Special cases include the cumulative lag-K effects, $K \in [1, T] \cap \mathbb{Z}$, where vector $q = 1_{<\kappa} := (\underbrace{1, \dots, 1}_{\kappa}, 0, \dots, 0)$ is plugged in, $\Delta_{\kappa} := \Delta(1_{<\kappa}) = \sum_{k=0}^{\kappa-1} g_k .$

The estimator for the cumulative lag-K effects Δ_K is

$$\widehat{\Delta}_{\mathcal{K}} := \widehat{\Delta}(1_{<\mathcal{K}}) = rac{1}{T} \langle (2\mathbf{x}-1) * 1^{\circ}_{<\mathcal{K}}, 2\mathbf{y} \rangle \; .$$

- More generally, we may consider a broader class of time-variant $g^{(t)} \in \mathbb{R}^{t}$'s

$$\mathbf{y}_t = (\mathbf{x} * g^{(t)} + e)_t \; .$$

$$(\mathbf{x} * \mathbf{g}^{(t)})_t := \sum_{s=0}^t x_s g_{t-s}^{(t)}$$

• More generally, we may consider a broader class of time-variant $g^{(t)} \in \mathbb{R}^{t}$'s

$$\mathbf{y}_t = (\mathbf{x} * g^{(t)} + e)_t \; .$$

• For a sequence of vectors $q^{(t)} \in \mathbb{R}^t$, define the estimand

$$\tau := \frac{1}{T} \sum_{t \in [T]} \langle g^{(t)}, q^{(t)} \rangle ,$$

• More generally, we may consider a broader class of time-variant $g^{(t)} \in \mathbb{R}^{t}$'s

$$\mathbf{y}_t = (\mathbf{x} * g^{(t)} + e)_t \; .$$

• For a sequence of vectors $q^{(t)} \in \mathbb{R}^t$, define the estimand

$$\tau := \frac{1}{T} \sum_{t \in [T]} \langle g^{(t)}, q^{(t)} \rangle ,$$

• The corresponding unbiased estimator

$$\widehat{\tau} := \frac{1}{T} \sum_{t \in [T]} \left(2\mathbf{x} - 1 \right) * q^{(t)} \right)_t \cdot 2\mathbf{y}_t \ .$$

If $g^{(t)} = (g_0^{(t)}, 0, \dots, 0), q^{(t)} = (1, 0, \dots, 0)$, the estimator reduces to the classic Horvitz-Thompson.

• More generally, we may consider a broader class of time-variant $g^{(t)} \in \mathbb{R}^{t}$'s

$$\mathbf{y}_t = (\mathbf{x} * g^{(t)} + e)_t \; .$$

• For a sequence of vectors $q^{(t)} \in \mathbb{R}^t$, define the estimand

$$\tau := \frac{1}{T} \sum_{t \in [T]} \langle g^{(t)}, q^{(t)} \rangle ,$$

• The corresponding unbiased estimator

$$\widehat{\tau} := \frac{1}{T} \sum_{t \in [T]} \left(2\mathbf{x} - 1 \right) * \boldsymbol{q}^{(t)} \right)_t \cdot 2\mathbf{y}_t \; .$$

If $g^{(t)} = (g_0^{(t)}, 0, \dots, 0), q^{(t)} = (1, 0, \dots, 0)$, the estimator reduces to the classic Horvitz-Thompson.

Generalize classical potential outcomes, unbiasedness and var formula, space vs. time

Some properties of the estimator

First moment (L. and Recht, '23)

$$\mathop{\mathbb{E}}_{\mathbf{x}}\left[\widehat{\Delta}(q)\right] = \Delta(q) = \langle q,g \rangle \; .$$

First moment (L. and Recht, '23)

$$\mathop{\mathbb{E}}_{\mathbf{x}}\left[\widehat{\Delta}(q)
ight] = \Delta(q) = \langle q,g
angle \; .$$

Unbiasedness of the estimator.

Second moment (L. and Recht, '23)

$$\begin{split} & \underset{\mathsf{x}}{\mathbb{E}}\left[\left(\widehat{\Delta}(q) - \Delta(q)\right)^{2}\right] \\ &= \frac{1}{T}\left(\|g * q^{\circ}\|_{2}^{2} + \langle g * g^{\circ}, q * q^{\circ} \rangle - 2\langle q, g \rangle^{2}\right) + \frac{1}{T^{2}}\|(1 * g^{\circ} + 2e) * q^{\circ}\|_{2}^{2}. \end{split}$$

Second moment (L. and Recht, '23)

$$\begin{split} & \underset{\mathsf{x}}{\mathbb{E}}\left[\left(\widehat{\Delta}(q) - \Delta(q)\right)^{2}\right] \\ &= \frac{1}{T}\left(\|g \ast q^{\circ}\|_{2}^{2} + \langle g \ast g^{\circ}, q \ast q^{\circ} \rangle - 2\langle q, g \rangle^{2}\right) + \frac{1}{T^{2}}\|(1 \ast g^{\circ} + 2e) \ast q^{\circ}\|_{2}^{2} \,. \end{split}$$

The formula for the variance of the treatment effects: measurement accuracy.

Depends on the functional forms of g and q.

Second moment (L. and Recht, '23)

$$\begin{split} & \underset{\mathsf{x}}{\mathbb{E}}\left[\left(\widehat{\Delta}(q) - \Delta(q)\right)^{2}\right] \\ &= \frac{1}{T}\left(\|g \ast q^{\circ}\|_{2}^{2} + \langle g \ast g^{\circ}, q \ast q^{\circ} \rangle - 2\langle q, g \rangle^{2}\right) + \frac{1}{T^{2}}\|(1 \ast g^{\circ} + 2e) \ast q^{\circ}\|_{2}^{2} \,. \end{split}$$

The formula for the variance of the treatment effects: measurement accuracy.

Depends on the functional forms of g and q.

If
$$g = (g_0, 0, \dots, 0), q = (1, 0, \dots, 0)$$

$$\frac{1}{T} \left(||g * q^{\circ}||_2^2 + \langle g * g^{\circ}, q * q^{\circ} \rangle - 2 \langle q, g \rangle^2 \right) = 0$$

$$\frac{1}{T^2} ||g_0 \cdot 1 + 2e||_2^2 = \text{var formula of HT}$$

Asymptotic normality? Non-trivial due to interference.

Assume

$$\frac{\|(|g|*|q|^{\circ})*(|g|*|q|^{\circ})^{\circ}\|_{2}^{2}}{\|g*q^{\circ}\|_{2}^{4}} = o(T)$$

Assume

$$\frac{\|(|g|*|q|^{\circ})*(|g|*|q|^{\circ})^{\circ}\|_{2}^{2}}{\|g*q^{\circ}\|_{2}^{4}} = o(T)$$

True if $|g_t| \preceq 0.99^t$, $|\operatorname{supp}(q)| = K \preceq \operatorname{polylog}(T)$.

Assume

$$\frac{\|(|g|*|q|^{\circ})*(|g|*|q|^{\circ})^{\circ}\|_{2}^{2}}{\|g*q^{\circ}\|_{2}^{4}} = o(T)$$

True if $|g_t| \preceq 0.99^t$, $|\operatorname{supp}(q)| = K \preceq \operatorname{polylog}(T)$.

Asymptotic normality (1 and Pocht '23)

$$\frac{\sqrt{T} \cdot \mathbf{H}_T}{\sqrt{\mathcal{V}_Q}} \Rightarrow \mathcal{N}(0, 1), \quad \text{as } T \to \infty ,$$

where $\mathcal{V}_Q := \|g * q^\circ\|_2^2 + \langle g * g^\circ, q * q^\circ \rangle - 2\langle q, g \rangle^2.$

Assume

$$\frac{\|(|g|*|q|^{\circ})*(|g|*|q|^{\circ})^{\circ}\|_{2}^{2}}{\|g*q^{\circ}\|_{2}^{4}} = o(T)$$

102)

True if $|g_t| \preceq 0.99^t$, $|\operatorname{supp}(q)| = K \preceq \operatorname{polylog}(T)$.

1.

. . . .

Asymptotic normality (L. and Kecht, 23)
$$\frac{\sqrt{T} \cdot \mathbf{H}_T}{\sqrt{\mathcal{V}_Q}} \Rightarrow \mathcal{N}(0,1), \quad \text{as } T \to \infty ,$$
where $\mathcal{V}_Q := \|g * q^\circ\|_2^2 + \langle g * g^\circ, q * q^\circ \rangle - 2\langle q, g \rangle^2.$

Variance \rightarrow Distribution: non-trivial for temporally dependent problem

Decomposition: denote the centered randomization vector $\mathbf{z} := 2\mathbf{x} - 1 \in \mathbb{R}^T$, and $h = 1 * g^\circ + 2e \in \mathbb{R}^T$,

$$\begin{split} \widehat{\Delta}(q) &= \frac{1}{T} \langle (2\mathbf{x} - 1) * q^{\circ}, (2\mathbf{x} - 1) * \mathbf{g}^{\circ} + 1 * g^{\circ} + 2e \rangle , \\ &= \frac{1}{T} \langle \mathbf{z} * q^{\circ}, \mathbf{z} * \mathbf{g}^{\circ} \rangle + \frac{1}{T} \langle \mathbf{z} * q^{\circ}, h \rangle . \end{split}$$

Decomposition: denote the centered randomization vector $\mathbf{z} := 2\mathbf{x} - 1 \in \mathbb{R}^T$, and $h = 1 * g^\circ + 2e \in \mathbb{R}^T$,

$$\begin{split} \widehat{\Delta}(q) &= \frac{1}{T} \langle (2\mathbf{x} - 1) * q^{\circ}, (2\mathbf{x} - 1) * \mathbf{g}^{\circ} + 1 * g^{\circ} + 2e \rangle , \\ &= \frac{1}{T} \langle \mathbf{z} * q^{\circ}, \mathbf{z} * \mathbf{g}^{\circ} \rangle + \frac{1}{T} \langle \mathbf{z} * q^{\circ}, h \rangle . \end{split}$$

 $\mathbf{W}_{\mathcal{T}}$ denotes the difference between the estimator and the estimand,

$$\mathbf{W}_{\mathcal{T}} := \widehat{\Delta}(q) - \Delta(q) = \boxed{\frac{1}{T} \sum_{i \neq j \in [T]} \mathbf{z}_i \mathbf{z}_j H_{ij}}_{i \neq j \in [T]} + \frac{1}{T} \sum_{i \in [T]} \mathbf{z}_i L_i ,$$

where

$$H_{ij} := \sum_{t \in [T]} q_{t-i}^{\circ} g_{t-j}^{\circ}, \ L_i := \sum_{t \in [T]} q_{t-i}^{\circ} h_t \ .$$

Fourth moment (L. and Recht, '23) Denote

$$\mathbf{H}_{\mathcal{T}} := \boxed{\frac{1}{\mathcal{T}} \sum_{i \neq j \in [\mathcal{T}]} \mathbf{z}_i \mathbf{z}_j H_{ij}}$$

where
$$H_{ij} := \sum_{t \in [T]} q_{t-i}^{\circ} g_{t-j}^{\circ}$$
.

Then

$$\left|\frac{\mathbb{E}[\mathsf{H}_{T}^{4}]}{\left(\mathbb{E}[\mathsf{H}_{T}^{2}]\right)^{2}} - 3\right| \leq \frac{4}{T} + \frac{16}{T} \frac{\|(|g|*|q|^{\circ})*(|g|*|q|^{\circ})^{\circ}\|_{2}^{2}}{\left(\|g*q^{\circ}\|_{2}^{2} + \langle g*g^{\circ}, q*q^{\circ} \rangle - 2\langle q, g \rangle^{2}\right)^{2}} .$$

Fourth moment (L. and Recht, '23) Denote

$$\mathbf{H}_{\mathcal{T}} := \boxed{\frac{1}{\mathcal{T}} \sum_{i \neq j \in [\mathcal{T}]} \mathbf{z}_i \mathbf{z}_j H_{ij}}$$

where
$$H_{ij} := \sum_{t \in [T]} q_{t-i}^{\circ} g_{t-j}^{\circ}$$
.

Then

$$\left|\frac{\mathbb{E}[\mathsf{H}_{T}^{4}]}{\left(\mathbb{E}[\mathsf{H}_{T}^{2}]\right)^{2}} - 3\right| \leq \frac{4}{T} + \frac{16}{T} \frac{\|(|g|*|q|^{\circ})*(|g|*|q|^{\circ})^{\circ}\|_{2}^{2}}{\left(\|g*q^{\circ}\|_{2}^{2} + \langle g*g^{\circ}, q*q^{\circ} \rangle - 2\langle q, g \rangle^{2}\right)^{2}} .$$

 $H_{\mathcal{T}}$ is quadratic in z's.

Eighth moment calculations in z's.

• Rademacher chaos
$$\mathbf{H}_T := \boxed{\frac{1}{T} \sum_{i \neq j \in [T]} \mathbf{z}_i \mathbf{z}_j H_{ij}}$$
 with

 $H_{ij} := \sum_{t \in [T]} q_{t-i}^{\circ} g_{t-j}^{\circ}$ for generic g, q.

• Rademacher chaos $\mathbf{H}_{T} := \boxed{\frac{1}{T} \sum_{i \neq j \in [T]} \mathbf{z}_{i} \mathbf{z}_{j} H_{ij}}$ with

 $H_{ij} := \sum_{t \in [T]} q_{t-i}^{\circ} g_{t-j}^{\circ}$ for generic g, q.

• Martingale differences: Central Limit Theorem?

• Rademacher chaos
$$\mathbf{H}_T := \boxed{\frac{1}{T} \sum_{i \neq j \in [T]} \mathbf{z}_i \mathbf{z}_j H_{ij}}$$
 with

 $H_{ij} := \sum_{t \in [T]} q_{t-i}^{\circ} g_{t-j}^{\circ}$ for generic g, q.

- Martingale differences: Central Limit Theorem?
- Not true (for generic g, q)!

• Rademacher chaos
$$\mathbf{H}_{\mathcal{T}} := \boxed{\frac{1}{\mathcal{T}} \sum_{i \neq j \in [\mathcal{T}]} \mathbf{z}_i \mathbf{z}_j H_{ij}}$$
 with

 $H_{ij} := \sum_{t \in [T]} q_{t-i}^{\circ} g_{t-j}^{\circ}$ for generic g, q.

- Martingale differences: Central Limit Theorem?
- Not true (for generic g, q)!
- True when $\frac{\|(|g|*|q|^{\circ})*(|g|*|q|^{\circ})^{\circ}\|_{2}^{2}}{\left(\|g*q^{\circ}\|_{2}^{2}\right)^{2}} = o(T).$ Higher moments calculation implies $\left|\frac{\mathbb{E}[\mathbf{H}_{T}^{4}]}{\left(\mathbb{E}[\mathbf{H}_{T}^{2}]\right)^{2}} 3\right| \to 0$ as $T \to \infty$.

• Rademacher chaos
$$\mathbf{H}_T := \boxed{\frac{1}{T} \sum_{i \neq j \in [T]} \mathbf{z}_i \mathbf{z}_j H_{ij}}$$
 with

$$H_{ij} := \sum_{t \in [T]} \mathbf{q}_{t-i}^{\circ} g_{t-j}^{\circ}$$
 for generic g, \mathbf{q} .

- Martingale differences: Central Limit Theorem?
- Not true (for generic g, q)!
- True when $\frac{\|(|g|*|q|^{\circ})*(|g|*|q|^{\circ})^{\circ}\|_{2}^{2}}{\left(\|g*q^{\circ}\|_{2}^{2}\right)^{2}} = o(T).$ Higher moments calculation implies $\left|\frac{\mathbb{E}[\mathbf{H}_{T}^{4}]}{\left(\mathbb{E}[\mathbf{H}_{T}^{2}]\right)^{2}} 3\right| \to 0$ as $T \to \infty$.

If $g * q^{\circ}$ is approx. supported on top *K*-elements, where $K \ll T$.

How to construct confidence intervals based on data?

Inference: confidence intervals

But how to estimate the variance?

$$\begin{split} \mathcal{V}_Q &= \|g \ast q^{\circ}\|_2^2 + \langle g \ast g^{\circ}, q \ast q^{\circ} \rangle - 2 \langle q, g \rangle^2 , \\ \mathcal{V}_L &= \frac{1}{T} \| (1 \ast g^{\circ} + 2\mathbf{e}) \ast q^{\circ} \|_2^2 . \end{split}$$

Inference: confidence intervals

But how to estimate the variance?

$$\begin{split} \mathcal{V}_Q &= \|g \ast q^{\circ}\|_2^2 + \langle g \ast g^{\circ}, q \ast q^{\circ} \rangle - 2 \langle q, g \rangle^2 ,\\ \mathcal{V}_L &= \frac{1}{T} \| (1 \ast g^{\circ} + 2\mathbf{e}) \ast q^{\circ} \|_2^2 . \end{split}$$

Plug-in estimate of the variance based on the formula? Denote

$$g \leftarrow \widehat{g}_{
$$e \leftarrow \widehat{e} := \mathbf{y} - \mathbf{x} * \widehat{g}_{$$$$

and define $\widehat{\mathcal{V}}_{\mathcal{Q}}, \widehat{\mathcal{V}}_{\mathcal{L}}$ accordingly.

Inference: confidence intervals

But how to estimate the variance?

$$\begin{split} \mathcal{V}_Q &= \|g \ast q^{\circ}\|_2^2 + \langle g \ast g^{\circ}, q \ast q^{\circ} \rangle - 2 \langle q, g \rangle^2 ,\\ \mathcal{V}_L &= \frac{1}{T} \| (1 \ast g^{\circ} + 2\mathbf{e}) \ast q^{\circ} \|_2^2 . \end{split}$$

Plug-in estimate of the variance based on the formula? Denote

$$g \leftarrow \widehat{g}_{
$$e \leftarrow \widehat{e} := \mathbf{y} - \mathbf{x} * \widehat{g}_{$$$$

and define $\widehat{\mathcal{V}}_Q, \widehat{\mathcal{V}}_L$ accordingly.

Use non-asymptotic concentration inequalities to derive that with $K = K(T) = \Theta(\log(T))$, as $T \to \infty$ $\widehat{\mathcal{V}}_{\Omega} \xrightarrow{a.s.} \mathcal{V}_{\Omega}, \quad \widehat{\mathcal{V}}_{I} \xrightarrow{a.s.} \mathcal{V}_{I}$. Proof technique: Hanson-Wright inequalities

Uniform consistency (L. and Recht, '23) For integer $k \in [0, K)$ with $K \ll T$, denote $\delta_k := (0, \dots, 1, \dots, 0)$. Assume $|e_t| \le M, \forall t \ge 0$ and $||g||_1 \le C$ for absolute constants C, M > 0. Then with probability at least $1 - 4T^{-2}$

$$\sup_{k< \mathcal{K}} \left|\widehat{\Delta}(\delta_k) - g_k \right| \precsim rac{\log(T)}{\sqrt{T}} \; .$$

Data-driven confidence interval with coverage $1 - \alpha$: choose $K = K(T) = \Theta(\log(T))$, let $q = 1_{<K}$, and

$$\widehat{\Delta}(q)\pm \mathcal{C}_{lpha}\sqrt{rac{\widehat{\mathcal{V}}_{\mathcal{Q}}+\widehat{\mathcal{V}}_{L}}{T}}$$
Data-driven confidence interval with coverage $1 - \alpha$: choose $K = K(T) = \Theta(\log(T))$, let $q = 1_{<K}$, and

$$\widehat{\Delta}(q)\pm \mathit{C}_{lpha}\sqrt{rac{\widehat{\mathcal{V}}_{\mathit{Q}}+\widehat{\mathcal{V}}_{\mathit{L}}}{\mathit{T}}}$$
 .

Compared to Neyman-Fisher-Rubin on the estimation of the variance:

This variance involves the variance over all plots of the potential yields and the correlation coefficient r between the potential yields of the two varieties on the same plot. Since it is **impossible to estimate** r directly, Neyman advises taking r = 1, observing that in practice this may lead to using too large an estimated standard deviation, when comparing two variety means.

Dabrowska and Speed, 1990

We leverage time-invariance to construct asymptotically valid confidence intervals.

Empirics

• Impulse response function:

 $g_t = 1.0 * 0.65^t - 1.6 * 0.50^t + 0.75 * 0.48^t$.

• Estimand
$$\Delta(1) = \langle 1, g \rangle$$
.

• Estimator
$$\widehat{\Delta}(q) := \frac{1}{T} \langle (2\mathbf{x} - 1) * 1_{\leq K}, 2\mathbf{y} \rangle$$
 with $1_{\leq K} := (\underbrace{1, \dots, 1}_{K}, 0, \dots, 0) \in \mathbb{R}^{T}$ with $K = 25$.

When does asymptotic normality kick in

Circular convolution model

When does asymptotic normality kick in

Linear convolution model

T = 1000

T = 5000

Circular convolution model

Linear convolution model

- Math works out, but it remains a difficult problem in practice. A measurement device for practitioner to tease out the interference effect in N-of-1 trials.
- Interference: just one sample (even when $T = \infty$), hard problem.
- Interference over networks: can the convolution analysis be generalized?
- Experimental design?
- Sequential decision making?

Thank you!

Tengyuan Liang, Benjamin Recht. Randomization Inference When N Equals One. arXiv:2310.16989, 2023.

x_t matters as this input design must make all g_t of interest identifiable.

 x_t matters as this input design must make all g_t of interest identifiable. The most popular choice in theory and practice chooses x_t to be an i.i.d. sequence of zero mean random variables.

Mareels, 1984; Overschee and Moor, 1994; Verhaegen and Dewilde, 1992

 x_t matters as this input design must make all g_t of interest identifiable. The most popular choice in theory and practice chooses x_t to be an i.i.d. sequence of zero mean random variables.

Mareels, 1984; Overschee and Moor, 1994; Verhaegen and Dewilde, 1992

Statistical error rates for the estimation of the impulse response g from a single input sequence $\{x_t\}$: only recently determined. nonparametric, infinite-dimensional problem

Bakshi et al., 2023; Oymak and Ozay, 2019; Simchowitz, Boczar, and Recht, 2019

References i

Angrist, Joshua D and Guido M Kuersteiner (2011). "Causal effects of monetary shocks: Semiparametric conditional independence tests with a multinomial propensity score". In: Review of Economics and Statistics 93.3, pp. 725-747. Bakshi, Ainesh et al. (2023). "A New Approach to Learning Linear Dynamical Systems". In: arXiv preprint arXiv:2301.09519. Fisher, Ronald Aylmer (1937). The design of experiments. Granger, Clive WJ (1969). "Investigating causal relations by econometric models and cross-spectral methods". In: Econometrica: journal of the Econometric Society, pp. 424–438. Horvitz, Daniel G and Donovan J Thompson (1952). "A generalization of sampling without replacement from a finite **universe**". In: Journal of the American statistical Association 47.260. pp. 663-685.

References ii

- Imbens, Guido W and Donald B Rubin (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press.
- Ljung, Lennart (1998). System Identification. Theory for the user. 2nd. Upper Saddle River, NJ: Prentice Hall.
- Mareels, Iven (1984). "Sufficiency of excitation". In: Systems & control letters 5.3, pp. 159–163.
- Neyman, Jerzy (1923). "On the application of probability theory to agricultural experiments. Essay on principles". In: Ann.

Agricultural Sciences, pp. 1–51.

- O'Donnell, Ryan (2014). Analysis of boolean functions. Cambridge University Press.
- Overschee, Peter Van and Bart De Moor (1994). "N4SID: Subspace algorithms for the identification of combined deterministic- stochastic systems". In: Automatica 30, pp. 75–93.

References iii

Oymak, Samet and Necmiye Ozay (2019). "Non-asymptotic identification of Iti systems from a single trajectory". In: 2019 American control conference (ACC). IEEE, pp. 5655–5661.
Simchowitz, Max, Ross Boczar, and Benjamin Recht (2019). "Learning Linear Dynamical Systems with Semi-Parametric Least Squares". In: Conference on Learning Theory (COLT).
Sims, Christopher A (1972). "Money, income, and causality". In: The American economic review 62.4, pp. 540–552.
Verhaegen, Michel and Patrick Dewilde (1992). "Subspace model identification". In: International Journal of Control 56.5, pp. 1187–1210.