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We study Langevin dynamics for recovering the planted signal in the spiked matrix model. We provide a
‘path-wise’ characterization of the overlap between the output of the Langevin algorithm and the planted
signal. This overlap is characterized in terms of a self-consistent system of integro-differential equations,
usually referred to as the Crisanti–Horner–Sommers–Cugliandolo–Kurchan equations in the spin glass
literature. As a second contribution, we derive an explicit formula for the limiting overlap in terms of the
signal-to-noise ratio and the injected noise in the diffusion. This uncovers a sharp phase transition—in
one regime, the limiting overlap is strictly positive, while in the other, the injected noise overcomes the
signal, and the limiting overlap is zero.
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1. Introduction

Gradient descent-based methods and their noisy counterparts are routinely used in modern Machine
Learning. For a host of learning problems, it has now been established that gradient-based methods
converge to special estimators with attractive generalization properties [4,20,21,31–34,37,38,44,48,49].
Thus the limiting performance of gradient descent and its variants can often be characterized via careful
analyses of these special limiting estimators (c.f. [8,19,28,35,36,43] and the references cited therein).
However, an understanding of ‘path-wise’ properties of these algorithms still lies in its infancy. In this
paper, we consider Langevin dynamics as a proxy for stochastic gradient descent, and a simple recovery
problem with a non-convex objective function—that of recovering a planted rank 1 matrix under additive
Gaussian noise. Admittedly, our setting is simple; however, it is a preliminary step in characterizing the
inferential properties of specific noisy gradient based algorithms, a challenging problem in the current
literature in general.

Formally, we observe a symmetric matrix J ∈ R
N×N , given by

J = VV� + Z, (1.1)

where V ∈ R
N . We assume Z = G�DG, where D is the diagonal and G is Haar distributed. Denote

D = Diag(σ 1, . . . , σN) to be a sequence of deterministic diagonal matrices. As N increases, assume that
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2 T. LIANG ET AL.

μDN
= 1

N

∑N
i=1 δσ i converges weakly to a probability measure μD with compact support. Let d+, d−

denote the upper and lower edges respectively of μD. We assume throughout that max1≤i≤N σ i and
min1≤i≤N σ i converge to d+ and d− respectively. We assume that the entries of V = (Vi) are iid N(0, λ

N )

for some λ > 0. We seek to recover the planted truth V , given the observation J. The natural estimator in
this setting is derived from PCA—one computes the eigenvector v̂ corresponding to the largest eigenvalue
of J, and uses v̂v̂� as an estimator for the latent subspace VV�. The performance of this estimator can
be precisely characterized using recent advances in the Random Matrix Theory [7,14]. In particular,
assume that the empirical spectral measure μDN

converges weakly to a limiting measure μD supported
on [d−, d+]. Define GμD

: R\[d−, d+] → R,

GμD
(z) = EX∼μD

[ 1

z − X

]

as the Cauchy transform of μD. Further, define

GμD
(d+) = lim

z↓d+
GμD

(z), GμD
(d−) = lim

z↑d−
GμD

(z).

The BBP phase transition establishes that if λ > 1
GμD (d+)

, there exists an ‘outlier’ eigenvalue at

G−1
μD

(1/λ); otherwise, the largest sample eigenvalue sticks to the spectral edge d+. In the first case, the
eigenvector v̂ corresponding to the outlying eigenvalue has a non-trivial overlap with the planted signal

V , i.e. with high probability, |V�v̂| > 0. In the latter case, V�v̂
P→ 0.

To study the Langevin dynamics in this setting, we introduce the following system of Stochastic
Differential Equations:

dXi
t =

N∑
j=1

JijX
j
tdt − f ′

⎛
⎝ 1

N

N∑
j=1

(Xj
t)

2

⎞
⎠Xi

tdt + β−1/2dWi
t . (1.2)

We assume that f : [0, ∞) → R satisfies f ′ to be non-negative and Lipschitz. Eventually, we will apply
our results to the special case f (x) = x2/2. Note that this SDE can be looked upon as a penalized version
of the PCA problem on taking β → ∞. The function f acts as a ‘confining’ potential, so that we can
work without a norm constraint on the diffusion. For any N ≥ 1 and T ≥ 0, the SDE (1.2) has a strong
solution, which we denote by Xt ≡ {Xi

t : 1 ≤ i ≤ N, t ∈ [0, T]} (see [9][Lemma 6.7] for a proof).
The strong solution to the Langevin diffusion (1.2) defines a natural collection of estimators indexed

by t ∈ [0, ∞). We track the statistical performance of these estimators via the normalized ‘overlap’
RN(t) = 1

N

∑N
i=1

√
NViXi

t . We note that the entries of V are typically of order 1/
√

N; the multiplicative
factor

√
N normalizes these entries so that the resultant is of order 1. Armed with these notations, we

can pose a natural question of interest:
How does the overlap RN(t) evolve over time?
In this paper, we provide sharp asymptotics for the evolution of RN(t) under a high-dimensional

asymptotic limit where we send N → ∞ with t ≥ 0 fixed. In practice, one should interpret
these limits as approximate characterizers of the overlap when the dimension N is large, while the
diffusion has been run for a ‘short time’. In particular, we emphasize that the time scales involved
are significantly shorter than those involved for ‘mixing’ of these diffusion processes. We believe that
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LANGEVIN DYNAMICS IN SPIKED MATRIX MODELS 3

these asymptotics are particularly relevant for Statistics and Machine Learning. In particular, once
the evolution of RN(t) is explicitly understood, given a fixed δ > 0, one can characterize the first
time Tδ such that |RN(Tδ)| > δ. We believe that such guarantees can help practitioners understand
the evolution of the overlap in this problem. The insights obtained can also be helpful for other
problems.

Our first result characterizes the limiting behavior of RN(t). We will see that the behavior of RN

is intricately tied to that of the ‘auto-correlation’ function KN(t, s) = 1
N

∑N
i=1 Xi

tX
i
s. Note that for any

T ≥ 0, RN and KN are sequences of (random) continuous functions on [0, T] and [0, T]2, respectively.
In subsequent discussions, we equip these metric spaces with the sup-norm topology.

In addition, we need to specify the initial conditions for the Langevin diffusion {Xt : t ≥ 0}. Our
main results will hold under either one of the following two initial conditions:
Initial Conditions:

(i) (I.I.D. initial conditions) Assume that {(√NVi, Xi
0) : 1 ≤ i ≤ N} are i.i.d., independent of G

and {Wt : t ≥ 0}. Assume furthermore that E[(Xi
0)

2] = 1, E[ViXi
0] = ρ

√
λ√

N
for some ρ ∈ [0, 1].

(ii) (I.I.D. under rotated basis) Define Yt = GXt, U = GV , Bt = GWt. Assume that {(Yi
0,

√
NUi) :

1 ≤ i ≤ N} are i.i.d., independent of {Bt : t ≥ 0}. Assume, in addition, that Yi
0 ∼ F i.i.d.,

E[(Yi
0)

2] = 1, E[UiYi
0] = ρ

√
λ√

N
for some ρ ∈ [0, 1].

Remark 1. Note that the parameter ρ governs the correlation between the initialization and the spike
direction. For concreteness, we assume that ρ ≥ 0. The results generalize directly to ρ < 0 if we replace
V by −V . In addition, we require the second moments of X0 and Y0 to be finite. The precise value 1 is
chosen merely for convenience.

Remark 2. The I.I.D. initial condition is arguably the most natural initialization in Statistics and
Machine Learning. The I.I.D. under rotated basis condition, although a bit less natural from this
perspective, is simpler to analyze with the same theoretical tools. We think of the second initialization
throughout as a warm-up, with the first initialization being of principal interest.

Theorem 1. Assume that either Initial Condition (i) or Initial Condition (ii) holds. Fix T ≥ 0. As
N → ∞, RN and KN converge almost surely to deterministic limits R and K, respectively. Furthermore,
these limits are the unique solutions to the following system of integro-differential equations:

R(t) = exp
{
−
∫ t

0
f ′(K(s))ds

}
· E
(σ ,u,Y0)∼π∞

[
exp(σ t)Y0u

]

+
∫ t

0
exp

{
−
∫ t

s
f ′(K(r))dr

}
R(s) E

(σ ,u,Y0)∼π∞

[
exp(σ (t − s))u2

]
ds . (1.3)

K(t, s) = β−1
∫ s∧t

0
exp

{
−
∫ t

r
f ′(K(w))dw −

∫ s

r
f ′(K(w))dw

}
E

(σ ,u,Y0)∼π∞
[exp(σ (t + s − 2r))] dr

+ exp
{
−
∫ t

0
f ′(K(r))dr −

∫ s

0
f ′(K(r))dr

}
· E
(σ ,u,Y0)∼π∞

[
exp(σ (t + s))Y2

0

]
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4 T. LIANG ET AL.

+ exp
{
−
∫ t

0
f ′(K(r))dr

}
·
∫ s

0
exp

{
−
∫ s

r
f ′(K(w))dw

}
R(r) E

(σ ,u,Y0)∼π∞
[
exp(σ (t + s − r))Y0u

]
dr

+ exp
{
−
∫ s

0
f ′(K(r))dr

}
·
∫ t

0
exp

{
−
∫ t

r
f ′(K(w))dw

}
R(r) E

(σ ,u,Y0)∼π∞
[
exp(σ (t + s − r))Y0u

]
dr

+
∫ t

0
dr1

∫ s

0
dr2

{
exp

{
−
∫ t

r1

f ′(K(w))dw −
∫ s

r2

f ′(K(w))dw

}
R(r1)R(r2)·

E
(σ ,u,Y0)∼π∞

[
exp(σ (t + s − r1 − r2))u

2
]}

. (1.4)

Here we use the abbreviated notation K(t) := K(t, t). It remains to specify the distribution π∞; this limit
depends on the initial condition:

(i) Under I.I.D. initial conditions, π∞ = μD ⊗ N2(μ, Σ) with μ = 0, Σ =
(

λ, ρ
√

λ

ρ
√

λ, 1

)

(ii) Under I.I.D. under rotated basis initialization, π∞ = μD ⊗ P2, where P2 denotes the law
of a bivariate random vector (L1, L2) such that L1 ∼ N(0, λ), L2 ∼ F, with E[L1L2] =
ρ
√

λ, E[L2
2] = 1.

At this point, some interpretations might be useful. In Theorem (1), σ denotes a random variable with
law given by the limiting empirical spectral distribution of D; u (resp. Y0) denotes a similar limiting
random variable corresponding to the empirical distribution that puts mass 1/N to the N entries in√

NUi = √
NGVi (resp. Yi

0 = GXi
0), 1 ≤ i ≤ N, (recall that these were first defined under Initial

Condition (ii)). Since G is Haar distributed, we obtain the aforementioned joint laws of u, Y0 under the
two different initial conditions. Note that the covariance between u, Y0 remains the same as that between
Vi and Xi

0, and their joint distribution naturally depends on ρ and λ.
Theorem (1) holds for any t ∈ [0, T]. This allows one to characterize the overlap at any time t, for

sufficiently large N. However, though the theorem provides a precise characterization of RN(t) under a
high-dimensional limit, it is a priori unclear whether this description yields an explicit understanding
regarding the behavior of RN(t). This is primarily due to the mathematically involved nature of the
fixed point equations (1.3)–(1.4). To gain a better understanding of the Crisanti–Horner–Sommers–
Cugliandolo–Kurchan (CHSCK) equations, our next theorem illustrates that Theorem (1) can yield
explicit results on the limiting correlation between the output Xt and the latent vector

√
NV under the

double limit t → ∞, following N → ∞. To this end, first note that this correlation can be captured
through the ratio R2(t)/(λK(t, t)), since

(∑N
i=1

√
NViXi

t

)2

[
∑N

i=1(X
i
t)

2][N
∑N

i=1(V
i)2]

= (RN(t))2

[KN(t, t)][
∑N

i=1(V
i)2]

.

and ‖V‖2
2 → λ almost surely under our initial conditions.

To precisely characterize the limiting correlation, we specialize to the following setting: consider
f (x) = x2/2 and μD to be the scaled semi-circle distribution, supported on [−σ�, σ�], for some σ� > 0.
This corresponds to a setting where the additive noise Z in (1.1) is a symmetric Gaussian matrix. Note
that f (x) = x2/2 satisfies the regularity conditions required for Theorem 1. Formally, the semi-circle law
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LANGEVIN DYNAMICS IN SPIKED MATRIX MODELS 5

on [−σ�, σ�] has a density

dμD

dx
= 2

πσ 2
�

√
σ 2

� − x2, −σ� ≤ x ≤ σ�. (1.5)

Let S : R\[−σ�, σ�] → R denote the Stieljes transform of μD, i.e.,

S(z) = E
σ∼μD

[ 1

z − σ

] = 2

z +√
z2 − σ 2

�

. (1.6)

Theorem 2. Assume λ > σ�/2, and set λ̃ = λ + σ 2
�

4λ
. If β < 1

σ 2
�

, the equation z = β−1S(z/2) has two

real roots. Set sβ to be the largest real root of this equation if β < 1
σ 2

�
, otherwise set sβ = 2σ�.

(i) If 2λ̃ < sβ or ρ = 0, limt→∞
R(t)2

λK(t,t) = 0.

(ii) If 2λ̃ > sβ and ρ > 0,

lim
t→∞

R(t)2

λK(t, t)
=
(

1 − β−1

2λ(λ + σ 2
� /4λ)

)(
1 − σ 2

�

4λ2

)
. (1.7)

Several remarks are in order regarding Theorem 2. Note that it is information theoretically impossible
to recover the planted vector V below the BBP threshold (i.e., when λ < σ�/2) [7]. Thus we focus on
the interesting regime λ > σ�/2. In this setting, Theorem 2 can be interpreted as follows: first, if ρ = 0
i.e., if the initialization has o(1) correlation, then the limiting correlation stays at zero. We note that our
asymptotics is different from non-asymptotic results (in N) that allow vanishing (in N) overlap of the
initialization with the truth. This is specifically the notion considered in [13], [11]. We defer a detailed
comparison of our results with this recent line of work to Section 1.1. Our result establishes that if the
diffusive noise is large (2λ̃ < sβ ), the initial correlation washes off, and the correlation converges to zero

in the limit t → ∞. On the other hand, if the diffusive noise is small (2λ̃ > sβ ), we obtain a non-trivial
correlation in the limit.

We set λ�(β) to denote the smallest λ (as a function of β) for weak recovery. Direct computation
yields

λ�(β) =
√

β−1

2
− σ 2

�

4
∨ σ�

2
.

To further interpret this threshold, we consider the two regimes

(1) Low-temperature regime β−1 ∈ [0, σ 2
� ]. In this case, the transition point is the same as the

classical BBP phase transition. However, the limiting correlation is worse than the β = ∞
case, by a multiplicative factor depending on the injected Langevin noise, shown in Theorem 2.

(2) High-temperature regime β−1 ∈ (σ 2
� , ∞). In this case, the transition point is strictly larger than

the classical BBP phase transition.

To develop a physical understanding for this finite temperature transition, note that there are two
ways in which the noise can wipe out the signal (which in turn defines the transition λ�(β)): (1) the
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6 T. LIANG ET AL.

Fig. 1. We plot the minimum signal λ∗(β) required for signal recovery, as a function of β. We fix σ� = 1 for this plot. For
β−1 ≤ σ 2

� , the minimum signal required is λ∗(β) = σ�
2 , which matches the BBP threshold (indicated by the dashed line in blue).

For β−1 > σ 2
� , the minimum signal required is λ∗(β) =

√
β−1

2 − σ2
�
4 , which is strictly larger than the BBP threshold.

normalized overlap function RN(t) retains no signal as λ < σ�

2 , or (2) the norm of the solution/auto-
covariance KN(t, t), which is affected by the Langevin noise level β−1. The injected Langevin noise will
not affect the normalized overlap function RN(t) as N → ∞ for any β−1 �= 0, yet it will increase the
norm of the solution/auto-covariance KN(t, t).

Consider the case λ > σ�

2 and β−1 close to 0. In this regime, when β−1 is small, and λ is above the
BBP phase transition, the growth of the norm KN(t) will not wipe out the signal, thus explaining why
the transition point on λ stays the same as that in BBP; however, the limiting correlation will be smaller
than the case of β−1 = 0. Now consider the regime β−1 very large: in this case, the growth of the norm
KN(t, t) is asymptotically determined by sβ , which will wipe out the signal component in the overlap

RN(t) even if λ > σ�

2 , namely R2(t)/K(t, t) → 0. We illustrate this threshold in Fig. 1.
While our setup is quite simple, we can precisely quantify the tradeoff between the SNR (captured

by λ) and the strength of the injected noise (captured by β−1) in the limiting correlation—we consider
this to be one of the main contributions of our work. In particular, the limiting correlation increases as a
function of λ, as well as β, as one would naturally expect.

1.1 Related literature

(i) Dynamical Mean Field Theory and CHSCK equations: Dynamical Mean-Field Theory orig-
inated in the theory of spin glasses in the 80s [46,47]. In this approach, dynamics are
characterized in terms of the ‘correlation’ and ‘response’ functions. In special cases, these
functions satisfy a system of integro-differential equations [22,23] (we refer to such systems
as CHSCK equations henceforth for simplicity). In general settings, the effective dynamics is
described in terms of a non-Markovian stochastic process with long-term memory.

Recently, this framework has been employed in the statistical physics literature to study
high-dimensional inference problems such as Gaussian mixture models, max-margin classifica-
tion and tensor PCA [1,17,39–42,45]. In these papers, versions of CHSCK equations have been
proposed, and analyzed numerically to track the performance of specific algorithms. Our work
differs from these earlier inquiries in some crucial ways—first, the derivations of the CHSCK
equations in these works are non-rigorous, and the subsequent analysis is also numerical. In
sharp contrast, our results are fully rigorous, furthermore, we characterize the precise tradeoff

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/4/2720/7317743 by U
niversity of C

hicago user on 25 O
ctober 2023



LANGEVIN DYNAMICS IN SPIKED MATRIX MODELS 7

between the SNR and the injected noise in the Langevin algorithm. However, it should be noted
that our model is, in some sense, simpler than the other models described above. The main
technical difference is that the spiked matrix model does not require a ‘response function’—
this considerably simplifies the CHSCK system, and the subsequent analysis.

(ii) Prior rigorous results: Dynamical Mean-field Theory for mean-field spin glasses was estab-
lished on rigorous footing in the works of [9], [5,6], [29] and [30], among others. The CHSCK
equations were formally derived in [10]. While some useful information could be extracted
from these equations under special settings (e.g. Langevin dynamics for matrix models [9] and
at high-temperature [25]), a general analysis of these equations has been quite challenging.

Recently, there has been renewed interest in this area. [27] derived the CHSCK equations
for spherical spin glasses starting from disorder dependent initial conditions. [26] examined
the universality of these equations to the law of the disorder variables. [24] also introduced
alternative techniques for establishing universality of such dynamical algorithms.

We note that in sharp contrast to our setting, the models analyzed in this line of work
correspond to ‘null’ models, i.e. without any planted signal. As a result, our analysis is not
directly comparable to the aforementioned papers. Despite this difference, our derivation of
the CHSCK equations and its subsequent analysis relies partially on techniques from [9],
which studies the Langevin dynamics in matrix models in the absence of a spike. That said,
we emphasize that planted models are closer to models typically observed in Statistics and
Machine Learning problems. Thus, despite the simplicity of (1.1), Theorem (2) provides useful
insights regarding the interplay between the SNR and the noise magnitude in determining the
exact value of the limiting correlation. To the best of our knowledge, our work is the first to
characterize this tradeoff for a planted model. We hope that this precise analysis would spark
further investigations into Langevin-type dynamics for more complex planted models, as seen
in contemporary Statistics and Machine Learning problems.

(iii) Recent flow-based analyses: There has been considerable interest in understanding gradient
descent algorithms (i.e. β = ∞ dynamics) in Statistics and Machine Learning. [15] and [16]
derive novel systems of integro-differential equations for gradient descent dynamics for certain
spiked models. Although the equations are similar in spirit, there are crucial differences between
these results, and the ones proved in this paper. First, for the spiked matrix model, the result in
[16] applies only to the β = ∞ case, and recovers the BBP phase transition. In contrast, we
discover additional phase transitions depending on the strength of the injected noise. Further,
the proof techniques are also completely different—[15] and [16] use recent advances in the
random matrix literature on Green functions to derive their results. In a different line of work,
[3] and [2] have also used random matrix asymptotics to study the role of ‘early stopping’ for
gradient descent algorithms for linear regression. In this problem, the solution at any fixed time
is available in closed form, which considerably simplifies the analysis.

Recently, [18] derived the CHSCK equations for gradient descent (i.e. β = ∞) for empirical
risk minimization. The approaches in these two papers are completely different—[18] first use
Approximate Message Passing style algorithms to study first order methods, and subsequently
take a continuous time limit. Our approach, on the other hand, is grounded in random matrix
theory.

(iv) We note that our results assume a ‘warm-start’, i.e. an O(1)-correlation between the initialization
and the planted signal. This situation is different from a random initialization, where the
initialization has O(1/

√
N) correlation with the planted signal. The approach pursued in
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8 T. LIANG ET AL.

this paper does not seem suited to analyze the evolution of the correlation in this regime.
Some answers are provided by the recent theory of ‘bounding flows’ [12] and the subsequent
applications of this machinery to planted models [13], [11]. The main restriction of this approach
is that it yields ‘non-sharp’ answers, in constrast to the approach outlined in our paper.

Outline: The rest of the paper is structured as follows: we prove Theorem 2 in Section 2, while the
proof of the CHSCK equations Theorem 1 is deferred to Section 3.

2. Proof of Theorem 2

Throughout this section, for notational convenience, we use the shorthand K(t) = K(t, t). Let E(t) :=
exp{∫ t

0 f ′(K(s))ds }. For our subsequent analysis, it will be convenient to transform the functions R(t),
K(t) into a new set of functions g(t), h(t), defined as follows:

g(t) := E(t)R(t)

h(t) := E2(t)K(t). (2.1)

Observe that (R(t))2/K(t) = (g(t))2/h(t), and thus it suffices to track g(t), h(t). In turn, we observe that
(1.3) and (1.4) imply that g(t), h(t) are uniquely specified as the solutions to the following fixed-point
system:

g(t) = E[Y0u] · E[etσ ] + E[u2] ·
∫ t

0
g(s)E[e(t−s)σ ]ds , (2.2)

h(t) = β−1
∫ t

0
E2(s)E[e(2t−2s)σ ]ds + E[Y2

0] · E[e2tσ ] (2.3)

+ 2E[Y0u] ·
∫ t

0
g(s)E[e(2t−s)σ ]ds + E[u2] ·

∫ t

0

∫ t

0
g(s1)g(s2)E[e(2t−s1−s2)σ ]ds1 ds2 . (2.4)

Our first lemma characterizes the behavior of g(·).
Lemma 3. With σ drawn from the semi-circle distribution with parameter σ�, that is, with density (1.5),
the function g(·) defined in (2.1) satisfies the following:

g(t) = √
λρ

{(
1 − σ 2

�

4λ2

)
+ exp

{
(λ + σ 2

�

4λ
)t
}+ 1

2πλ

∫ σ�

−σ�

ext
√

σ 2
� − x2

(λ + σ 2
�

4λ
) − x

dx

}
, (2.5)

where x+ = max{x, 0}.

Proof. (Proof of Lemma 3) Note that the last term in the RHS of (2.2) contains a convolution, suggesting
that the Laplace transform of g(·) should provide useful information. For Re(z) > σ�, recall that the
Laplace transform of g is given by

Lg(z) :=
∫ ∞

0
e−ztg(t)dt , (2.6)
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LANGEVIN DYNAMICS IN SPIKED MATRIX MODELS 9

and the Stieltjes transform of μD is given by

S(z) = E
[ 1

z − σ

]
. (2.7)

Plugging in the formula for g(·) from (2.2), we obtain that (2.6) can be decomposed into two terms,
where the first one equals

E[Y0u]
∫ ∞

0
e−zt

E[etσ ]dt = E[Y0u]
∫ ∞

0
E[et(σ−z)]dt = E[Y0u]S(z).

The last equality above follows by exchanging the order of integration using Fubini’s theorem. This is
justified since ∫

(0,∞)×[−σ�,σ�]
|et(σ−z)|d(t, σ) ≤

∫
(0,∞)×[−σ�,σ�]

|e−t(z1−σ)|d(t, σ),

where z = z1 + iz2. Since z1 > σ�, the above can be upper bounded by 2σ�

∫∞
0 e−t(z1−σ�)dt < ∞. By

analogous arguments, the term obtained by plugging in the second term from (2.2) into (2.6) is given by
E[u2]Lg(z)S(z). Thus, we have Lg(z) = E[Y0u]S(z) + E[u2]Lg(z)S(z), which yields

Lg(z) = E[Y0u] · S(z)

1 − E[u2] · S(z)
. (2.8)

By the Fourier–Mellin formula (inverse Laplace transform), we know that

g(t) = 1

2π i
lim

T→+∞

∫ γ+iT

γ−iT
eztLg(z)dz. (2.9)

When μD follows a semi-circle law, using (1.6), we have

Lg(z) = 2
√

λρ

z +√
z2 − σ 2

� − 2λ
. (2.10)

Fix γ ∈ R with γ > λ + σ 2
�

4λ
, we need to evaluate the Fourier–Mellin integral of the form

gR(t) := 1

2π i

∫ γ+iR

γ−iR
eztLg(z) dz

= 1

2π i

∫
S1

eztLg(z) dz .

In other words, we need to know the integral along the line segment S1 in Fig. 2. First, we observe that
the function

ft(z) := eztLg(z) = ezt 2
√

λρ

z +√
z2 − σ 2

� − 2λ
(2.11)
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10 T. LIANG ET AL.

Fig. 2. The contour integral for evaluating the Fourier–Mellin formula.

= ezt 2
√

λρ

4λ

√
z2 − σ 2

� − (z − 2λ)

z − (λ + σ 2
�

4λ
)

(2.12)

has a simple pole at z = λ + σ 2
�

4λ
. Therefore, using the Cauchy Residue Theorem, we have

1

2π i

∮
S1+S2+S3

ft(z) dz = √
λρ ·

(
1 − σ 2

�

4λ2

)
+e(λ+ σ2

�
4λ

)t . (2.13)

�
Second, we evaluate the integral over the arc Sε

2. Here the arc is defined as Sε
2 = S2 ∩ {z(θ) :

z(θ) = γ − (R cos θ + iR sin θ), θ ∈ [π
2 + ε, 3π

2 − ε]}, where we parametrize the z(θ) ∈ S2 by z(θ) =
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LANGEVIN DYNAMICS IN SPIKED MATRIX MODELS 11

γ − (R cos θ + iR sin θ) (part of S2) with θ ∈ [π
2 + ε, 3π

2 − ε]. Therefore,

∣∣∣∣∣ 1

2π i

∫
Sε

2

ft(z) dz

∣∣∣∣∣ ≤ R

2
et(γ−R cos(ε)) sup

θ∈[ π
2 +ε, 3π

2 −ε]

2
√

λρ

|γ + Reiθ +√
(γ + Reiθ )2 − σ 2

� − 2λ| (2.14)

and thus for any fixed ε,

lim
R→∞

1

2π i

∫
Sε

2

ft(z) dz = 0 . (2.15)

For the part of the integral S2\Sε
2, one can show that

∣∣∣∣∣ 1

2π i

∫
S2\Sε

2

ft(z) dz

∣∣∣∣∣ ≤ ε
R

π
etγ sup

θ∈[ π
2 , π

2 +ε]

2
√

λρ

|γ + Reiθ +√
(γ + Reiθ )2 − σ 2

� − 2λ| (2.16)

and thus with some universal constant C(λ, σ�, ρ, γ )

lim
R→∞

1

2π i

∫
Sε

2

ft(z) dz = C(λ, σ�, ρ, γ ) · ε . (2.17)

Putting these estimates together and sending ε → 0, we have shown

lim
R→∞

1

2π i

∫
S2

ft(z) dz = 0 (2.18)

Third, we evaluate the integral over the segment S3 (corresponding to the branch point of
√

z2 − σ 2
� ),

with z = x + iε where x ∈ [−σ�, σ�]. We consider this since the function z �→ √
z is a well-defined

single-valued function only on z ∈ C\(−∞, 0). One can show that

lim
ε→0

1

2π i

∫
Sε

3

ft(z) dz (2.19)

= 1

2π i

∫ σ�

−σ�

ext 2
√

λρ

(x − 2λ) + i
√

σ 2
� − x2

dx − 1

2π i

∫ σ�

−σ�

ext 2
√

λρ

(x − 2λ) − i
√

σ 2
� − x2

dx (2.20)

= 2
√

λρ

2π i

∫ σ�

−σ�

ext −2i
√

σ 2
� − x2

−4λx + 4λ2 + σ 2
�

dx (2.21)

= −√
λρ

1

2πλ

∫ σ�

−σ�

ext

√
σ 2

� − x2

(λ + σ 2
�

4λ
) − x

dx . (2.22)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/4/2720/7317743 by U
niversity of C

hicago user on 25 O
ctober 2023



12 T. LIANG ET AL.

Finally, we integrate over the semi-circular arc in S3. Parametrizing z = σ�+εeiθ , we have dz = εieiθdθ .
In turn, the integral reduces to

∫ −π/2

π/2
e(σ�+εeiθ )t 2

√
λρ

σ� + εeiθ +√
(σ� + εeiθ )2 − σ 2

� − 2λ
εieiθdθ .

We note that this integral converges to zero as ε → 0. Putting three pieces together, we conclude the
proof.

We next turn our attention to h. Recall E(t) = exp{∫ t
0 K(s)ds}, and set F(t) = E2(t). Differentiating,

we obtain that F′(t) = 2K(t)F(t) = 2h(t), defined in (2.1). Coupled with (2.4), we have, F satisfies the
integro-differential equation,

F′(t) = 2β−1
∫ t

0
F(s)E

[
exp(2(t − s)σ )

]
ds + Φ(t),

Φ(t) = 2E[Y0
2]E[exp(2tσ )] + 4E[Y0u]

∫ t

0
g(s)E[exp(σ (2t − s))]ds (2.23)

+2E[u2]
∫ t

0

∫ t

0
g(s1)g(s2)E

[
exp

(
σ (2t − s1 − s2)

)]
ds1ds2.

Lemma 4. The function h has Laplace transform

Lh(z) = 1

2

[ zLΦ(z) + β−1S(z/2)

z − β−1S(z/2)

]
.

Proof of Lemma 4. Taking Laplace transforms in (2.23), we obtain

zLF(z) − 1 = 2β−1LF(z)LM(z) + LΦ(z),

where we set M(t) = E[exp(2tσ)]. Transposing, we obtain

LF(z) = 1 + LΦ(z)

z − 2β−1LM(z)
.

Recall that F′(t) = 2h(t), and thus Lh(z) = 1
2 [zLF(z) − 1]. This allows us to obtain the Laplace

transform of h. Finally, we note that by direct computation, LM(z) = 1
2S(z/2). This completes the

calculation. �

We set λ̃ = λ + σ 2
�

4λ
. Let sβ denote the largest real solution to the equation z = β−1S(z/2).

Lemma 5. If 2λ̃ > sβ , we have that

lim
z→0

∣∣∣∣zLΦ(2λ̃ + z) − 2λ2ρ2
(

1 − σ 2
�

4λ2

)2

+E
[

1

(λ̃ − σ )2

]∣∣∣∣ = 0.
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LANGEVIN DYNAMICS IN SPIKED MATRIX MODELS 13

Proof. By definition,

LΦ(2λ̃ + z) =
∫ ∞

0
exp(−(2λ̃ + z)t)Φ(t)dt := T1 + T2 + T3,

T1 := 2E[Y0
2]
∫ ∞

0
exp(−(2λ̃ + z)t)E[exp(2tσ )]dt,

T2 := 4E[Y0u]
∫ ∞

0

∫ t

0
exp(−(2λ̃ + z)t)g(s)E[exp(σ (2t − s))]dsdt,

T3 := 2E[u2]
∫ ∞

0

∫ t

0

∫ t

0
exp(−(2λ̃ + z)t)g(s1)g(s2)E

[
exp

(
σ (2t − s1 − s2)

)]
ds1ds2dt.

We first claim that there exists a constant C > 0 such that

∣∣∣ ∫ ∞

0
exp(−(2λ̃ + z)t)E[exp(2tσ )]dt

∣∣∣ ≤ C,

∣∣∣ ∫ ∞

0

∫ t

0
exp(−(2λ̃ + z)t)g(s)E[exp(σ (2t − s))]dsdt

∣∣∣ ≤ C.

We establish each bound in turn. Set z = z1 + iz2 with z1, z2 ∈ R, and note that z1, z2 → 0. Choose z1
small enough so that 2λ̃ + z1 > 4σ�, since 2λ̃ > 4σ� by assumption. Thus, we have

∣∣∣ ∫ ∞

0
exp(−(2λ̃ + z)t)E[exp(2tσ )]dt

∣∣∣ ≤
∫ ∞

0
exp(−(2λ̃ + z1)t)E[exp(2tσ )]dt

≤
∫ ∞

0
exp

(
− (2λ̃ − 2σ� + z1)t

)
dt

≤ 1

2λ̃ − 2σ� + z1

.

This remains bounded as z1 → 0. To analyze the second term, first observe from Lemma 3 that

lim
t→∞ exp(−λ̃t)g(t) = √

λρ
(

1 − σ 2
�

4λ2

)
+.

Thus, for any ε > 0, there exists t0 large enough such that for all t ≥ t0,

(1 − ε)
√

λρ
(

1 − σ 2
�

4λ2

)
+ exp(λ̃t) ≤ g(t) ≤ (1 + ε)

√
λρ
(

1 − σ 2
�

4λ2

)
+ exp(λ̃t).
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14 T. LIANG ET AL.

Then we have, setting z = z1 + iz2 with z1 small enough,

∣∣∣ ∫ ∞

0

∫ t

0
exp(−(2λ̃ + z)t)g(s)E[exp(σ (2t − s))]dsdt

∣∣∣
≤
∫ ∞

0

∫ t

0
exp(−(2λ̃ + z1)t)g(s)E[exp(σ (2t − s))]dsdt

≤ C1 +
∫ ∞

t0

[ ∫ t0

0
exp(−(2λ̃ + z1)t)g(s)E[exp(σ (2t − s))]ds+

∫ t

t0
exp(−(2λ̃ + z1)t)g(s)E[exp(σ (2t − s))]ds

]
dt.

The control of this term is complete once we control the two integrals above. To this end,

∫ ∞

t0

∫ t0

0
exp

(
− (2λ̃ + z1)t

)
g(s)E[exp(σ (2t − s))]dsdt

≤
(

max
0≤s≤t0

g(s)
) ∫ ∞

t0
exp

(
− (2λ̃ + z1 − 2σ�)t

)
dt

≤
(

max
0≤s≤t0

g(s)
)exp(−t0(2λ̃ + z1 − 2σ�))

2λ̃ + z1 − 2σ�

which remains bounded as z1 → 0. Finally,

∫ ∞

t0

∫ t

t0
exp

(
− (2λ̃ + z1)t)g(s)E[exp(σ (2t − s))]

)
dsdt

≤ (1 + ε)
√

λρ
(

1 − σ 2
�

4λ2

)
+

∫ ∞

t0

∫ t

t0
exp

(
− (2λ̃ + z1)t)

)
exp(λ̃s + σ�(2t − s))dsdt

≤ (1 + ε)

λ̃ − σ�

√
λρ
(

1 − σ 2
�

4λ2

)
+

∫ ∞

t0
exp

(
− (λ̃ + z1 − σ�)t)dt

which remains bounded as z1 → 0.

Finally, we turn to the term T3. Recall that, using (2.5), g(s) = √
λρ(1 − σ 2

�

4λ2 )+ exp(λ̃s) + g1(s),
where

g1(s) = σ 2
�

4λ
Ex∼μD

[
exs

λ̃ − x

]
.
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LANGEVIN DYNAMICS IN SPIKED MATRIX MODELS 15

Further recalling that E[u2] = λ, we have

T3 = 2E[u2]
∫ ∞

0

∫ t

0

∫ t

0
exp(−(2λ̃ + z)t)g(s1)g(s2)E

[
exp

(
σ (2t − s1 − s2)

)]
ds1ds2dt

= 2λ2ρ2
(

1 − σ 2
�

4λ2

)2

+

∫ ∞

0

∫ t

0

∫ t

0
exp(−(2λ̃ + z)t + λ̃(s1 + s2))E

[
exp

(
σ (2t − s1 − s2)

)]
ds1ds2dt

+ Rem (2.24)

where Rem is the remainder term which we will later show to be bounded as z → 0. Computing the first
term, we obtain,

∫ ∞

0

∫ t

0

∫ t

0
exp(−(2λ̃ + z)t + λ̃(s1 + s2))E

[
exp

(
σ (2t − s1 − s2)

)]
ds1ds2dt

= E

[ ∫ ∞

0

∫ t

0

∫ t

0
exp

(
− (2λ̃ + z − 2σ )t + (λ̃ − σ )s1 + (λ̃ − σ )s2

)
ds1ds2dt

]

= E

[ ∫ ∞

0
exp(−(2λ̃ + z − 2σ )t)

(
exp(t(λ̃ − σ )) − 1

)2

(λ̃ − σ )2
dt
]

= E

[ ∫ ∞

0
exp(−(2λ̃ + z − 2σ )t)

(
exp(2t(λ̃ − σ )) − 2 exp(t(λ̃ − σ )) + 1

)
(λ̃ − σ )2

dt
]

= 1

z
E

[
1

(λ̃ − σ )2

]
+ Rem1. (2.25)

Note that Rem1 involves two terms and remains bounded when z → 0 since

Rem1 = −2E

[
1

(λ̃ − σ )2

∫ ∞

0
exp((−λ̃ − z + σ )t)

]
+ E

[
1

(λ̃ − σ )2

∫ ∞

0
exp((−2λ̃ − z + 2σ )t)

]

= −2E

[
1

(λ̃ − σ )2(λ̃ + z − σ )

]
+ E

[
1

(λ̃ − σ )2(2λ̃ + z − 2σ )

]

Thus, the proof is complete on establishing that Rem remains bounded as z → 0.
We note that Rem may be expressed as the sum of three terms, denoted as RemTj

, j = 1, · · · , 3, where

RemT1
= 2

√
λρ(1 − σ 2

�

4λ2
)+

σ 2
�

4λ

∫ ∞

0

∫ t

0

∫ t

0
exp(−(2λ̃ + z)t + λ̃s1)

Ex∼μD

[
exp(xs2)

λ̃ − x

]
E

[
exp

(
σ (2t − s1 − s2)

)]
ds1ds2dt,
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16 T. LIANG ET AL.

RemT2
is the same as above except the roles of s1 and s2 are reversed, and the third term is defined as

follows:

RemT3
=2σ 4

�

16λ

∫ ∞

0

∫ t

0

∫ t

0
exp(−(2λ̃ + z)tEx1∼μD

[
exp(x1s1)

(λ̃ − x1)

]

Ex2∼μD

[
exp(x2s2)

(λ̃ − x2)

]
E

[
exp

(
σ (2t − s1 − s2)

)]
ds1ds2dt

Now the support of x, σ is upper bounded by σ� and 2t − s1 − s2 ≥ 0, s1, s2 ≤ t in the range of
integration. Thus, we may upper bound RemT1

by

RemT1

≤ 2
√

λρ(1 − σ 2
�

4λ2 )+E(x,σ )∼μ⊗2
D

[
1

λ̃ − x

∫ ∞

0

∫ t

0

∫ t

0
exp(−(2λ̃ + z − 2σ�)t + (λ̃ − σ�)t)ds1ds2dt

]

= 2
√

λρ(1 − σ 2
�

4λ2 )+Ex∼μD

[
1

(λ̃ − x)

∫ ∞

0
t2 exp(−(λ̃ + z − σ�)t)

]

= 2
√

λρ(1 − σ 2
�

4λ2 )+
Γ (3)

(λ̃ + z − σ�)
3
Ex∼μD

[
1

(λ̃ − x)

]
,

which remains bounded when z → 0. Similarly, RemT2
can be bounded. Applying a similar trick, RemT3

can be bounded by

2σ 4
�

16λ
E

(x1,x2)∼μ⊗2
D

[
1

(λ̃ − x1)(λ̃ − x2)

]∫ ∞

0
t2 exp(−(2λ̃ + z − 2σ�)t)dt =

2σ 4
�

16λ

Γ (3)

(2λ̃ + z − 2σ�)
3
E

(x1,x2)∼μ⊗2
D

[
1

(λ̃ − x1)(λ̃ − x2)

]
,

and this once again remains bounded as z → 0. Putting everything together and from (2.25), we have
the desired result. �

We now turn to the proof of Theorem 2.

Proof of Theorem 2. First, using (1.6), we have

lim
z↓σ�

S(z) = 2

σ�

, lim
z↑−σ�

S(z) = − 2

σ�

.

If z∗ is a real root of z = β−1S(z/2), y = 2z∗ is a real root of the fixed point equation 2βy = S(y). In
turn, such a root exists if and only if 2βσ∗ < 2/σ∗, which immediately gives us the desired conclusion.
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LANGEVIN DYNAMICS IN SPIKED MATRIX MODELS 17

Consider first the regime 2λ̃ > sβ . Observe that (2.5) implies

lim
t→∞ exp(−2λ̃t)g2(t) = λρ2

(
1 − σ 2

�

4λ2

)2

+.

Further, Lemma 5 implies that as z → 0 along a sector,

zLΦ(2λ̃ + z) → 2λ2ρ2
(

1 − σ 2
�

4λ2

)2

+E
[

1

(λ̃ − σ )2

]

Thus, Lemma 4 implies

lim
z→0

zLh(2λ̃ + z) = 2λ̃

2λ̃ − β−1S(λ̃)
E

[
1

(λ̃ − σ )2

]
λ2ρ2

(
1 − σ 2

�

4λ2

)2

+.

Thus using [9,Lemma 7.2],

lim
t↑∞ exp(−2λ̃t)h(t) = 2λ̃

2λ̃ − β−1S(λ̃)
E

[
1

(λ̃ − σ )2

]
λ2ρ2

(
1 − σ 2

�

4λ2

)2

+.

Noting that ρ > 0, we have

lim
t↑∞

g2(t)

h(t)
= 2λ̃ − β−1S(λ̃)

2λ̃λ

[
E

(
1

(λ̃ − σ )2

)]−1

.

To simplify this, first note that S′(z) = −E

(
1

(z−σ )2

)
. Calculating the exact value of this derivative, we

obtain that

− E

(
1

(z − σ )2

)
= 2

√
z2 − σ 2

� − z

σ 2
�

√
z2 − σ 2

�

.

Equating these for z = λ̃ yields

[
E

(
1

(λ̃ − σ)2

)]−1

= λ2(1 − σ 2
�

4λ2
).

Putting things together,

lim
t↑∞

g2(t)

λh(t)
=
(

1 − β−1S(λ̃)

2λ̃

)(
1 − σ 2

�

4λ2

)
.
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18 T. LIANG ET AL.

Now note that S(λ̃) = 1/λ, so the final limit becomes

lim
t→∞

g2(t)

λh(t)
=
(

1 − β−1

2λ(λ + σ 2
� /4λ)

)(
1 − σ 2

�

4λ2

)
.

It remains to analyze the sub-critical regime 2λ̃ < sβ . Using Lemma 4, we note that Lh(·) has a
simple pole at sβ . Thus, there exists C1 > 0 such that

lim
z→0

zLh(sβ + z) = C1 �= 0. (2.26)

In turn, this implies

lim
t↑∞ exp(−sβ t)h(t) = C1.

This completes the proof in this sub-case, as limt→∞ g2(t)/h(t) = 0 immediately in this case.
Finally, we focus on the case ρ = 0. Lemma 3 implies that g = 0 in this case. On the other hand, in

this case, Φ(t) = 2E[Y0
2]E[exp(2tσ )]. Thus, using Lemma 4, we note that the leading asymptotics of

h(·) is determined by the pole at sβ . Specifically, limt↑∞ h(t) �= 0, which concludes the proof. �

3. Proof of Theorem 1

Setting U = GV ∈ R
N , the dynamics under the rotated coordinate system Yt := GXt can be expressed

as

dYi
t = Ui〈U, Yt〉dt + σ iYi

t dt − f ′(‖Yt‖2/N
)
Yi

t dt + β−1/2dBi
t . (3.1)

Setting ui = √
NUi, we note that Eqn. (3.1) reduces to

dYi
t = uiRN(t)dt + (

σ i − f ′(KN(t))
)
Yi

t dt + β−1/2dBi
t . (3.2)

Utilizing this expression, one can verify that Yi
t takes the following integral form:

Yi
t = exp

{∫ t

0

[
σ i − f ′(KN(s))

]
ds

}{
Yi

0 + ui
∫ t

0
exp

{
−
∫ s

0

[
σ i − f ′(KN(r))

]
dr

}
RN(s)ds

}
(3.3)

+ β−1/2
∫ t

0
exp

{∫ t

s

[
σ i − f ′(KN(r))

]
dr

}
dBi

s . (3.4)

We first re-express the solution of our SDE.
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LANGEVIN DYNAMICS IN SPIKED MATRIX MODELS 19

Lemma 6. Define Ft(K, λ) = f ′(K(t, t)) − λ. Then we have,

Yi
t =Yi

0 exp
[

−
∫ t

0
Fs(K

N , σ i)ds
]

+
∫ t

0
exp

[
−
∫ t

s
Fs1

(KN , σ i)ds1

]
uiR

N(s)ds + β−1/2Bi
t−

β−1/2
∫ t

0
Bi

sFs(K
N , σ i) exp

[
−
∫ t

s
Fs1

(KN , σ i)ds1

]
ds . (3.5)

Proof. The proof follows by an application of the integration by parts formula
∫ t

0 fsdBs = ftBt−
∫ t

0 Bsf
′
sds

on the solution (3.3). �

Definition 1. We define the empirical measure

ν = 1

N

∑
i

δYi
0,ui,σ i,Bi• , (3.6)

where the fourth marginal is an empirical distribution on the path space C[0, T].

Consider the following collections of functions, with domain space R
3 × C[0, T] and range space

one of C[0, T]j for j = 1, 2, 3:

Fj ⊂ {f : R3 × C[0, T] → C([0, T]j)}, j = 1, 2, 3, with

F1 = {fj, j = 1, . . . , 5 : f1(Y0, u, σ , B•)(w) = uY0 exp(wσ), f2(·)(w) = u2 exp(wσ), f3(·)(t) = uBt,

f4(·)(w) = Y2
0 exp(wσ), f5(·)(w) = σY0 exp(wσ)},

F2 = {f6, . . . , f9 : f6(Y0, u, σ , B•)(t, w) = uBt exp(wσ), f7(·)(t, w) = uBtσ exp(wσ),

f8(·)(t, s) = BtBs, f9(·)(s, w) = Y0Bs exp(wσ)},

F3 = {f10, f11, f12 : f10(Y , u, σ , B•)(s1, s2, w) = Bs1
Bs2

exp(wσ),

f11(·)(s1, s2, w) = σBs1
Bs2

exp(wσ), f12(·)(s1, s2, w) = σ 2Bs1
Bs2

exp(wσ)}

Finally, define

F = F1 ∪ F2 ∪ F3. (3.7)

All functions in F have the same domain. To simplify notation, for elements in F1, we use f (·)(w) to
mean f (Y0, u, σ , B•) evaluated at w for a generic point (Y0, u, σ , B•) ∈ R

3 × C[0, T], where 0 ≤ w ≤ T .
Similarly for elements in F2 and F3.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/4/2720/7317743 by U
niversity of C

hicago user on 25 O
ctober 2023



20 T. LIANG ET AL.

Define CN = {∫ f dν : f ∈ F} and note that for f ∈ Fj,
∫

fdν ∈ C([0, T]j), j = 1, 2, 3. We introduce
the following convention: for a discrete set S = {s1, . . . , sk} and a function f (·), f (S) = f (s1, . . . , sk).
The next result establishes that for all N ≥ 1, (RN , KN) depend on ν through the statistics CN .

Lemma 7. There exist functions

Φ(1) : C[0, T] × C([0, T]2) × C[0, T]|F1| × C([0, T]2)|F2| × C([0, T]3)|F3| → C[0, T],

Φ(2) : C[0, T] × C([0, T]2) × C[0, T]|F1| × C([0, T]2)|F2| × C([0, T]3)|F3| → C([0, T]2),

such that

RN = Φ(1)(RN , KN , CN), KN = Φ(2)(RN , KN , CN). (3.8)

Proof. To this end, we combine (3.5) with the definition of RN to get a fixed point equation

RN(t) = 1

N

N∑
i=1

uiYi
0 exp

[
−
∫ t

0
(f ′(KN(s)) − σ i)ds

]

+ 1

N

N∑
i=1

(ui)2
∫ t

0
exp

[
−
∫ t

s
(f ′(KN(s1)) − σ i)ds1

]
RN(s)ds

+ β−1/2

N

N∑
i=1

uiBi
t − 1

N

N∑
i=1

ui
∫ t

0
Bi

s(f
′(KN(s)) − σ i) exp

[
−
∫ t

s
(f ′(KN(s1)) − σ i)ds1

]
ds .

(3.9)

This implicitly specifies the function Φ(1). The corresponding equation for KN is more involved. To
track this representation systematically, we recall the representation of the solution Yi

t from (3.5), and
denote Yi

t := ∑5
j=1 Ti

j (t), where the Ti
j (t) represent the respective terms in the RHS of (3.5) (using the

definition of Fs, we split the last term in (3.5) into two separate terms for convenience). Now, recall that
KN(t, s) = 1

N

∑N
i=1 Yi

t Y
i
s, and therefore

KN(t, s) =
5∑

j=1

1

N

N∑
i=1

Ti
j (t)T

i
j (s) +

∑
1≤j1<j2≤5

[
1

N

N∑
i=1

Ti
j1(t)T

i
j2(s) + 1

N

N∑
i=1

Ti
j1(s)T

i
j2(t)

]
. (3.10)

We argue that the RHS above is a continuous function of RN , KN and ν. To this end, we record these
terms explicitly. Define

Hθ
τ (K) = exp

[
−
∫ θ

τ

f ′(K(ξ))dξ
]
, DHθ

τ = dHθ
τ (K)

dτ
= f ′(K(τ )) exp

[
−
∫ θ

τ

f ′(K(ξ)dξ
]
. (3.11)
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LANGEVIN DYNAMICS IN SPIKED MATRIX MODELS 21

First, we present the ‘diagonal’ terms.

1

N

N∑
i=1

Ti
1(t)T

i
1(s) = 1

N

N∑
i=1

(Yi
0)

2 exp(σ i(t + s))Ht
0(K

N)Hs
0(K

N),

1

N

N∑
i=1

Ti
2(t)T

i
2(s) =

∫ t

0

∫ s

0

1

N

N∑
i=1

(ui)2 exp(σ i(t + s − s1 − s2))H
t
s1

(KN)Hs
s2

(KN)RN(s1)R
N(s2)ds1 ds2 ,

1

N

N∑
i=1

Ti
3(t)T

i
3(s) = β−1

N

N∑
i=1

Bi
tB

i
s,

1

N

N∑
i=1

Ti
4(t)T

i
4(s) = β−1

N

N∑
i=1

∫ t

0

∫ s

0
Bi

s1
Bi

s2
DHt

s1
(KN)DHt

s2
(KN) exp(σ i(t + s − s1 − s2))ds1 ds2 ,

1

N

N∑
i=1

Ti
5(t)T

i
5(s) = β−1

N

N∑
i=1

(σ i)2
∫ t

0

∫ s

0
Bi

s1
Bi

s2
exp(σ i(t + s − s1 − s2))ds1 ds2 .

Next, we present the ‘off-diagonal’ terms:

1

N

N∑
i=1

[Ti
1(t)T

i
2(s) + Ti

1(s)T
i
2(t)] = Ht

0(K
N)

∫ s

0

1

N

N∑
i=1

uiYi
0 exp(σ i(t + s − s1))H

s
s1

(KN)RN(s1)ds1

+Hs
0(K

N)

∫ t

0

1

N

N∑
i=1

uiYi
0 exp(σ i(t + s − s1))H

t
s1

(KN)RN(s1)ds1 ,

1

N

N∑
i=1

[Ti
1(t)T

i
3(s) + Ti

1(s)T
i
3(t)] = Ht

0(K
N)

β−1/2

N

N∑
i=1

Yi
0Bi

s exp(σ it) + Hs
0(K

N)
β−1/2

N

N∑
i=1

Yi
0Bi

t exp(σ is),

1

N

N∑
i=1

[Ti
1(t)T

i
4(s) + Ti

1(s)T
i
4(t)] = − β−1/2Ht

0(K
N)

∫ s

0

1

N

N∑
i=1

Yi
0Bi

s1
exp(σ i(t + s − s1))DHs

s1
(KN)ds1

− β−1/2Hs
0(K

N)

∫ t

0

1

N

N∑
i=1

Yi
0Bi

s1
exp(σ i(t + s − s1))DHt

s1
(KN)ds1

1

N

N∑
i=1

[Ti
1(t)T

i
5(s) + Ti

1(s)T
i
5(t)] =β−1/2Ht

0(K
N)

∫ s

0

1

N

N∑
i=1

σ iYi
0 exp(σ i(t + s − s1))ds1

+ β−1/2Hs
0(K

N)

∫ t

0

1

N

N∑
i=1

σ iYi
0 exp(σ i(t + s − s1))ds1 ,
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1

N

N∑
i=1

[Ti
2(t)T

i
3(s) + Ti

2(s)T
i
3(t)] = β−1/2

∫ t

0

1

N

N∑
i=1

uiBi
s exp(σ i(t − s1))H

t
s1

(KN)RN(s1)ds1

+ β−1/2
∫ s

0

1

N

N∑
i=1

uiBi
t exp(σ i(s − s1))H

t
s1

(KN)RN(s1)ds1

1

N

N∑
i=1

[Ti
2(t)T

i
4(s) + Ti

2(s)T
i
4(t)] =

− β−1/2
∫ t

0

∫ s

0

1

N

N∑
i=1

uiBi
s2

exp(σ i(t + s − s1 − s2))H
t
s1

(KN)RN(s1)DHs
s2

(KN)ds1 ds2

−β−1/2
∫ t

0

∫ s

0

1

N

N∑
i=1

uiBi
s1

exp(σ i(t + s − s1 − s2))H
s
s2

(KN)RN(s2)DHt
s1

(KN)ds1 ds2 ,

1

N

N∑
i=1

[Ti
2(t)T

i
5(s) + Ti

2(s)T
i
5(t)] =

β−1/2
∫ t

0

∫ s

0

1

N

N∑
i=1

uiσ iBi
s2

exp(σ i(t + s − s1 − s2))H
t
s1

(KN)RN(s1)ds1 ds2

+β−1/2
∫ t

0

∫ s

0

1

N

N∑
i=1

uiσ iBi
s1

exp(σ i(t + s − s1 − s2))H
s
s2

(KN)RN(s2)ds1 ds2 ,

1

N

N∑
i=1

[Ti
3(t)T

i
4(s) + Ti

3(s)T
i
4(t)] = − β−1

N

N∑
i=1

∫ s

0
Bi

tB
i
s1

exp(σ i(s − s1))DHs
s1

(KN)ds1

− β−1

N

N∑
i=1

∫ t

0
Bi

sB
i
s1

exp(σ i(t − s1))DHt
s1

(KN)ds1

1

N

N∑
i=1

[Ti
3(t)T

i
5(s) + Ti

3(s)T
i
5(t)] =

β−1
∫ s

0

1

N

N∑
i=1

σ iBi
tB

i
s1

exp(σ i(s − s1))ds1 + β−1
∫ t

0

1

N

N∑
i=1

σ iBi
sB

i
s1

exp(σ i(t − s1))ds1 ,
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1

N

N∑
i=1

[Ti
4(t)T

i
5(s) + Ti

4(s)T
i
5(t)]

= − β−1

N

N∑
i=1

σ i
∫ t

0

∫ s

0
Bi

s1
Bi

s2
exp(σ i(t + s − s1 − s2))DHt

s1
(KN)ds1 ds2

− β−1

N

N∑
i=1

σ i
∫ t

0

∫ s

0
Bi

s1
Bi

s2
exp(σ i(t + s − s1 − s2))DHs

s2
(KN)ds1 ds2 .

This specifies the function Φ(2) implicitly. �
Given Lemma 7, we next establish that RN , KN are, in fact, functions of the low-dimensional statistics

CN .

Lemma 8. There exist functions

Ψ (1) : C[0, T]|F1| × C([0, T]2)|F2| × C([0, T]3)|F3| → C[0, T],

Ψ (2) : C[0, T]|F1| × C([0, T]2)|F2| × C([0, T]3)|F3| → C([0, T]2)

such that

RN = Ψ (1)(CN), KN = Ψ (2)(CN).

To this end, our main strategy is to apply a Picard iteration scheme on the fixed point equations (3.8).
We start with some initial guess RN

0 , KN
0 , and carry out the iterative updates,

RN
m+1 = Φ(1)(RN

m, KN
m , CN), KN

m+1 = Φ(2)(RN
m, KN

m , CN). (3.12)

We will show that this iteration system is contractive, and thus identify RN , KN as the unique fixed
points of this system. In this endeavor, we will utilize the precise form of the functions Φ(1), Φ(2) as
described in the proof of Lemma 7. First, we need some preliminary estimates.

Lemma 9. Recall that f ′, defined in (1.2), is non-negative and Lipschitz. Then we have that

(i) For any m, N ≥ 1, 0 ≤ Hθ
τ (KN

m) ≤ 1.

(ii) For any 0 ≤ t ≤ T , N, m ≥ 1,
∫ t

0 |DHt
u(K

N
m)|du ≤ 1.

(iii) For any θ ≤ T ,

sup
τ≤θ

|Hθ
τ (KN

m+1) − Hθ
τ (KN

m)| ≤ ‖f ′‖L

∫ θ

0
|KN

m+1(s, s) − KN
m(s, s)|ds . (3.13)
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(iv) For any N, m ≥ 1, 0 ≤ τ ≤ θ ≤ T ,

|DHθ
τ (KN

m+1) − DHθ
τ (KN

m)| ≤ ‖f ′‖L

[
|KN

m+1(τ , τ) − KN
m(τ , τ)| + (DHθ

τ (KN
m+1)

+ DHθ
τ (KN

m))

∫ θ

0
|KN

m+1(s, s) − KN
m(s, s)|ds

]
.

(v) With probability 1, there exist C0, C1 (possibly random), depending on T such that

sup
m≥1

‖RN
m‖∞ ≤ C0 exp (C1T). (3.14)

Proof of Lemma 9. The parts (i)–(iv) are directly adapted from [9], and are just collected here for the
convenience of the reader. We prove (v). Note that

RN
m+1(t) = Ht

0(K
N
m)

1

N

N∑
i=1

uiYi
0 exp (σ it) + 1

N

N∑
i=1

(ui)2
∫ t

0
exp (σ i(t − s))RN

m(s)Ht
s(K

N
m)ds

+ β−1/2

N

N∑
i=1

uiBi
t − 1

N

N∑
i=1

ui
∫ t

0
Bi

s exp (σ i(t − s))DHt
s(K

N
m)ds

+ 1

N

N∑
i=1

uiσ i
∫ t

0
Bi

s exp(σ i(t − s))Ht
s(K

N
m)ds .

This implies

|RN
m+1(t)| ≤|Ht

0(K
N
m)| · | 1

N

N∑
i=1

uiYi
0 exp(σ it)| +

∫ t

0
| 1

N

N∑
i=1

(ui)2 exp(σ i(t − s))| · |Ht
s(K

N
(m)| · |RN

(m)(s)|ds

+ β−1/2

N
|

N∑
i=1

uiBi
t| +

∫ t

0
| 1

N

N∑
i=1

uiBi
s exp(σ i(t − s))| · |DHt

s(K
N
(m))|ds

+
∫ t

0
| 1

N

N∑
i=1

uiσ iBi
s exp(σ i(t − s))| · |Ht

s(K
N
(m))|ds .

Thus there exists C0, C1 > 0 (possibly random), independent of m, such that

sup
0≤t≤T

|RN
m+1(t)| ≤ C0 + C1

∫ T

0
|RN

m(s)|ds .
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Iterating this bound in m, we obtain

sup
0≤t≤T

|RN
m+1(t)| ≤ C0 exp(C1T).

This completes the proof. �
Armed with Lemma 9, we turn to a proof of Lemma 8.

Proof of Lemma 8. Define two sequences of Picard iterations with different initializations, (RN
0 , KN

0 ) and
(R̃N

0 , K̃N
0 ):

RN
m+1 = Φ(1)(RN

m, KN
m , CN), KN

m+1 = Φ(2)(RN
m, KN

m , CN). (3.15)

R̃N
m+1 = Φ(1)(R̃N

m, K̃N
m , CN), K̃N

m+1 = Φ(2)(R̃N
m, K̃N

m , CN). (3.16)

Observe that for any m ≥ 0, (3.9) implies

RN
m+1(t) − R̃N

m+1(t) = 1

N

N∑
i=1

uiYi
0 exp(σ it)(Ht

0(K
N
m) − Ht

0(K̃
N
m))

+
∫ t

0

1

N

N∑
i=1

(ui)2 exp(σ i(t − s))(RN
m(s)Ht

s(K
N
m) − R̃N

m(s)Ht
s(K̃

N
m))ds

−
∫ t

0

1

N

N∑
i=1

uiBi
s exp(σ i(t − s))(DHt

s(K
N
m) − DHt

s(K̃
N
m))ds

+
∫ t

0

1

N

N∑
i=1

uiσ iBi
s exp(σ i(t − s))(Ht

s(K
N
m) − Ht

s(K̃
N
m))ds .

This implies, with Lemma 9, there exists a constant C > 0 that potentially depends on T such that, for
all t ≤ T:

sup
0≤s≤t

|RN
m+1(s) − R̃N

m+1(s)|

≤ C
[ ∫ t

0
|KN

m(s, s) − K̃N
m(s, s)|ds +

∫ t

0
|RN

m(s)Ht
s(K

N
m) − R̃N

m(s)Ht
s(K̃

N
m)|ds

]
. (3.17)

To control the second term, we observe

|RN
m(s)Ht

s(K
N
m) − R̃N

m(s)Ht
s(K̃

N
m)|

≤ |RN
m(s)| · |Ht

s(K
N
m) − Ht

s(K̃
N
m)| + |Ht

s(K̃
N
m)| · |RN

m(s) − R̃N
m(s)|,
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and, therefore,

sup
0≤s≤t

|RN
m+1(s) − R̃N

m+1(s)| ≤ C′[ ∫ t

0
|KN

m(s, s) − K̃N
m(s, s)|ds +

∫ t

0
|RN

m(s) − R̃N
m(s)|ds

]
. (3.18)

Similarly, analyzing the iterative update equation for KN
m , K̃N

m ,

sup
0≤s,s′≤t

|KN
m+1(s, s′) − K̃N

m+1(s, s′)| ≤ C′′[ ∫ t

0
|KN

m(s, s) − K̃N
m(s, s)|ds +

∫ t

0
|RN

m(s) − R̃N
m(s)|ds

]
.

(3.19)

Iterating these bounds, we have shown for any t ≤ T ,

sup
0≤s≤t

|RN
m+1(s) − R̃N

m+1(s)| + sup
0≤s,s′≤t

|KN
m+1(s, s′) − K̃N

m+1(s, s′)| (3.20)

≤ tm

m!
· (C′ + C′′)m

[
sup

0≤s≤T
|RN

0 (s) − R̃N
0 (s)| + sup

0≤s,s′≤T
|KN

0 (s, s′) − K̃N
0 (s, s′)|

]
. (3.21)

This implies the following bound:

max{‖RN
m+1 − R̃N

m+1‖∞, ‖KN
m+1 − K̃N

m+1‖∞} (3.22)

≤ Tm

m!
· (C′ + C′′)m

[
sup

0≤s≤T
|RN

0 (s) − R̃N
0 (s)| + sup

0≤s,s′≤T
|KN

0 (s, s′) − K̃N
0 (s, s′)|

]
, (3.23)

For m ∈ N large enough, Tm

m! · (C′ + C′′)m < 1, the above shows that the iterated operator Φm with
Φ : (R, K) �→ (Φ(1)(R, K, CN), Φ(2)(R, K, CN)) is a contraction under the ‖ · ‖∞ metric. Thus, by the
Banach fixed-point theorem, we know Φm has a unique fixed point denoted as (R, K). Note that

Φm(Φ(R, K)) = Φ(Φm(R, K)) = Φ(R, K) (3.24)

and thus Φ(R, K) is a fixed point of Φm as well, and by uniqueness, we must have Φ(R, K) = (R, K).
This shows the existence of a fixed point for Φ. Using the fact that any fixed point of Φ must be a fixed
point of Φm, we conclude Φ has the unique fixed point (R, K) as Φm. Since (RN , KN) satisfies (3.8),
this implies (R, K) = (RN , KN). Thus, the Picard iteration scheme outlined above uniquely specifies
(RN , KN) as a function of CN . �

Finally, we will establish that Ψ (1), Ψ (2) derived in Lemma 8 are continuous functions. To this end,
recall that

Ψ (1) : C[0, T]|F1| × C([0, T]2)|F2| × C([0, T]3)|F3| → C[0, T],

Ψ (2) : C[0, T]|F1| × C([0, T]2)|F2| × C([0, T]3)|F3| → C([0, T]2)
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We equip C([0, T]j), j = 1, 2, 3, with the sup-norm topology. Further, we equip C[0, T]|F1| ×
C([0, T]2)|F2| × C([0, T]3)|F3| with the product topology. With this notion of convergence, we can
establish the following continuity properties of Ψ (1) and Ψ (2).

Lemma 10. The maps C �→ Ψ (1)(C ) and C �→ Ψ (2)(C ) are continuous.

Proof. We measure the discrepancy between C and C̃ using the uniform topology on this space, and
denote d(C , C̃ ) = ‖C − C̃ ‖∞. Define R, K, R̃, K̃ via the fixed point equations:

R = Φ(1)(R, K, C ), K = Φ(2)(R, K, C ),

R̃ = Φ(1)(R̃, K̃, C̃ ), K̃ = Φ(2)(R̃, K̃, C̃ ).

Observe that

‖R − R̃‖∞ = ‖Φ(1)(R, K, C ) − Φ(1)(R̃, K̃, C̃ )‖∞
≤ ‖Φ(1)(R, K, C ) − Φ(1)(R̃, K̃, C )‖∞ + ‖Φ(1)(R̃, K̃, C ) − Φ(1)(R̃, K̃, C̃ )‖∞.

Controlling the second term, we note from (3.9) that

‖Φ(1)(R̃, K̃, C ) − Φ(1)(R̃, K̃, C̃ )‖∞ ≤ ‖C − C̃ ‖∞.

On the other hand, using the same argument as in the proof of Lemma 8, we have that

‖Φ(1)(R, K, C ) − Φ(1)(R̃, K̃, C )‖∞ ≤ C
[ ∫ T

0
|K(s, s) − K̃(s, s)|ds +

∫ T

0
|R(s) − R̃(s)|ds

]
.

A similar argument for Φ(2) implies that for any t ∈ [0, T],

sup
0≤s≤t

|R(s) − R̃(s)| ≤ ‖C − C̃ ‖∞ + C
[ ∫ t

0
|K(s, s) − K̃(s, s)|ds +

∫ t

0
|R(s) − R̃(s)|ds

]
, (3.25)

sup
0≤s,s′≤t

|K(s, s′) − K̃(s, s′)| ≤ ‖C − C̃ ‖∞ + C
[ ∫ t

0
|K(s, s) − K̃(s, s)|ds +

∫ t

0
|R(s) − R̃(s)|ds

]
.

(3.26)

By Gronwall’s lemma, we have

‖R − R̃‖∞ + ‖K − K̃‖∞ ≤ 2‖C − C̃ ‖∞ exp(C′T) . (3.27)

This completes the proof. �
Our next lemma establishes that under the two initial conditions introduced in Section 1, the low-

dimensional statistics CN converge almost surely to deterministic limits. We defer the proof of this lemma
to Appendix A.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/4/2720/7317743 by U
niversity of C

hicago user on 25 O
ctober 2023



28 T. LIANG ET AL.

Lemma 11. Under the i.i.d. and i.i.d. under rotated basis initial conditions, each element in CN converges
to deterministic limits almost surely.

Finally, we complete the proof of Theorem 1, assuming Lemmas 8, 10 and 11.

Proof. (Proof of Theorem 1) Fix T > 0. Lemmas 8, 10 and 11 together imply that RN , KN converge
to deterministic functions R and K, respectively. It remains to characterize these limits. Note that from
(3.3),

Yi
t = exp

{∫ t

0

[
σ i − f ′(KN(s))

]
ds

}{
Yi

0 + ui
∫ t

0
exp

{
−
∫ s

0

[
σ i − f ′(KN(r))

]
dr

}
RN(s)ds

}
(3.28)

+ β−1/2
∫ t

0
exp

{∫ t

s

[
σ i − f ′(KN(r))

]
dr

}
dBi

s . (3.29)

We recall that RN(t) = 1
N

∑N
i=1 uiYi

t and KN(t, s) = 1
N

∑N
i=1 Yi

t Y
i
s, and that RN → R, KN → K

uniformly. Thus calculating RN , KN and setting N → ∞, we obtain the desired fixed point equations
in the limit. Note that the final limit operation requires that ν = 1

N

∑N
i=1 δYi

0,ui,σ i,Bi• converges to the
claimed limits under the i.i.d. and rotated i.i.d. initial conditions. This completes the proof. �
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A. Proof of Lemma 11

We prove Lemma 11 in this section. Note that for f ∈ Fj, j = 1, 2, 3,
∫

f dν ∈ C([0, T]j). Thus, in the

lemma above, we mean specifically that
∫

f dν converges almost surely as a C([0, T]j)-valued random
variable. Throughout, we equip C([0, T]j) with a sup-norm.

Proof. Before embarking on a formal proof, we summarize our general proof strategy. The proof follows
in two stages—first, we establish that for any fixed x ∈ [0, T]j,

∫
f dν (x) converges almost surely. We next

prove an additional Holder continuity property of
∫

f dν , uniformly in n, which allows us to bootstrap
the above pointwise a.s. convergence to a functional a.s. convergence statement.
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We first consider the case of the initial condition (ii). Here, almost sure convergence of
∫

f dν (x) for
any fixed x ∈ [0, T]j follows immediately from the Strong Law of Large Numbers. We next establish that
for sufficiently large n, the following holds for each element of CN : there exists C, α > 0, independent
of n, such that almost surely, for any x, y ∈ [0, 1]j,

|
∫

f dν (x) −
∫

f dν (y)| ≤ C‖x − y‖α . (A1)

Before we delve into the proof, we argue that (A1) suffices to establish convergence of
∫

f dν to E
∫

f dν

in sup-norm.
To see this, first observe that for every f ∈ Fj, j = 1, 2, 3, E[

∫
f dν ] ∈ C([0, T]j), by the explicit

form of these functions. Thus, E[
∫

f dν ](·) is uniformly continuous on [0, T]j. This implies that if we fix
ε > 0, there exists δf > 0 such that whenever |t1 − t2| ≤ δf , we have that

∣∣∣E[ ∫ f dν
]
(t1) − E

[ ∫
f dν

]
(t2)

∣∣∣ ≤ ε.

Define δ = min{δf : f ∈ F} and fix any 0 < δ′ < δ. Let {x1, · · · , x�} denote a δ′-net of [0, 1]j. For any

y ∈ [0, T]j, if we denote xt to be the nearest point in the net, we know that for sufficiently large n,

∣∣∣[ ∫ f dν
]
(y) − E

[ ∫
f dν

]
(y)
∣∣∣ ≤

∣∣∣[ ∫ f dν
]
(y) −

[ ∫
f dν

]
(xt)

∣∣∣ (A2)

+
∣∣∣[ ∫ f dν

]
(xt) − E

[ ∫
f dν

]
(xt)

∣∣∣+ ∣∣∣E[ ∫ f dν
]
(xt) − E

[ ∫
f dν

]
(y)
∣∣∣

≤ C(δ′)α + 2ε.

Since the RHS does not depend on y, and ε, δ′ > 0 can be arbitrary as long as δ′ < δ, we have the required
sup-norm convergence of

∫
f dν as a function on C([0, T]j). We shall next establish Holder continuity of∫

f dν (uniformly in n), that is, property (A1) for each f ∈ F .
To begin, let us consider f1. Observe that

∣∣∣ 1

N

N∑
i=1

uiYi
0 exp(w1σ

i) − 1

N

N∑
i=1

uiYi
0 exp(w2σ

i)

∣∣∣ ≤ exp(‖σ‖∞T)

(
1

N

N∑
i=1

|ui||Yi
0|
)

|w1 − w2| (A3)

≤ C|w1 − w2|,

where the last inequality is true a.s. with C independent of N only for sufficiently large n on using the
SLLN. Thus, f1 is Lipschitz almost surely for sufficiently large n. For the above upper bound, recall that
we always have ‖σi‖∞ ≤ 2 max{|d+|, |d−|} for n sufficiently large. Similar arguments work for f2, f4,
f5, so we skip presenting those details here.

We next turn to f3. Recall that

1

N

N∑
i=1

uiBi
t = 1√

N

N∑
i=1

UiBi
t = 1√

N

N∑
i=1

ViWi
t ,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/12/4/2720/7317743 by U
niversity of C

hicago user on 25 O
ctober 2023



32 T. LIANG ET AL.

where the last equality follows from the orthogonality of the matrix G. Recall that Vi ∼ N (0, λ
N ). This

implies

P

[
sup

0≤t≤T

∣∣∣ N∑
i=1

ViWi
t

∣∣∣ >
√

Nε

]
≤ P

[
sup

0≤t≤T

∣∣∣ N∑
i=1

ViWi
t

∣∣∣ >
√

Nε,
N∑

i=1

(Vi)2 ≤ C′
]

+ P

[
N∑

i=1

(Vi)2 ≥ C′
]

≤ 10 exp(−CN) (A4)

using standard deviation bounds for the supremum of a Brownian motion and a Chernoff bound on∑N
i=1(V

i)2. This completes the proof for f3.
Next, we move to functions in F2. First, note that for f8, we have that

∫
f8dν → E

∫
f8dν on

C([0, T]2), by the Uniform Law of Large Numbers and properties of Brownian Motion. Next, we
present the proof for f6—the proofs for f7 and f9 are similar. To show Holder continuity of f6, set
Dw = diag(exp(wσ 1) · · · , exp(wσN)). Then we have

1

N

N∑
i=1

uiBi
t exp(wσ i) = 1√

N
V�G�DwGWt.

Thus, for any (t1, w1), (t2, w2) ∈ [0, T]2,

∣∣∣ 1√
N

V�G�Dw1
GWt1 − 1√

N
V�G�Dw2

GWt2

∣∣∣
≤ 1√

N

∣∣∣V�G�Dw1
G(Wt1 − Wt2)

∣∣∣+ 1√
N

|V�G�(Dw1
− Dw2

)GWt2 |

≤ ‖GV‖2‖Dw1
‖2

1√
N

‖Wt1 − Wt2‖2 + ‖GV‖2‖Dw1
− Dw2

‖2
1√
N

‖Wt2‖2.

There exists C > 0 such that almost surely, ‖GV‖2 = ‖V‖2 < C, supw∈[0,T] ‖Dw1
‖2 ≤ exp(‖σ‖∞T).

Further, ‖Dw1
− Dw2

‖2 ≤ C|w1 − w2|, and

sup
t1,t2∈[0,T]

∣∣∣ 1

N

N∑
i=1

(Wi
t1 − Wi

t2)
2 − |t1 − t2|

∣∣∣ as→ 0.

Thus, there exists constants C, C′ > 0 such that almost surely,

∣∣∣ 1√
N

V�G�Dw1
GWt1 − 1√

N
V�G�Dw2

GWt2

∣∣∣
≤ C(

√|t1 − t2| + |w1 − w2|) ≤ C′(
√|t1 − t2| +√|w1 − w2|),

where the last inequality follows from the fact that w1, w2 ∈ [0, T], so that we always have
√|w1 − w2| ≤√

2T . The other functions in F2 may be controlled using analogous arguments.
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Finally, we move onto the functions in F3. We sketch the proof for f12; the same proof works for f10,
f11. Set D̃w = diag((σ i)2 exp(wσi)). Thus, we have, for (w, s1, s2), (w

′, s′
1, s′

2) ∈ [0, T]3,

∣∣∣ 1

N

N∑
i=1

(σ i)2 exp(wσ i)Bi
s1

Bi
s2

− 1

N

N∑
i=1

(σ i)2 exp(w′σ i)Bi
s′1

Bi
s′2

∣∣∣
= 1

N

∣∣∣B�
s1

D̃wBs2
− B�

s′1
D̃w′Bs′2

∣∣∣ ≤ C(

√
|s1 − s′

1| + |w − w′| +
√

|s2 − s′
2|) (A5)

≤ C′(
√

|s1 − s′
1| +√|w − w′| +

√
|s2 − s′

2|)
almost surely for some universal constants C, C′ > 0. This completes the proof for initial condition (ii).

Next, we turn to the initial condition (i). The main difference now lies in the fact that the pointwise
almost sure convergence no longer follows directly from SLLN for all choices of F . First, we observe
that the difference in initial conditions only affects f1, f4, f5 and f9—thus, we can restrict to these specific
functions. We will use the same strategy to establish functional almost sure convergence, starting from
the pointwise a.s. convergence, thus we omit those details. We present the proof for f1—the proofs for
f4, f5, f9 are similar. Fix w ∈ [0, T]. We have

1

N

N∑
i=1

uiYi
0 exp(wσ i) = 1√

N
V�G�DwGX0, (A6)

where we use Dw = diag(exp(wσ i)). We observe that

E

[
1

N

N∑
i=1

uiYi
0 exp(wσ i)

]
= E

[
E[

1√
N

V�G�DwGX0|G, X0]

]
= 0.

since entries of V are i.i.d. with mean 0. Now, there exists M0 > 0 such that En = {∑N
i=1(X

i
0)

2 <

N ·M0} occurs eventually almost surely. Given G and X0, V�G�DwGX0 ∼ N (0, λ(X�
0 G�DwGX0)/N).

Moreover,

X�
0 G�DwGX0

N
≤ ‖Dw‖2

∑N
i=1(X

i
0)

2

N
.

Thus, on the event En, for any ε > 0,

P

[∣∣∣ 1√
N

V�G�DwGX0

∣∣∣ > ε|G, X0

]
≤ 2 exp

(
−Nε2

2M′

)

for some universal constant M′ > 0. The proof is complete on using the Borel Cantelli lemma. �
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