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Motivation

Individualized Inference:

How can you be the treatment and the control group?
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Motivation

Individualized Inference:

How can you be the treatment and the control group?

Evaluating three treatments for arthritis

"The Patient as his Own Control” in Bradford Hill’s 
Principles of Medical Statistics, 1961

Lancet. 1954. 264(6852):1293-6.
Armitage and Snell.

Lancet. 1957. 272(6974):860-2.
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Motivation

Clinical and biomedical research: N-of-1 trials

discovery of Vitamins

Casimir Funk was nominated for the Nobel Prize four times but never received it.
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Motivation

Online platforms and targeting: sequential A/B testing

Netflix’s interleaving strategy
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For example, imagine that LinkedIn develops a new algorithm for matching job seekers

with job openings. To measure its effectiveness, LinkedIn would simultaneously expose

all job postings and seekers in a given market to the new algorithm for 30 minutes.

In the next 30-minute period, it would randomly decide to either switch to the old

algorithm or stay with the new one. It would continue this process for at least two

weeks to ensure that it sees all types of job search patterns. Netflix’s interleaving

strategy is a special application of this more general methodology.

Bojinov, Saint-Jacques, and Tingley, HDSR 2020

causal inference system identification/control
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causal inference system identification/control

5



Causal inference

Neyman, 1923: On the Application of Probability Theory to Agricultural

Experiments. Essay on principles. Section 9.

Potential Outcomes for Field Experiments

• Unknown potential yields indexed by varieties × plots

• If randomize, mean outcome in treatment vs. control

is estimable

• Formula for the variance (measurement precision) of

the difference between average observed yields of two

varieties

• Probability theory can be used even when yields from

different plots do not follow Gaussian law.

Opens up the Potential Outcome Framework for randomization inference:

RCTs as measurement device for effects with uncertainty

quantification.
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What do we learn from RCTs

• Measures treatment effect: how a policy works in a population

• Removes cofounding factors (identifiability), reasonable estimation

of measurement precision (error bar)

• In particular, RCTs do NOT inform us: how a policy works for an

individual? what happens over time?

Individual treatment effect? Ignorability assumption: effectively RCTs

conditioning on covariates x .
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Potential outcome framework

Cross-sectional data:

• Potential outcomes: yi (0), yi (1) ∈ R for i = 1, . . . , n.

• Observed outcome: yi = yi (1) · xi + yi (0) · (1− xi ), binary treatment

variable xi ∈ {0, 1}, equiv.

yi =
yi (1)+yi (0)

2 + yi (1)−yi (0)
2 · (2xi − 1) .

Neyman, 1923, Fisher, 1937, Imbens and Rubin, 2015

Estimand: average treatment effect

τ :=
1

n

n∑
i=1

yi (1)− yi (0)

Estimator: Horvitz-Thompson

τ̂ :=
1

n

n∑
i=1

(2xi − 1) · 2yi

Horvitz and Thompson, 1952

Unbiasedness, variance and asymptotic normality: design-based

randomness, first moment E[2xi − 1] = 0 and (2xi − 1)2 ≡ 1

Stable Unit Treatment Value Assumption (SUTVA): no interference

yi only depends on xi
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Potential outcomes for time-series? Interference

Time-series data: SUTVA is violated. N-of-1 clinical trials and

macroeconomic studies. Granger, 1969, Sims, 1972

Interference: outcomes at time t depend on treatments assigned before,

namely, the treatment path x0, x1, . . . , xt .

One approach extending Neyman-Fisher-Rubin framework: include all

interactions xS :=
∏

s∈S xs , for all subsets S ⊆ {0, 1, . . . , t}

yt =
∑

S :S⊆{0,1,...,t}

α
(t)
S · xS .

Such representation is with full generality, analysis of Boolean functions

O’Donnell, 2014

However, curse of dimensionality 2t prevents meaningful statistical

analysis
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Granger-Sims causality

Granger-Sims causality framework: testing correlations in x ’s that can

explain y Granger, 1969, Sims, 1972, Angrist and Kuersteiner, 2011

yt = α∅ + α0 · xt + α1 · xt−1 + . . .+ αt · x0 + errort .

Granger causality leverages time-invariance and linearity to provide

practically useful answers to whether the time-series x forecast

time-series y .
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causal inference system identification/control

11



system identification and control

Control theory: model the input-output behavior of a dynamical system,

design feedback policy

st+1 = ft(st , xt , ϵt)

yt = ht(st , xt , ϵt)

xt input, yt output

ϵt exogenous noise, st state of the dynamical system

Policy evaluation and optimization

Find appropriate estimates of the function ft and ht so that inputs xt
can be planned to steer yt to desired values.
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linear dynamical systems

ft and ht must not be too complicated to be identifiable: linear class

Ljung, 1998

For linear dynamical systems, the input-output map as

yt =
∑
s∈[t]

G (t)
s xs + et

where G
(t)
s are scalars and et are linear functions of the ϵs , s ∈ [t] and s1.

further restriction: time-invariant linear dynamical systems: ft ≡ f and

ht ≡ h

yt =
∑
s∈[t]

gt−sxs + et

Here the sequence g is called the impulse response function, modeling

interference.

Bakshi, Liu, Moitra, and Yau (2023), Oymak and Ozay (2019), and Simchowitz, Boczar, and

Recht (2019)
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causal inference system identification/control

we model interference by impulse response function
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Problem setup: N-of-1 trial or interleaving design

• Two type of actions: A or B

• Each time t, pick one action xt ∈ {A,B}, try it out, document

outcome yt

• At the end, infer the effect of A vs. B by “correlating” time-series

y to x

Challenging: interference! y depends on the whole path of x

15
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Problem setup

Treatment/Control variable x, Observed response y

Estimate/Inference: linear functionals of impulse response function g
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treatment x, response y

Robust to arbitrary oblivious error
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What we will show

counterfactual reasoning and control of the system

depends on the impulse response g
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(a) identification of g
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1.0

(b) inference of ⟨g , q⟩
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Our contributions

Robust to arbitrary error sequence : extends the Granger-Sims

Potential outcomes for time-series : generalize Neyman, interference

New unbiased estimator : generalize Horvitz-Thompson to time-series

Asymptotic inference : new to the system identification and control

18



Theory and Methodology



convolution and interference

yt = (x ∗ g + e)t

• Linear convolution (x ∗ g)t :=
∑t

s=0xsgt−s

• adversarial error: e ∈ RT is any error oblivious to the

randomization x

Convolution models the interference effect.

19



Estimand and estimator: time-invariant

• Consider time-invariant impulse response g ∈ RT .

• Estimands: linear functionals indexed by a time-invariant q ∈ RT

∆(q) := ⟨q, g⟩ .

• Estimators: convolution estimator

∆̂(q) = 1
T ⟨(2x− 1) ∗ q◦, 2y⟩ .

20
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Special case: lag-K effect

Special cases include the cumulative lag-K effects, K ∈ [1,T ] ∩ Z, where
vector q = 1<K := (1, . . . , 1︸ ︷︷ ︸

K

, 0, . . . , 0) is plugged in,

∆K := ∆(1<K ) =
K−1∑
k=0

gk .

The estimator for the cumulative lag-K effects ∆K is

∆̂K := ∆̂(1<K ) =
1
T ⟨(2x− 1) ∗ 1◦<K , 2y⟩ .
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Estimand and estimator: time-variant

• More generally, we may consider a broader class of time-variant

g (t) ∈ Rt ’s

yt = (x ∗ g (t) + e)t .

(x ∗ g (t))t :=
∑t

s=0 xsg
(t)
t−s

• For a sequence of vectors q(t) ∈ Rt , define the estimand

τ := 1
T

∑
t∈[T ]

⟨g (t), q(t)⟩ ,

• The corresponding unbiased estimator

τ̂ := 1
T

∑
t∈[T ]

(
2x− 1) ∗ q(t)

)
t
· 2yt .

If g (t) = (g
(t)
0 , 0, . . . , 0), q(t) = (1, 0, . . . , 0), the estimator reduces to

the classic Horvitz-Thompson.
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Generalize classical potential outcomes, unbiasedness and var formula,

space vs. time
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Some properties of the estimator
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Moments: formulas and estimates

First moment (L. and Recht, ’23)

E
x

[
∆̂(q)

]
= ∆(q) = ⟨q, g⟩ .

Unbiasedness of the estimator.
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Moments: formulas and estimates

Second moment (L. and Recht, ’23)

E
x

[(
∆̂(q)−∆(q)

)2]
= 1

T

(
∥g ∗ q◦∥22 + ⟨g ∗ g◦, q ∗ q◦⟩ − 2⟨q, g⟩2

)
+ 1

T 2 ∥(1 ∗ g◦ + 2e) ∗ q◦∥22 .

The formula for the variance of the treatment effects: measurement

accuracy.

Depends on the functional forms of g and q.

If g = (g0, 0, . . . , 0), q = (1, 0, . . . , 0)

1
T

(
∥g ∗ q◦∥22 + ⟨g ∗ g◦, q ∗ q◦⟩ − 2⟨q, g⟩2

)
= 0

1
T 2 ∥g0 · 1 + 2e∥22 = var formula of HT
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Asymptotic normality?

Non-trivial due to interference.

26



Asymptotic normality

Assume

∥(|g | ∗ |q|◦) ∗ (|g | ∗ |q|◦)◦∥22
∥g ∗ q◦∥42

= o(T )

True if |g t | ≾ 0.99t , |supp(q)| = K ≾ polylog(T ).

Asymptotic normality (L. and Recht, ’23)

√
T ·HT√
VQ

⇒ N (0, 1), as T →∞ ,

where VQ := ∥g ∗ q◦∥22 + ⟨g ∗ g◦, q ∗ q◦⟩ − 2⟨q, g⟩2.

Variance → Distribution: non-trivial for temporally dependent problem
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Moments: formulas and estimates

Decomposition: denote the centered randomization vector

z := 2x− 1 ∈ RT , and h = 1 ∗ g◦ + 2e ∈ RT ,

∆̂(q) = 1
T ⟨(2x− 1) ∗ q◦, (2x− 1) ∗ g◦ + 1 ∗ g◦ + 2e⟩ ,

= 1
T ⟨z ∗ q

◦, z ∗ g◦⟩+ 1
T ⟨z ∗ q

◦, h⟩ .

WT denotes the difference between the estimator and the estimand,

WT := ∆̂(q)−∆(q) = 1
T

∑
i ̸=j∈[T ]

zizjHij + 1
T

∑
i∈[T ]

ziLi ,

where

Hij :=
∑
t∈[T ]

q◦t−ig
◦
t−j , Li :=

∑
t∈[T ]

q◦t−iht .

28
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∆̂(q) = 1
T ⟨(2x− 1) ∗ q◦, (2x− 1) ∗ g◦ + 1 ∗ g◦ + 2e⟩ ,

= 1
T ⟨z ∗ q

◦, z ∗ g◦⟩+ 1
T ⟨z ∗ q

◦, h⟩ .

WT denotes the difference between the estimator and the estimand,

WT := ∆̂(q)−∆(q) = 1
T

∑
i ̸=j∈[T ]

zizjHij + 1
T
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Moments: formulas and estimates

Fourth moment (L. and Recht, ’23)

Denote

HT := 1
T

∑
i ̸=j∈[T ]

zizjHij

where Hij :=
∑

t∈[T ] q
◦
t−ig

◦
t−j .

Then∣∣∣∣∣ E[H4
T ](

E[H2
T ]
)2 − 3

∣∣∣∣∣ ≤ 4

T
+

16

T

∥(|g | ∗ |q|◦) ∗ (|g | ∗ |q|◦)◦∥22
(∥g ∗ q◦∥22+⟨g ∗ g◦, q ∗ q◦⟩ − 2⟨q, g⟩2)2

.

HT is quadratic in z’s.

Eighth moment calculations in z’s.
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Higher moments and asymptotic normality

• Rademacher chaos HT := 1
T

∑
i ̸=j∈[T ]

zizjHij with

Hij :=
∑

t∈[T ] q
◦
t−ig

◦
t−j for generic g , q.

• Martingale differences: Central Limit Theorem?

• Not true (for generic g , q)!

• True when
∥(|g |∗|q|◦)∗(|g |∗|q|◦)◦∥2

2

(∥g∗q◦∥2
2)

2 = o(T ). Higher moments

calculation implies

∣∣∣∣∣ E[H4
T ](

E[H2
T ]
)2 − 3

∣∣∣∣∣→ 0 as T →∞.
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2 = o(T ). Higher moments

calculation implies

∣∣∣∣∣ E[H4
T ](

E[H2
T ]
)2 − 3

∣∣∣∣∣→ 0 as T →∞.

If g ∗ q◦ is approx. supported on top K -elements, where K ≪ T .
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How to construct confidence intervals based on data?
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Inference: confidence intervals

But how to estimate the variance?

VQ = ∥g ∗ q◦∥22 + ⟨g ∗ g◦, q ∗ q◦⟩ − 2⟨q, g⟩2 ,
VL = 1

T ∥(1 ∗ g
◦ + 2e) ∗ q◦∥22 .

Plug-in estimate of the variance based on the formula? Denote

g ← ĝ<K = (

first K elements︷ ︸︸ ︷
∆̂(δ0), . . . , ∆̂(δK−1), 0 . . . , 0)

e ← ê := y − x ∗ ĝ◦
<K

and define V̂Q , V̂L accordingly.

Use non-asymptotic concentration inequalities to derive that with

K = K (T ) = Θ(log(T )), as T →∞

V̂Q
a.s.→ VQ , V̂L

a.s.→ VL .
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Inference: confidence intervals

Proof technique: Hanson-Wright inequalities

Uniform consistency (L. and Recht, ’23)

For integer k ∈ [0,K ) with K ≪ T , denote

δk := (0, . . . ,

k-th element︷︸︸︷
1 , . . . , 0). Assume |et | ≤ M, ∀t ≥ 0 and

∥g∥1 ≤ C for absolute constants C ,M > 0. Then with probability at

least 1− 4T−2

sup
k<K

∣∣∣∆̂(δk)− gk

∣∣∣ ≾ log(T )√
T

.
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Inference: confidence intervals

Data-driven confidence interval with coverage 1− α: choose

K = K (T ) = Θ(log(T )), let q = 1<K , and

∆̂(q)± Cα

√
V̂Q+V̂L

T .

Compared to Neyman-Fisher-Rubin on the estimation of the variance:
This variance involves the variance over all plots of the potential yields and the corre-

lation coefficient r between the potential yields of the two varieties on the same plot.

Since it is impossible to estimate r directly, Neyman advises taking r = 1, observing

that in practice this may lead to using too large an estimated standard deviation, when

comparing two variety means.

Dabrowska and Speed, 1990

We leverage time-invariance to construct asymptotically valid confidence

intervals.
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Empirics



Experiment setup

• Impulse response function:

gt = 1.0 ∗ 0.65t − 1.6 ∗ 0.50t + 0.75 ∗ 0.48t .
• Estimand ∆(1) = ⟨1, g⟩.
• Estimator ∆̂(q) := 1

T ⟨(2x− 1) ∗ 1≤K , 2y⟩ with
1≤K := (1, . . . , 1︸ ︷︷ ︸

K

, 0, . . . 0) ∈ RT with K = 25.
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When does asymptotic normality kick in
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Future directions

• Math works out, but it remains a difficult problem in practice.

A measurement device for practitioner to tease out the interference

effect in N-of-1 trials.

• Interference: just one sample (even when T =∞), hard problem.

• Interference over networks: can the convolution analysis be

generalized?

• Experimental design?

• Sequential decision making?
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Thank you!

Tengyuan Liang, Benjamin Recht. Randomization Inference When N

Equals One. arXiv:2310.16989, 2023.
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linear dynamical systems

xt matters as this input design must make all gt of interest identifiable.

The most popular choice in theory and practice chooses xt to be an i.i.d.

sequence of zero mean random variables.

Mareels, 1984; Overschee and Moor, 1994; Verhaegen and Dewilde, 1992

Statistical error rates for the estimation of the impulse response g from a

single input sequence {xt}: only recently determined.

nonparametric, infinite-dimensional problem

Bakshi et al., 2023; Oymak and Ozay, 2019; Simchowitz, Boczar, and Recht, 2019
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