
SIAM J. MATH. DATA SCI. © 2024 Society for Industrial and Applied Mathematics
Vol. 6, No. 2, pp. 283--310

Reversible Gromov--Monge Sampler for Simulation-Based Inference\ast 

YoonHaeng Hur\dagger , Wenxuan Guo\ddagger , and Tengyuan Liang\ddagger 

Abstract. This paper introduces a new simulation-based inference procedure to model and sample from multidi-
mensional probability distributions given access to independent and identically distributed samples,
circumventing the usual approaches of explicitly modeling the density function or designing Markov
chain Monte Carlo. Motivated by the seminal work on distance and isomorphism between met-
ric measure spaces, we develop a new transform sampler to perform simulation-based inference,
which estimates a notion of optimal alignments between two heterogeneous metric measure spaces
(\scrX , \mu , c\scrX ) and (\scrY , \nu , c\scrY ) from empirical data sets, with estimated maps that approximately push for-
ward one measure \mu to the other \nu , and vice versa. We introduce a new notion called the reversible
Gromov--Monge (RGM) distance, providing mathematical formalism behind the new sampler. We
study the statistical rate of convergence of the new transform sampler, along with several analytic
properties of the RGM distance and operator viewpoints of transform sampling. Synthetic and
real-world examples showcasing the effectiveness of the new sampler are also demonstrated.
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1. Introduction. One of the central tasks in statistics is to model and sample from a
multidimensional probability distribution. Classic statistics approaches this problem by fit-
ting a model to the target distribution and then sampling from a fitted model via Markov
chain Monte Carlo (MCMC) techniques. Although such model-based methods are widely
used, MCMC sampling often entails several technicalities. Beyond diagnosing whether the
chain mixes, obtaining independent and identically distributed (i.i.d.) samples from MCMC
methods is complex as one has to control correlations among successive samples or run parallel
chains.

An alternative approach available in statistics, reserved for the one-dimensional case, is
usually referred to as the (inverse) transform sampling. Such an approach circumvents the
calling for a parametric or nonparametric density and directly designs a sampler by transform-
ing a simple uniform distribution. The idea is simple: one can transform a uniform measure
\mu = Unif([0,1]) to any one-dimensional target probability measure \nu leveraging the following
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284 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

monotonic transformation T : [0,1] \rightarrow \BbbR called the inverse cumulative distribution function
(CDF):

T (x) = inf\{ y \in \BbbR : \nu (( - \infty , y]) \geq x\} .(1.1)

Define the pushforward measure T\#\mu by T\#\mu (S) = \mu (\{ x : T (x) \in S\} ) for any Borel set S \subseteq \BbbR ;
then one can easily check that T\#\mu = \nu , namely, with a draw from the one-dimensional uniform
distribution x\sim \mu , the transformed sample T (x) has the target probability distribution \nu .

The transform sampling idea can be extended to the multidimensional setting: given a
target probability measure \nu supported on \scrY , one can specify a probability measure \mu on \scrX ,
which is easy to sample from such as a multivariate Gaussian, and then find a measurable map
T : \scrX \rightarrow \scrY such that T\#\mu = \nu , where the pushforward measure T\#\mu is defined analogously
to the one-dimensional case above. Such a map T---called a transport map from \mu to \nu ---
transforms i.i.d. samples from \mu into i.i.d. samples from \nu . Over the past few years, the
generative modeling literature in machine learning has been actively employing such transform
sampling ideas by identifying T\#\mu = \nu through the following minimization:

min
T\in \scrF 

\scrL (T\#\mu ,\nu ) ,(1.2)

where \scrF is a class of maps from \scrX to \scrY parametrized by neural networks and \scrL measures
certain discrepancies between two distributions. Different choices of \scrL have led to various
models such as the Jensen--Shannon divergence for generative adversarial networks (GANs)
[22], the Wasserstein-1 distance for Wasserstein-GAN [2], and the maximum mean discrepancy
(MMD) for MMD-GAN [18, 29]. One caveat is that there can be infinitely many transport
maps from \mu to \nu ; for instance, when \mu = \nu = Unif([0,1]), define T : [0,1] \rightarrow [0,1] by
T (x) = | 2x - 1| , then the n-fold compositions of T are valid transport maps for all n \in \BbbN . In
other words, finding a map T satisfying T\#\mu = \nu is an overidentified problem, where (1.2) may
have infinitely many minimizers. Though all minimizers are equivalent in terms of transform
sampling, not all are equally preferred in light of the Occam's razor principle: one wishes to
select simple, desirable transport maps among the overidentified set \{ T : T\#\mu = \nu \} .

Inductive biases tackle the aforementioned overidentified problem by restricting the search
to transport maps with desirable properties. In this context, meaningful progress has been
made based on optimal transport (OT) theory [52, 33]. The OT theory aims to identify an
optimal transformation T , quantified by the transportation cost of moving mass from \mu to
\nu ; for instance, when \mu and \nu lie in the same space \BbbR d, each transport map T is associated
with the transport cost C(T ) :=

\int 
\BbbR d \| x - T (x)\| 2 d\mu (x). Brenier [8] proved that, under mild

regularity conditions, there exists a unique minimizer T  \star of C among all transport maps,
namely,

T  \star = argmin
T\#\mu =\nu 

C(T ) .(1.3)

More importantly, T  \star is the gradient of some convex function. On the one hand, Brenier's
result extends the one-dimensional (inverse) transform sampling to the multidimensional case.
When d= 1 and \mu = Unif([0,1]), the inverse CDF map in (1.1) turns out to be exactly T  \star ; for
d> 1, the multidimensional map T  \star :\BbbR d \rightarrow \BbbR d is the gradient of a convex function, generalizing
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REVERSIBLE GROMOV--MONGE SAMPLER 285

monotonic functions on the real line to multidimensions. On the other hand, Brenier's result
naturally initiates an inductive bias in transform sampling: instead of searching any transport
map, one may find T  \star , the optimal one with the smallest cost. To contrast this with the plain
transform sampling (1.2), let us rewrite (1.3) using a suitable Lagrangian multiplier \lambda > 0 to
enforce the equality constraint T\#\mu = \nu :

min
T\in \scrF 

C(T ) + \lambda \cdot \scrL (T\#\mu ,\nu ) .(1.4)

Now, we can see that (1.4) incorporates an additional objective function of T---the transport
cost---in (1.2), thereby introducing an inductive bias towards the OT map that achieves the
minimum of C. Moreover, the Lagrangian provides an implementable formulation in practice
to leverage OT ideas in generative modeling.

Such an OT-based approach, however, can be cumbersome in practice if the target \nu is a
high-dimensional embedding of some low-dimensional distribution. For instance, let \nu be the
distribution of handwritten digit images from the MNIST data set on \BbbR 784.1 To use the above
OT-based approach, one must choose \mu on \BbbR 784 and find a map T :\BbbR 784 \rightarrow \BbbR 784. However, the
support of \nu is intrinsically low-dimensional (roughly \BbbR 15 as in [19]); hence, other transform
samplers with \scrX = \BbbR 15 yielding T : \BbbR 15 \rightarrow \BbbR 784 are more efficient than the OT-based method
in terms of estimating T and computing T (X) for X \sim \mu .

In this paper, we propose and study a new transform sampler combining the best of
both worlds: it introduces beneficial inductive biases like the OT approach, while operating
when \scrX and \scrY are heterogeneous spaces. The key to our approach is to utilize a notion of
isomorphism and the Gromov--Wasserstein (GW) distance between \mu and \nu . Given two cost
functions c\scrX : \scrX \times \scrX \rightarrow \BbbR and c\scrY : \scrY \times \scrY \rightarrow \BbbR , the GW distance [35, 13] is

GW(\mu ,\nu ) := inf
\gamma \in \Pi (\mu ,\nu )

\biggl( \int 
\scrX \times \scrY 

\int 
\scrX \times \scrY 

(c\scrX (x,x\prime )  - c\scrY (y, y\prime ))2 d\gamma (x, y) d\gamma (x\prime , y\prime )

\biggr) 1/2

,(1.5)

where \Pi (\mu ,\nu ) is the set of couplings between \mu and \nu . GW aims to match the cost functions
defined on two heterogeneous spaces, intending to identify an isomorphism, namely, a trans-
port map T such that c\scrX (x,x\prime ) = c\scrY (T (x), T (x\prime )) for all x,x\prime \in \scrX . Inspired by these, one can
define the following objective function of T to replace the transport cost C:

Q(T ) :=

\int 
\scrX 

\int 
\scrX 

(c\scrX (x,x\prime )  - c\scrY (T (x), T (x\prime ))2 d\mu (x) d\mu (x\prime ) .(1.6)

One way to design a transform sampler with inductive biases toward isomorphisms (the target
when minT Q(T ) = 0) is to utilize the Lagrangian form (1.4), but with Q instead of C. It
turns out, however, that the objective function Q---which is quadratic in \mu ---results in several
modeling subtleties when considering its plug-in estimation based on finite i.i.d. samples from
\mu and \nu , which might not be favorable in practice (see Remark 3.3). To circumvent such issues,
we develop a transform sampler with a different objective function, which we will detail in
section 3.

1Images are normalized and fit into a 28\times 28 pixel bounding box, hence defined on \BbbR 28\times 28 \equiv \BbbR 784 [27].
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286 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

Organization. The rest of the paper is organized as follows. First, we briefly review other
related studies omitted in the discussion above; section 2 briefly outlines some preliminary
background on OT and the Gromov--Wasserstein (GW) distance. Then, section 3 introduces
the primary methodology of this paper, where we develop a new transform sampler based on
the new notion called the reversible Gromov--Monge (RGM) distance. Section 4 delineates the
main theoretical result, providing the statistical rate of convergence for the plug-in estimation.
Section 5 discusses further theoretical perspectives on the new sampler. Synthetic and real-
world examples showcasing the effectiveness of the new sampler are demonstrated in section 6
as a proof of concept. The supplementary material (supplement.pdf [local/web 1.35MB])
collects details of the results in sections 4, 5, and 6 along with relevant discussions.

1.1. Related literature. Inferring the underlying probability distributions from data has
been a central problem in statistics and unsupervised machine learning since the invention
of histograms by Pearson a century ago. Classic mathematical statistics explicitly models
the density function in a parametric or a nonparametric way [45] and studies the minimax
optimality of directly estimating such density functions [49]. It is also unclear how to proceed
to sample from a possibly improper2 density estimator, even with an optimal estimator at
hand. One may employ MCMC techniques for sampling from specific models. However, on
the computational front, it is highly nontrivial how to ensure the mixing properties of MCMC
for a designed sampler [43].

A recent trend in unsupervised machine learning is to learn complex, high-dimensional
distributions via (deep) generative models, either explicitly by parametrizing the sufficient
statistics of the exponential families [16, 25], or implicitly by parametrizing the pushforward
map transporting distributions [18, 22], with a focus on tractability in computation. Surpris-
ingly, though lacking theoretical underpinning and optimality, generative models perform well
empirically in large-scale applications where classical statistical procedures are destined to
fail. There has been a growing literature on understanding distribution estimation with the
implicit framework, with more general metrics and target distribution classes, to name a few,
[39, 29, 18] on MMDs, [48, 30] on integral probability metrics, and [38, 3, 31, 46, 4, 54, 28, 12]
on GANs. Last but not least, we emphasize that an alternative implicit distribution estimation
approach using the simulated method of moments has been formulated in the econometrics
literature since [34, 40] and [23].

Originally introduced as a tool for comparing objects in computer graphics, analytic prop-
erties of the GW distance have been studied extensively [35, 50]; the most important one is
that it defines a distance between metric measure spaces, namely, metric spaces endowed with
probability measures. Since many real-world data sets can be modeled as metric measure spa-
ces, the GW distance has been utilized in various problems such as shape correspondence [47],
graph matching [56], and protein comparison [20]. Certain statistical aspects of comparing
metric measure spaces have been studied in [7, 55].

Computation of the GW distance amounts to a relaxation of the quadratic assignment
problem [26]; both are known to be NP-hard [11] in the worst case. Several approaches have
been proposed for the approximate computation of the GW distance. [35] studies lower bounds
on the GW distance that are easier to compute. [41] adds an entropic regularization term

2Here we mean that the estimated density is not always nonnegative and integrates to one.
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REVERSIBLE GROMOV--MONGE SAMPLER 287

to the GW distance, which leads to a fast iterative algorithm; [44] further modifies this by
imposing a low-rank constraint on couplings. [53] proposes the sliced GW distance defined by
integrating GW distances over one-dimensional projections. Last but not least, recent papers
[56, 6, 14] study scalable partitioning schemes to approximately compute GW distances.

GW distances have been utilized as a discrepancy measure in the generative modeling [10];
roughly speaking, they use GW distances as \scrL in (1.2), which is significantly different from
the method developed in this paper.

2. Background. This section provides background on the OT theory and the GW dis-
tance. We first introduce the notation that we use throughout the paper.

Notation. Let \| A\| denote the Frobenius norm of a matrix A and \| x\| denote the Euclidean
norm of a vector x. Given a set \scrX and a function f : \scrX \rightarrow \BbbR , let \| f\| \infty = supx\in \scrX | f(x)| denote
the sup norm. For an integer n\in \BbbN , we define [n] = \{ 1, . . . , n\} . For a metric space \scrX , we denote
its metric as d\scrX and write \scrP (\scrX ) to denote the collection of all Borel probability measures on
\scrX . We call a pair (\scrX , \mu ) a Polish probability space if \scrX is a metric space that is complete and
separable and \mu \in \scrP (\scrX ). Given two Polish probability spaces (\scrX , \mu ) and (\scrY , \nu ), the collection
of all transport maps from \mu to \nu is denoted as \scrT (\mu ,\nu ) := \{ T : \scrX \rightarrow \scrY | T\#\mu = \nu \} ; we call
\gamma \in \scrP (\scrX \times \scrY ) a coupling between \mu and \nu if \gamma (A\times \scrY ) = \mu (A) and \gamma (\scrX \times B) = \nu (B) for all
Borel subsets A\subset \scrX and B \subset \scrY , and we denote the collection of all such couplings as \Pi (\mu ,\nu ).
For a sequence of numbers a(n), b(n) \in \BbbR , we use a(n) \precsim b(n) to denote the relationship that
a(n)/b(n) \leq C for all n\in \BbbN with some universal constant C > 0.

2.1. A brief overview of optimal transport theory. A major goal of OT is minimizing the
cost associated with the transport map between two Polish probability spaces, say, (\scrX , \mu ) and
(\scrY , \nu ). Consider a measurable function c : \scrX \times \scrY \rightarrow \BbbR +; we view c(x, y) as the cost associated
with x \in \scrX and y \in \scrY . For each transport map T \in \scrT (\mu ,\nu ), we interpret c(x,T (x)) as a
unit cost incurred by mapping each x \in \scrX to T (x) \in \scrY . We define the average cost incurred
by the transport map T as the integration of all the unit costs with respect to \mu , that is,\int 
\scrX c(x,T (x)) d\mu (x). Minimizing the cost over \scrT (\mu ,\nu ) is referred to as the Monge problem,

named after Gaspard Monge. We call T  \star an OT map if T  \star is minimizer, that is,

T  \star \in argmin
T\in \scrT (\mu ,\nu )

\int 
\scrX 
c(x,T (x)) d\mu (x).

Another important OT problem is minimizing the cost given by couplings. We define the
average cost incurred by a coupling \gamma \in \Pi (\mu ,\nu ) as the integration of the cost c with respect to
\gamma , namely,

\int 
\scrX \times \scrY c(x, y) d\gamma (x, y). Minimizing this cost over \Pi (\mu ,\nu ) is called the Kantorovich

problem, credited to Leonid Kantorovich. We call \gamma  \star an optimal coupling if

\gamma  \star \in argmin
\gamma \in \Pi (\mu ,\nu )

\int 
\scrX \times \scrY 

c(x, y) d\gamma (x, y) .

The two OT problems are closely related: the Kantorovich problem is a relaxation of the
Monge problem. To see this, for each T \in \scrT (\mu ,\nu ), define a map (Id, T ) : \scrX \rightarrow \scrX \times \scrY by
(Id, T )(x) = (x,T (x)). One can verify (Id, T )\#\mu \in \Pi (\mu ,\nu ). Therefore, if we define \Pi \scrT :=
\{ (Id, T )\#\mu : T \in \scrT (\mu ,\nu )\} , then \Pi \scrT \subset \Pi (\mu ,\nu ) and thus

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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288 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

inf
T\in \scrT (\mu ,\nu )

\int 
\scrX 
c(x,T (x)) d\mu (x) = inf

\gamma \in \Pi \scrT 

\int 
\scrX \times \scrY 

c(x, y) d\gamma (x, y) \geq inf
\gamma \in \Pi (\mu ,\nu )

\int 
\scrX \times \scrY 

c(x, y) d\gamma (x, y) ,

where the first equality follows from change-of-variables. In other words, two OT problems
share the same objective function as a function of couplings; however, the Kantorovich problem
has a larger constraint set.

Unlike the Monge problem, the Kantorovich problem has favorable properties. First, the
objective function is linear in \gamma . Moreover, \Pi (\mu ,\nu ) is compact in the weak topology of Borel
probability measures defined on \scrX \times \scrY . This suggests that we can view the Kantorovich
problem as an infinite-dimensional linear program.

Besides seeking OT maps or couplings, another interesting aspect of OT problems is that
the least cost obtained from the Kantorovich problem can endow a metric structure among
Polish probability spaces. For example, if \scrX = \scrY and c= d2\scrX , the square root of the solution
of the Kantorovich problem defines a distance between \mu and \nu , known as the Wasserstein
distance.

Definition 2.1. Given a metric space \scrX that is complete and separable, we call

W2(\mu ,\nu ) = inf
\gamma \in \Pi (\mu ,\nu )

\biggl( \int 
\scrX \times \scrX 

d2\scrX (x, y) d\gamma (x, y)

\biggr) 1/2

the Wasserstein-2 distance3 between \mu ,\nu \in \scrP (\scrX ).

2.2. Gromov--Wasserstein and Gromov--Monge distances. Although OT problems can
be defined between arbitrary Polish probability spaces, in practice, it is unclear how to design
a function c : \scrX \times \scrY \rightarrow \BbbR + to represent meaningful cost associated with x \in \scrX and y \in \scrY in
two heterogeneous spaces. For instance, if \scrX = \BbbR p and \scrY = \BbbR q with p \not = q, there is no simple
choice for a cost function c over \BbbR p \times \BbbR q. As a result, classic OT theory (including Brenier's
result) cannot be directly used for comparing heterogeneous Polish probability spaces.

M\'emoli's pioneering work [35] resolved this issue by considering a quadratic objective
function of \gamma :\int 

\scrX \times \scrY 
c(x, y) d\gamma (x, y) \Rightarrow 

\int 
\scrX \times \scrY 

\int 
\scrX \times \scrY 

(c\scrX (x,x\prime )  - c\scrY (y, y\prime ))2 d\gamma (x, y) d\gamma (x\prime , y\prime ) ,

where c\scrX and c\scrY are defined over \scrX \times \scrX and \scrY \times \scrY , respectively. For instance, one can
specify c\scrX = d\scrX and c\scrY = d\scrY . Rather than considering a unit cost corresponding to each pair
(x, y) \in \scrX \times \scrY , we associate two pairs (x, y), (x\prime , y\prime ) \in \scrX \times \scrY with the discrepancy of intraspace
quantities c\scrX (x,x\prime ) and c\scrY (y, y\prime ). In summary, by switching from the integration d\gamma to the
double integration d\gamma d\gamma , we no longer need an otherwise interspace quantity c : \scrX \times \scrY \rightarrow \BbbR +.
Therefore, we can always define this objective function whenever we have proper c\scrX and c\scrY 
in each individual space, leading to the following definition.

3One can define the Wasserstein-p distance by replacing the exponent 2 above with p\in [1,\infty ].
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REVERSIBLE GROMOV--MONGE SAMPLER 289

Definition 2.2. A triple (\scrX , \mu , c\scrX ) is called a network space if (\scrX , \mu ) is a Polish probability
space such that supp(\mu ) = \scrX and c\scrX : \scrX \times \scrX \rightarrow \BbbR is measurable. The GW distance between
network spaces (\scrX , \mu , c\scrX ) and (\scrY , \nu , c\scrY ) is defined as

GW(\mu ,\nu ) = inf
\gamma \in \Pi (\mu ,\nu )

\biggl( \int 
\scrX \times \scrY 

\int 
\scrX \times \scrY 

(c\scrX (x,x\prime )  - c\scrY (y, y\prime ))2 d\gamma (x, y) d\gamma (x\prime , y\prime )

\biggr) 1/2

.

Remark 2.3. We adopt the network space definition introduced in [13]. A network space
(\scrX , \mu , c\scrX ) is called a metric measure space if c\scrX = d\scrX as introduced in [35] and [50]. In short,
a network space is a generalization of a metric measure space.

Like the Wasserstein distance, the GW distance has metric properties; it satisfies symmetry
and the triangle inequality, and GW(\mu ,\nu ) = 0 if (\scrX , \mu , c\scrX ) = (\scrY , \nu , c\scrY ). However, the converse
of this last statement does not hold in general: for its validity, a suitable equivalence relation
needs to be defined on the collection of network spaces.

Definition 2.4. Network spaces (\scrX , \mu , c\scrX ) and (\scrY , \nu , c\scrY ) are strongly isomorphic if there
exists T \in \scrT (\mu ,\nu ) such that T : \scrX \rightarrow \scrY is bijective and c\scrX (x,x\prime ) = c\scrY (T (x), T (x\prime )) for all
x,x\prime \in \scrX . In this case, we write (\scrX , \mu , c\scrX ) \sim = (\scrY , \nu , c\scrY ) and such a transport map T is called a
strong isomorphism.

One can check that \sim = is indeed an equivalence relation on the collection of network spaces.
The following theorem states that the GW distance satisfies all metric axioms on the quotient
space---under the equivalence relation \sim =---of metric measure spaces.

Theorem 2.5 (Lemma 1.10 of [50]). Let \scrM be the collection of all metric measure spaces.
Then, GW satisfies the three metric axioms on \scrM /\sim =, the collection of all equivalence classes
of \scrM induced by \sim =.

Recall that the Monge problem is a restricted version of the Kantorovich problem with
an additional constraint that couplings are given by a transport map; replacing \Pi (\mu ,\nu ) in the
Kantorovich problem with \Pi \scrT yields the Monge problem. Imposing the same constraint on
the definition of GW leads to the Gromov--Monge (GM) distance.

Definition 2.6. The GM distance between spaces (\scrX , \mu , c\scrX ) and (\scrY , \nu , c\scrY ) is defined as

GM(\mu ,\nu ) = inf
T\in \scrT (\mu ,\nu )

\biggl( \int 
\scrX 

\int 
\scrX 

(c\scrX (x,x\prime )  - c\scrY (T (x), T (x\prime )))2 d\mu (x) d\mu (x\prime )

\biggr) 1/2

.

Loosely speaking, computing GM amounts to finding a transport map T such that c\scrX (x,x\prime )
best matches c\scrY (T (x), T (x\prime )) on average; we can view such a map T as a surrogate for an
isomorphism. See section 2.4 of [36] for more details of GM. Observe that the objective
function in the definition of GM is exactly (1.6) mentioned in section 1. As briefly hinted in
section 1, one natural way to design a practical transform sampler with inductive biases toward
isomorphisms is to replace the transport cost C in (1.4) with (1.6); this can also be viewed as
the Lagrangian form of GM, which replaces the constraint T \in \scrT (\mu ,\nu ) with a penalty term
\lambda \cdot \scrL (T\#\mu ,\nu ). It turns out, however, such a formulation has some subtle issues which might be
unfavorable in practice (see Remark 3.3). To circumvent such issues, we develop a transform
sampler with slight modifications which we introduce in the next section.
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290 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

3. Transform sampling via reversible Gromov--Monge. Our formulation is based on the
following observation: for a coupling \gamma such that \gamma = (Id, F )\#\mu = (B, Id)\#\nu , which presents a
binding constraint, we can simplify the objective function of GW as\int 

\scrX \times \scrY 
(c\scrX (x,B(y))  - c\scrY (F (x), y))2 d\mu \otimes \nu ,

where d\mu \otimes \nu := d\mu (x) d\nu (y) denotes the product measure of \mu and \nu . Minimizing the above
objective function under the binding constraint leads to the following definition.

Definition 3.1. For network spaces (\scrX , \mu , c\scrX ) and (\scrY , \nu , c\scrY ), we write (F,B) \in \scrI (\mu ,\nu ) if
measurable maps F : \scrX \rightarrow \scrY and B : \scrY \rightarrow \scrX satisfy the binding constraint (Id, F )\#\mu =
(B, Id)\#\nu . We define the RGM distance between (\scrX , \mu , c\scrX ) and (\scrY , \nu , c\scrY ) as

RGM(\mu ,\nu ) := inf
(F,B)\in \scrI (\mu ,\nu )

\biggl( \int 
\scrX \times \scrY 

(c\scrX (x,B(y))  - c\scrY (F (x), y))2 d\mu \otimes \nu 

\biggr) 1/2

.(3.1)

Remark 3.2. A few remarks are in place for the binding constraint. If (Id, F )\#\mu =
(B, Id)\#\nu , then F\#\mu = \nu and B\#\nu = \mu follow due to marginal conditions. However, the
converse is not true in general. To see this, let \mu = \nu = Unif([0,1]); then F\#\mu = \nu and
B\#\nu = \mu hold for F (x) =B(x) = | 2x - 1| . However, (Id, F )\#\mu \not = (B, Id)\#\nu because (Id, F )\#\mu 
is a uniform measure on \{ (x, | 2x  - 1| ) : x \in [0,1]\} , whereas (B, Id)\#\nu is a uniform measure
on \{ (| 2y  - 1| , y) : y \in [0,1]\} . Last, note that \scrI (\mu ,\nu ) might be empty, for instance, if \mu and \nu 
are discrete and their supports have different cardinality, say, \mu = \delta x and \nu = (\delta y1

+ \delta y2
)/2,

namely, Dirac measures supported on x\in \scrX and y1, y2 \in \scrY ; in such a case, RGM(\mu ,\nu ) = \infty .

Roughly speaking, computing RGM consists in finding a pair (F,B) \in \scrI (\mu ,\nu ) such that
c\scrX (x,B(y)) best matches c\scrY (F (x), y) on average. Like a strong isomorphism, we can view
such a pair as jointly capturing an isomorphic relation of (\scrX , \mu , c\scrX ) and (\scrY , \nu , c\scrY ); details on
such analytic properties will be discussed in section 5.1.

RGM sampler. We design a transform sampling method based on finding a minimizing
pair (F,B) of RGM to capture isomorphic relations between network spaces. To implement
this method, we utilize the form similar to (1.4) mentioned in section 1, which leads to the
Lagrangian form that allows efficient estimation of (F,B) using i.i.d. samples from \mu and \nu .
The idea is to consider the Lagrangian of the minimization problem in the definition of RGM.
First, we rewrite the minimization problem with the binding constraint as follows:

min
F :\scrX \rightarrow \scrY 
B:\scrY \rightarrow \scrX 

\int 
\scrX \times \scrY 

(c\scrX (x,B(y))  - c\scrY (F (x), y))2 d\mu \otimes \nu 

s.t. \scrL \scrX \times \scrY ((Id, F )\#\mu , (B, Id)\#\nu ) = 0 .

(3.2)

Here, \scrL \scrX \times \scrY is a suitable discrepancy measure on \scrP (\scrX \times \scrY ) so that the constraint of (3.2) is a
surrogate for the original constraint (Id, F )\#\mu = (B, Id)\#\nu . In practice, we do not require that
\scrL \scrX \times \scrY = 0 implies (Id, F )\#\mu = (B, Id)\#\nu ; in fact, the former constraint can be a relaxation of
the latter. The choice of \scrL \scrX \times \scrY will be specified later. Now, we turn (3.2) into the Lagrangian:

min
F :\scrX \rightarrow \scrY 
B:\scrY \rightarrow \scrX 

\int 
\scrX \times \scrY 

(c\scrX (x,B(y))  - c\scrY (F (x), y))2 d\mu \otimes \nu + \lambda \cdot \scrL \scrX \times \scrY ((Id, F )\#\mu , (B, Id)\#\nu ) .
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REVERSIBLE GROMOV--MONGE SAMPLER 291

Given i.i.d. samples \{ xi\} mi=1 and \{ yj\} nj=1 from \mu and \nu , respectively, we replace the population
objective with its empirical estimates:

min
F :\scrX \rightarrow \scrY 
B:\scrY \rightarrow \scrX 

1

mn

m\sum 
i=1

n\sum 
j=1

(c\scrX (xi,B(yj))  - c\scrY (F (xi), yj))
2 + \lambda \cdot \scrL \scrX \times \scrY ((Id, F )\#\widehat \mu m, (B, Id)\#\widehat \nu n) ,

where \widehat \mu m and \widehat \nu n are the empirical measures based on \{ xi\} mi=1 and \{ yj\} nj=1, respectively.
Empirically, we find that adding the following extra terms often enhances empirical results:

min
F :\scrX \rightarrow \scrY 
B:\scrY \rightarrow \scrX 

1

mn

m\sum 
i=1

n\sum 
j=1

(c\scrX (xi,B(yj))  - c\scrY (F (xi), yj))
2 + \lambda 1 \cdot \scrL \scrX \times \scrY ((Id, F )\#\widehat \mu m, (B, Id)\#\widehat \nu n)

+ \lambda 2 \cdot \scrL \scrX (\widehat \mu m,B\#\widehat \nu n) + \lambda 3 \cdot \scrL \scrY (F\#\widehat \mu m,\widehat \nu n) .

Like \scrL \scrX \times \scrY , we utilize suitable discrepancy measures \scrL \scrX and \scrL \scrY on \scrP (\scrX ) and \scrP (\scrY ), respec-
tively, so that the additional terms help matching the marginals of (Id, F )\#\widehat \mu m and (B, Id)\#\widehat \nu n.

Last, we discuss the choice of \scrL \scrX ,\scrL \scrY , and \scrL \scrX \times \scrY . We use the square of MMD as the
leading example.4 MMD between two measures is a distance between their embeddings in
some reproducing kernel Hilbert space (RKHS), which is indeed a metric under mild conditions
[39]. Also, MMD is representable via the reproducing kernel of the RKHS; hence one may
simply choose a kernel function to define it. Concretely, for any kernel K\scrX on \scrX , the square
of MMD between \widehat \mu m and B\#\widehat \nu n is

1

m2

\sum 
i,i\prime 

K\scrX (xi, xi\prime ) +
1

n2

\sum 
j,j\prime 

K\scrX (B(yj),B(yj\prime ))  - 
2

mn

\sum 
i,j

K\scrX (xi,B(yj)) .

To utilize such a convenient closed form, we specify \scrL \scrX ,\scrL \scrY ,\scrL \scrX \times \scrY as the squares of corre-
sponding MMDs by choosing kernels K\scrX ,K\scrY ,K\scrX \times \scrY on \scrX ,\scrY ,\scrX \times \scrY , respectively. For the
kernel K\scrX \times \scrY on the product space, we use the tensor product kernel K\scrX \otimes K\scrY given as

K\scrX \otimes K\scrY ((x, y), (x\prime , y\prime )) =K\scrX (x,x\prime )K\scrY (y, y\prime ) .

The tensor product notation is employed since the kernel on the product space inherits the
feature map as the tensor product of two individual feature maps w.r.t. K\scrX and K\scrY . Denot-
ing the MMD associated with a kernel K as MMDK , we obtain the following minimization
problem:

min
F :\scrX \rightarrow \scrY 
B:\scrY \rightarrow \scrX 

1

mn

m\sum 
i=1

n\sum 
j=1

(c\scrX (xi,B(yj))  - c\scrY (F (xi), yj))
2

+ \lambda 1 \cdot MMD2
K\scrX \otimes K\scrY 

((Id, F )\#\widehat \mu m, (B, Id)\#\widehat \nu n)

+ \lambda 2 \cdot MMD2
K\scrX 

(\widehat \mu m,B\#\widehat \nu n) + \lambda 3 \cdot MMD2
K\scrY 

(F\#\widehat \mu m,\widehat \nu n) .

(3.3)

Once we solve the problem above, the solution \widehat F : \scrX \rightarrow \scrY will serve as an approximate
isomorphism and facilitate transform sampling of the target \nu from a known distribution \mu .

4This is merely a proof of concept. One may use other quantities in practice as described in section 6.
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292 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

The map \widehat B possesses similar properties as \widehat F , whereas the map \widehat F is of our primary interest
for sampling purposes. The reverse map \widehat B : \scrY \rightarrow \scrX also embeds point clouds in \scrY into \scrX ,
with approximate isomorphism properties in the sense of GM.

Like other transform sampling approaches in generative modeling, a practical way to solve
(3.3) is to restrict the maps F and B to vector-valued function classes \scrF and \scrB parametrized by
neural networks, respectively, and then optimize using a gradient descent algorithm. We note
the following difference between this minimization problem and adversarial formulations as in
GANs: variational problems of GANs consist of minimization over a class of generators and
maximization over a class of discriminators, which requires complex saddle-point dynamics
[15, 32]. In contrast, the proposed RGM sampler only solves a single minimization problem
in network parameters. Although generally nonconvex in nature, the parameter minimization
problem in neural networks can often be efficiently optimized by stochastic gradient descent,
and can even provably achieve the global optima if the loss satisfies certain Polyak--\Lojasiewicz
conditions [5].

Remark 3.3. We conclude this section by explaining a subtle difference between the
proposed RGM sampler and using the form (1.4) with C replaced by Q defined in (1.6).
This subtlety also explains why we employ the RGM formulation rather than GM. The
latter approach---which can be viewed as the Lagrangian of GM as mentioned at the end
of section 2---aims to find an isomorphism T : \scrX \rightarrow \scrY such that c\scrX (x,x\prime ) best matches
c\scrY (T (x), T (x\prime )) on average, whose plug-in version with empirical data is

1

m2

m\sum 
i,i\prime =1

(c\scrX (xi, xi\prime )  - c\scrY (T (xi), T (xi\prime )))
2.(3.4)

It is desirable to use information from both samples \{ xi\} mi=1 and \{ yj\} nj=1 to capture any isomor-
phic relation between two spaces. However, the GM objective (3.4) only uses information---the
samples \{ xi\} mi=1---from \scrX , not from the target space \scrY . In contrast, our RGM objective uses
all information---samples from both spaces---to capture an isomorphic relation, which is en-
coded by the first term in (3.3):

1

mn

m\sum 
i=1

n\sum 
j=1

(c\scrX (xi,B(yj))  - c\scrY (F (xi), yj))
2.

As the most valuable information (given that our goal is to learn the target distribution \nu ) is
the available samples \{ yj\} nj=1 from \nu , it is favorable to utilize them to learn isomorphisms.

4. Statistical analysis of the RGM sampler. This section provides the main theoretical
analysis of this paper: we study the statistical rate of convergence for the empirical problem
(3.3), assuming it can be solved accurately. First, define

C(\mu ,\nu ,F,B) :=

\int 
(c\scrX (x,B(y))  - c\scrY (F (x), y))2 d\mu \otimes \nu 

+ \lambda 1 \cdot MMD2
K\scrX \otimes K\scrY 

((Id, F )\#\mu , (B, Id)\#\nu )

+ \lambda 2 \cdot MMD2
K\scrX 

(\mu ,B\#\nu ) + \lambda 3 \cdot MMD2
K\scrY 

(F\#\mu ,\nu ) .

(4.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/0

5/
24

 to
 1

28
.1

35
.2

15
.1

45
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



REVERSIBLE GROMOV--MONGE SAMPLER 293

Then, the objective function of (3.3) is a plug-in estimator C(\widehat \mu m,\widehat \nu n, F,B). We consider solv-
ing (3.3) over the transformation class \scrF \times \scrB given as follows, for which we will state our
nonasymptotic results in full generality. From now on, let \scrX and \scrY be subsets of Euclid-
ean spaces of dimensions dim(\scrX ) and dim(\scrY ), respectively. \scrF (resp., \scrB ) is a collection of
vector-valued measurable functions from \scrX to \scrY (resp., from \scrY to \scrX ). For each F \in \scrF and
k \in [dim(\scrY )], we write Fk(x) to denote the kth coordinate of F (x). Accordingly, we define
\scrF k = \{ Fk : \scrX \rightarrow \BbbR | F \in \scrF \} , namely, a collection of real-valued measurable functions de-
fined on \scrX that are given as the kth coordinate of F \in \scrF . For \ell \in [dim(\scrX )], we define B\ell 

and \scrB \ell = \{ B\ell : \scrY \rightarrow \BbbR | B \in \scrB \} analogously. Then, solving (3.3) over \scrF \times \scrB is written
as min(F,B)\in \scrF \times \scrB C(\widehat \mu m,\widehat \nu n, F,B). We prove that the empirical solution leads to an approx-
imate infimum of (F,B) \mapsto \rightarrow C(\mu ,\nu ,F,B) evaluated with the population measures \mu ,\nu , with
sufficiently large sample sizes m and n.

Overview of assumptions. Before stating the main theorem, we briefly outline technical as-
sumptions; the complete statement of the assumptions and definitions will be provided shortly.
First, we assume that the cost functions c\scrX , c\scrY are bounded and Lipschitz (Assumptions 1, 4).
Similarly, we assume boundedness and Lipschitzness of the kernel functions K\scrX ,K\scrY corre-
sponding to the MMD term (Assumptions 2, 5). Last, we impose two assumptions on the
classes of transformations F : \scrX \rightarrow \scrY and B : \scrY \rightarrow \scrX : we assume that the transformation
classes are uniformly bounded (Assumption 3) and should contain nontrivial maps (Assump-
tion 6). We will also employ a notion of combinatorial dimension to measure the complexity
of real-valued function classes, which is called the pseudodimension (Definition 4.7).

Theorem 4.1. Let ( \widehat F , \widehat B) be a solution to the empirical problem

( \widehat F , \widehat B) \in argmin
(F,B)\in \scrF \times \scrB 

C(\widehat \mu m,\widehat \nu n, F,B)

with C : \scrP (\scrX ) \times \scrP (\scrY ) \times \scrF \times \scrB \rightarrow \BbbR defined in (4.1). Under Assumptions 1--6, the following
inequality holds with probability at least 1  - \delta on \{ xi\} mi=1 and \{ yj\} nj=1:

C(\mu ,\nu , \widehat F , \widehat B)  - inf
(F,B)\in \scrF \times \scrB 

C(\mu ,\nu ,F,B)\precsim \scrM (\scrF ,\scrB ,m,n, \delta ) .(4.2)

Here, \scrM (\scrF ,\scrB ,m,n, \delta ) denotes a complexity measure of (\scrF ,\scrB ) given in terms of pseudodi-
mensions (Pdim) of \scrF k and \scrB \ell defined in Definition 4.7:

\scrM (\scrF ,\scrB ,m,n, \delta ) :=

\sqrt{} 
log(m\vee n

\delta )

m\wedge n
+

\sqrt{}     log(m\vee n)

m\wedge n

\left(  \mathrm{d}\mathrm{i}\mathrm{m}(\scrY )\sum 
k=1

Pdim(\scrF k) +

\mathrm{d}\mathrm{i}\mathrm{m}(\scrX )\sum 
\ell =1

Pdim(\scrB \ell )

\right)  .

Remark 4.2. When \scrF and \scrB are parametrized by neural network classes (the ones we will
use for numerical demonstrations in section 6), tight pseudodimension bounds established in
[1, 24] can be plugged into Theorem 4.1 for concrete nonasymptotic rates.

Overview of the proof of Theorem 4.1. The rest of this section presents the main ideas of
the proof of Theorem 4.1. To derive an upper bound (4.2), we will decompose the left-hand
side of (4.2) into several terms, derive upper bounds on them separately, and then combine
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294 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

those upper bounds together to obtain the right-hand side of (4.2); details of the proofs are
provided in the supplementary material (supplement.pdf [local/web 1.35MB]).

Without loss of generality, we assume \lambda 1 = \lambda 2 = \lambda 3 = 1 in C(\mu ,\nu ,F,B) since the proof is
essentially identical with any constants \lambda 1, \lambda 2, \lambda 3 > 0. For convenience, we denote

C0(F,B) =

\int 
(c\scrX (x,B(y))  - c\scrY (F (x), y))2 d\mu \otimes \nu ,

M(F,B) = MMD2
K\scrY 

(F\#\mu ,\nu ) + MMD2
K\scrX 

(\mu ,B\#\nu ) + MMD2
K\scrX \otimes K\scrY 

((Id, F )\#\mu , (B, Id)\#\nu )

and therefore C(\mu ,\nu ,F,B) =C0(F,B)+M(F,B). Similarly, define the empirical counterparts
as

\widehat C0(F,B) =
1

mn

m\sum 
i=1

n\sum 
j=1

(c\scrX (xi,B(yj))  - c\scrY (F (xi), yj))
2 ,

\widehat M(F,B)=MMD2
K\scrY 

(F\#\widehat \mu m,\widehat \nu n)+MMD2
K\scrX 

(\widehat \mu m,B\#\widehat \nu n)+MMD2
K\scrX \otimes K\scrY 

((Id, F )\#\widehat \mu m, (B, Id)\#\widehat \nu n)

and thus C(\widehat \mu m,\widehat \nu n, F,B) = \widehat C0(F,B) + \widehat M(F,B).
Our goal is to give an upper bound on C(\mu ,\nu , \widehat F , \widehat B)  - inf(F,B)\in \scrF \times \scrB C(\mu ,\nu ,F,B). To this

end, first recall that

C(\widehat \mu m,\widehat \nu n, \widehat F , \widehat B) \leq C(\widehat \mu m,\widehat \nu n, F,B)

holds for any F \in \scrF and B \in \scrB by definition of \widehat F and \widehat B given in Theorem 4.1. Therefore,

C(\mu ,\nu , \widehat F , \widehat B) - C(\mu ,\nu ,F,B)\leq C(\mu ,\nu , \widehat F , \widehat B) - C(\widehat \mu m,\widehat \nu n, \widehat F , \widehat B)+C(\widehat \mu m,\widehat \nu n, F,B) - C(\mu ,\nu ,F,B) ,

where the right-hand side can be decomposed as

C0( \widehat F , \widehat B)  - \widehat C0( \widehat F , \widehat B) +M( \widehat F , \widehat B)  - \widehat M( \widehat F , \widehat B) + \widehat C0(F,B)  - C0(F,B) + \widehat M(F,B)  - M(F,B) .

To further control the expression, we first derive probabilistic bounds on | \widehat C0(F,B) - C0(F,B)| 
and | \widehat M(F,B)  - M(F,B)| that hold for a fixed (F,B) \in \scrF \times \scrB via standard concentration
inequalities. We derive uniform probabilistic bounds on sup(F,B)\in \scrF \times \scrB | \widehat C0(F,B)  - C0(F,B)| 
and sup(F,B)\in \scrF \times \scrB | \widehat M(F,B)  - M(F,B)| , using tools from empirical process theory.

4.1. Concentration inequalities and uniform deviations. We utilize the McDiarmid's
inequality to derive bounds on | \widehat C0(F,B) - C0(F,B)| and | \widehat M(F,B) - M(F,B)| for fixed F,B.
To give a bound on the former, we make the following boundedness assumption.

Assumption 1. c\scrX (\cdot , \cdot ), c\scrY (\cdot , \cdot ) is uniformly bounded, that is, there exists a constant H > 0
such that

sup
(x,x\prime )\in \scrX \times \scrX 

c\scrX (x,x\prime ), sup
(y,y\prime )\in \scrY \times \scrY 

c\scrY (y, y\prime ) \leq 
\sqrt{} 
H

4
.
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Proposition 4.3. Under Assumption 1, for any pair (F,B) \in \scrF \times \scrB and \delta > 0,

| \widehat C0(F,B)  - C0(F,B)| \precsim 
\sqrt{} 

log(m\vee n
\delta )

m\wedge n
holds with probability at least 1  - 4\delta .

To derive a similar bound on | \widehat M(F,B) - M(F,B)| , we assume that kernels are bounded.

Assumption 2. There exists K > 0 such that

sup
x\in \scrX 

| K\scrX (x,x)| , sup
y\in \scrY 

| K\scrY (y, y)| \leq K .

Proposition 4.4. Under Assumption 2, for any pair (F,B) \in \scrF \times \scrB and \delta > 0,

| \widehat M(F,B)  - M(F,B)| \precsim 
\sqrt{} 

log(1/\delta )

m
+

\sqrt{} 
log(1/\delta )

n

holds with probability at least 1  - 6\delta .

We now derive uniform deviation bounds for

sup
(F,B)\in \scrF \times \scrB 

| \widehat C0(F,B)  - C0(F,B)| , sup
(F,B)\in \scrF \times \scrB 

| \widehat M(F,B)  - M(F,B)| .

For the former, we use the notion of uniform covering numbers defined below.

Definition 4.5 (uniform covering number). Let \scrG be a collection of real-valued functions
defined on a set \scrZ . Given m points z1, . . . , zm \in \scrZ and any \delta > 0, we define N\infty (\delta ,\scrG ,\{ zi\} mi=1)
to be the \delta -covering number of \scrG under the pseudometric d induced by points z1, . . . , zm:

d(g, g\prime ) := max
i\in [m]

| g(zi)  - g\prime (zi)| .

Also, we define the uniform \delta -covering number of \scrG as follows:

N\infty (\delta ,\scrG ,m) := sup\{ N\infty (\delta ,\scrG ,\{ zi\} mi=1) : z1, . . . , zm \in \scrZ \} .

Here, the supremum is taken over all possible combinations of m points in \scrZ .

Also, we make the following assumptions.

Assumption 3. \scrF k and \scrB \ell consist of uniformly bounded functions, that is, there exists a
constant b > 0 such that

max
k\in [\mathrm{d}\mathrm{i}\mathrm{m}(\scrY )]

sup
Fk\in \scrF k

\| Fk\| \infty , max
\ell \in [\mathrm{d}\mathrm{i}\mathrm{m}(\scrX )]

sup
B\ell \in \scrB \ell 

\| B\ell \| \infty \leq b .

Assumption 4. There exists a constant L> 0 such that

| c\scrX (x,x1)  - c\scrX (x,x2)| \leq L\| x1  - x2\| , | c\scrY (y1, y)  - c\scrY (y2, y)| \leq L\| y1  - y2\| .

The above assumption ensures smoothness of the map (F,B) \mapsto \rightarrow | \widehat C0(F,B) - C0(F,B)| over
\scrF \times \scrB , which allows us to utilize the uniform covering numbers.
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296 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

Proposition 4.6. Under Assumptions 1, 3, and 4, for any \epsilon > 0 and \delta > 0,

sup
(F,B)\in \scrF \times \scrB 

| \widehat C0(F,B)  - C0(F,B)| 

\precsim 

\sqrt{} 
log(m\vee n

\delta )

m\wedge n
+ \epsilon +

\sqrt{} \sum \mathrm{d}\mathrm{i}\mathrm{m}(\scrY )
k=1 logN\infty (\epsilon ,\scrF k,m) +

\sum \mathrm{d}\mathrm{i}\mathrm{m}(\scrX )
\ell =1 logN\infty (\epsilon ,\scrB \ell , n)

m\wedge n

holds with probability at least 1  - 2\delta .

Now, the remaining task is to choose \epsilon carefully in Proposition 4.6 for a concrete upper
bound. To this end, we utilize the pseudodimension defined below.

Definition 4.7 (pseudodimension). Let \scrG be a collection of real-valued functions defined on
a set \scrZ . Given a subset S := \{ z1, . . . , zm\} \subset \scrZ , we say S is pseudoshattered by \scrG if there are
r1, . . . , rm \in \BbbR such that for each b\in \{ 0,1\} m we can find gb \in \scrG satisfying sign(gb(zi) - ri) = bi
for all i \in [m]. We define the pseudodimension of \scrG , denoted as Pdim(\scrG ), as the maximum
cardinality of a subset S \subset \scrZ that is pseudoshattered by \scrG .

Using a well-established relation of the uniform covering number and the pseudodimension
(Lemma SM1.2 in the supplementary materials), we can simplify Proposition 4.6 as follows.

Corollary 4.8. Under Assumptions 1, 3, and 4, for any \delta > 0,

sup
(F,B)\in \scrF \times \scrB 

| \widehat C0(F,B)  - C0(F,B)| 

\precsim 

\sqrt{} 
log(m\vee n

\delta )

m\wedge n
+

\sqrt{}     log(m\vee n)

m\wedge n

\left(  \mathrm{d}\mathrm{i}\mathrm{m}(\scrY )\sum 
k=1

Pdim(\scrF k) +

\mathrm{d}\mathrm{i}\mathrm{m}(\scrX )\sum 
\ell =1

Pdim(\scrB \ell )

\right)  
holds with probability at least 1  - 2\delta .

To derive an upper bound on sup(F,B)\in \scrF \times \scrB | \widehat M(F,B)  - M(F,B)| , we first introduce the
Rademacher complexities defined below.

Definition 4.9 (Rademacher complexity). Let (\scrZ , \rho ) be a probability space and \scrG be a collec-
tion of measurable functions defined on \scrZ . We define the Rademacher complexity of \scrG with
respect to m samples from \rho as follows:

Rm(\scrG , \rho ) = \BbbE 
zi

\mathrm{i}\mathrm{i}\mathrm{d}\sim \rho 

\BbbE 
\epsilon i

sup
g\in \scrG 

\bigm| \bigm| \bigm| \bigm| \bigm| 1

m

m\sum 
i=1

\epsilon ig(zi)

\bigm| \bigm| \bigm| \bigm| \bigm| .
Here, z1, . . . , zm are i.i.d. samples from \rho and \epsilon 1, . . . , \epsilon m are i.i.d. Rademacher random vari-
ables such that (z1, . . . , zm) and (\epsilon 1, . . . , \epsilon m) are independent.

Proposition 4.10. Denote a closed unit ball of any RKHS \scrH as \scrH (1). Also, let (Id,\scrF ) :=
\{ (Id, F ) : F \in \scrF \} and (\scrB , Id) := \{ (B, Id) : B \in \scrB \} ; hence, they are classes of maps from \scrX to
\scrX \times \scrY and from \scrY to \scrX \times \scrY , respectively. Under Assumption 2, for any \delta > 0,
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REVERSIBLE GROMOV--MONGE SAMPLER 297

sup
(F,B)\in \scrF \times \scrB 

| \widehat M(F,B)  - M(F,B)| 

\precsim 

\sqrt{} 
log(1/\delta )

m
+

\sqrt{} 
log(1/\delta )

n
+Rm(\scrH \scrY (1) \circ \scrF , \mu ) +Rn(\scrH \scrX (1) \circ \scrB , \nu )

+Rm(\scrH \scrX \times \scrY (1) \circ (Id,\scrF ), \mu ) +Rn(\scrH \scrX \times \scrY (1) \circ (\scrB , Id), \nu )

holds with probability at least 1  - 6\delta . Here, \scrF \circ \scrG = \{ f \circ g : f \in \scrF , g \in \scrG \} for any function
classes \scrF and \scrG with matching input and output space.

4.2. Bounding Rademacher complexities via chaining. Now, the only remaining task
is to bound the four Rademacher complexities that appear in the upper bound of Propo-
sition 4.10. We will derive upper bounds for the compositional function classes using the
chaining technique. To illustrate the main idea, let us consider \scrH \scrY (1) \circ \scrF . Recall that

Rm(\scrH \scrY (1) \circ \scrF , \mu ) = \BbbE 
xi

\mathrm{i}\mathrm{i}\mathrm{d}\sim \mu 

Rm(\scrH \scrY (1) \circ \scrF ,\{ xi\} mi=1) ,

where Rm(\scrH \scrY (1)\circ \scrF ,\{ xi\} mi=1) is the empirical Rademacher complexity of \scrH \scrY (1)\circ F associated
with \{ xi\} mi=1:

Rm(\scrH \scrY (1) \circ \scrF ,\{ xi\} mi=1) =\BbbE 
\epsilon i

sup
h\in \scrH \scrY (1),F\in \scrF 

\bigm| \bigm| \bigm| \bigm| \bigm| 1

m

m\sum 
i=1

\epsilon ih(F (xi))

\bigm| \bigm| \bigm| \bigm| \bigm| =\BbbE 
\epsilon i

sup
h\in \scrH \scrY (1),F\in \scrF 

1

m

m\sum 
i=1

\epsilon ih(F (xi)) .

Notice that we may remove the absolute value since \scrH \scrY (1) =  - \scrH \scrY (1). Now, considering
\{ xi\} mi=1 as fixed, we will first bound the empirical Rademacher complexity by replacing the
Rademacher random variables with Gaussian random variables. Let gi be i.i.d. standard
Gaussian random variables; then it is well known that

Rm(\scrH \scrY (1) \circ \scrF ,\{ xi\} mi=1) \leq 
\sqrt{} 
\pi 

2
\BbbE 
gi

sup
h\in \scrH \scrY (1),F\in \scrF 

1

m

m\sum 
i=1

gih(F (xi)) =:

\sqrt{} 
\pi 

2
\scrG m(\scrH \scrY (1) \circ \scrF ,\{ xi\} mi=1) .

Also, under the assumption that K\scrY is bounded by K, the reproducing property and the
Cauchy--Schwarz inequality imply

sup
h\in \scrH \scrY (1),F\in \scrF 

m\sum 
i=1

gih(F (xi)) = sup
h\in \scrH \scrY (1),F\in \scrF 

\Biggl\langle 
h,

m\sum 
i=1

giK\scrY (\cdot , F (xi))

\Biggr\rangle 
\scrH \scrY 

\leq sup
F\in \scrF 

\left[  m\sum 
i=1

g2iK +
\sum 
i \not =j

gigjK\scrY (F (xi), F (xj))

\right]  1/2

\leq 

\left[  m\sum 
i=1

g2iK + sup
F\in \scrF 

\sum 
i \not =j

gigjK\scrY (F (xi), F (xj))

\right]  1/2

.
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298 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

Here, \langle \cdot , \cdot \rangle \scrH \scrY denotes the inner product on \scrH \scrY . Hence,

\scrG m(\scrH \scrY (1) \circ \scrF ,\{ xi\} mi=1) \leq 
1

m
\BbbE 
gi

\left[  m\sum 
i=1

g2iK + sup
F\in \scrF 

\sum 
i \not =j

gigjK\scrY (F (xi), F (xj))

\right]  1/2

\leq 1

m

\left[  mK +\BbbE 
gi

sup
F\in \scrF 

\sum 
i \not =j

gigjK\scrY (F (xi), F (xj))

\right]  1/2

,

where the second inequality follows from the Jensen's inequality and \BbbE g2i = 1.
For any F : \scrX \rightarrow \scrY , let AF \in \BbbR m\times m be a matrix whose diagonal elements are zero and the

(i, j)th element is K\scrY (F (xi), F (xj)) for i \not = j. Then, the last term amounts to the supremum
of a quadratic process

\BbbE 
g

sup
F\in \scrF 

g\top AF g ,

where g := [g1, . . . , gm]\top \sim N(0, Im). We rely on the following chaining bound for the quadratic
processes.

Lemma 4.11 (chaining bound). Let \BbbS m\times m
0 be the collection of all symmetric matrices A

whose diagonal elements are zero. Endow \BbbS m\times m
0 with a metric d given by d(A,A\prime ) := \| A - A\prime \| .

Given \scrT \subset \BbbS m\times m
0 and a fixed A0 \in \scrT , define \Delta = supA\in \scrT d(A,A0). Let N(\delta ,\scrT ) be the covering

number of \scrT under the metric d(\cdot , \cdot ); then

\BbbE 
g

sup
A\in \scrT 

g\top Ag\leq inf
J\in \BbbN 

\Biggl\{ 
m\delta J + 12

\int \Delta /2

\delta J/2

\sqrt{} 
2 logN(\delta ,\scrT ) d \delta + 24

\int \Delta /2

\delta J/2
logN(\delta ,\scrT ) d \delta 

\Biggr\} 
,(4.3)

where for any integer J \geq 0, we define \delta J = 2 - J\Delta .

With the above chaining bound, we can directly upper bound the Rademacher complexities
of the compositional classes such as Rm(\scrH \scrY (1) \circ \scrF , \mu ) and Rm(\scrH \scrX \times \scrY (1) \circ (Id,\scrF ), \mu ). More
specifically, for the former class, we will apply this chaining bound to \scrT := \{ AF : F \in \scrF \} .
Then, to further bound the right-hand side of (4.3), we make the following assumptions.

Assumption 5. Suppose K\scrX and K\scrY are Lipschitz: there exists L> 0 such that

| K\scrX (x1, x
\prime )  - K\scrX (x2, x

\prime )| \leq L\| x1  - x2\| , | K\scrY (y1, y
\prime )  - K\scrY (y2, y

\prime )| \leq L\| y1  - y2\| .

This plays a similar role as Assumption 4: we can derive an upper bound on d(AF ,AF \prime )
via closeness of F and F \prime in \scrF . As a result, we will see that the covering number N(\delta ,\scrT ) can
be bounded by the complexity of \scrF .

Assumption 6. There exist y0 and y\prime 0 in \scrY with K\scrY (y0, y
\prime 
0) \not =K\scrY (y0, y0) such that

\bullet \scrF contains a constant map F satisfying F (x) = y0 for all x\in \scrX ,
\bullet whenever we have x \not = x\prime \in \scrX , we can find a nonconstant map F \in \scrF such that
F (x) = y0 and F (x\prime ) = y\prime 0.

Similarly, there exist x0 and x\prime 0 in \scrX with K\scrX (x0, x
\prime 
0) \not =K\scrX (x0, x0) such that
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REVERSIBLE GROMOV--MONGE SAMPLER 299

\bullet \scrB contains a constant map B such that B(y) = x0 for all y \in \scrY ,
\bullet whenever we have y \not = y\prime \in \scrY , we can find a nonconstant map B \in \scrB such that
B(y) = x0 and B(y\prime ) = x\prime 0.

The main purpose of this assumption is to exclude overly restrictive \scrF and \scrB and is
minimal: \scrF and \scrB should contain constant maps, as well as nonconstant maps. With these
assumptions, we can derive the following result.

Proposition 4.12. Under Assumptions 2, 3, 5, and 6,

Rm(\scrH \scrY (1) \circ \scrF , \mu ) , Rm(\scrH \scrX \times \scrY (1) \circ (Id,\scrF ), \mu )\precsim 

\sqrt{}    logm

m

\mathrm{d}\mathrm{i}\mathrm{m}(\scrY )\sum 
k=1

Pdim(\scrF k) ,

Rn(\scrH \scrX (1) \circ \scrB , \mu ) , Rn(\scrH \scrX \times \scrY (1) \circ (\scrB , Id), \nu )\precsim 

\sqrt{}    logn

n

\mathrm{d}\mathrm{i}\mathrm{m}(\scrX )\sum 
k=1

Pdim(\scrB k) .

In summary, Propositions 4.3, 4.4, 4.10, and 4.12 and Corollary 4.8 directly imply
Theorem 4.1. Omitted proofs and details can be found in the supplementary material
(supplement.pdf [local/web 1.35MB]).

5. Further studies: Metric properties and representer theorem. This section discusses
some further perspectives on the RGM sampler. First, we focus on the metric side of the
new notion RGM; we formally state its metric properties and connections to the GW and
GM distances. Next, by utilizing an operator viewpoint, we develop an infinite-dimensional
convex relaxation of (3.3), where global optima can be found efficiently; we analyze the new
formulation by establishing a representer theorem on a suitable RKHS.

5.1. Metric properties of RGM. It turns out that RGM possesses metric properties
similar to those of the GW distance; the following result is an analogue to Theorem 2.5.

Theorem 5.1. Let \scrM be the collection of all metric measure spaces. Then, RGM satisfies
the three metric axioms on \scrM /\sim =, the collection of all equivalence classes of \scrM induced by \sim =.

Remark 5.2. In practice, \scrX ,\scrY are usually Euclidean spaces and d\scrX , d\scrY are the stan-
dard Euclidean distances. In many applications, instead of comparing the metric mea-
sures spaces (\scrX , \mu , d\scrX ), (\scrY , \nu , d\scrY ), it is often more desirable to work with network spaces
(\scrX , \mu , c\scrX ), (\scrY , \nu , c\scrY ) with cost functions given by c\scrX = h(d\scrX ) and c\scrY = h(d\scrY ) for some trans-
formation h : \BbbR + \rightarrow \BbbR ; one of the most common choices is h(x) = exp( - \alpha x2) with \alpha > 0,
which makes h(d\scrX ), h(d\scrY ) radial basis function (RBF) kernels on \scrX ,\scrY , respectively (we will
use these in numerical experiments). As a result, it is desirable to consider a distance on the
collection of network spaces equipped with cost functions given as a composition of a trans-
formation h and the base metric. The next result provides a modification of Theorem 5.1
tailored to such a situation.

Theorem 5.3. Let h : \BbbR + \rightarrow \BbbR be a continuous and strictly monotone function and \scrN h be
a collection of all network spaces (\scrX , \mu , c\scrX ) such that c\scrX = h(d\scrX ). Then RGM satisfies the
three metric axioms on \scrN h/\sim =, the collection of all equivalence classes of \scrN h induced by \sim =.
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D
ow

nl
oa

de
d 

04
/0

5/
24

 to
 1

28
.1

35
.2

15
.1

45
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://epubs.siam.org/doi/suppl/10.1137/23M1550384/suppl_file/supplement.pdf


300 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

Now that we have three distances---GW, GM,5 and RGM---between network spaces, one
may wonder about the generic relations among three distances GW, GM, and RGM, which
will be established in the next proposition.

Proposition 5.4. For network spaces (\scrX , \mu , c\scrX ) and (\scrY , \nu , c\scrY ) as in Definition 2.2,

GW(\mu ,\nu ) \leq GM(\mu ,\nu ) \leq RGM(\mu ,\nu ) .(5.1)

Interestingly, under mild conditions, the above inequalities in Proposition 5.4 hold as
equality, thus showing that RGM provides the exact metric as GW.

Theorem 5.5. Let (\scrX , \mu , c\scrX ) and (\scrY , \nu , c\scrY ) be two network spaces. Assume that c\scrX and c\scrY 
are bounded and \mu (\{ x\} ) = \nu (\{ y\} ) = 0 for any (x, y) \in \scrX \times \scrY . Then, GW(\mu ,\nu ) = GM(\mu ,\nu ) =
RGM(\mu ,\nu ).

The proof details of Theorem 5.3, Proposition 5.4, and Theorem 5.5 can be found in the
supplementary material (supplement.pdf [local/web 1.35MB]).

Remark 5.6. The proof of Theorem 5.5 is inspired by [37, 9], recent developments in
the GW analysis literature that study conditions under which GW = GM holds. Another
important topic in the GW analysis literature is to study the type of cost functions under which
the optimal coupling of GW is induced by a transport map [17]. Finally, we clarify that this
section aims to derive metric properties of RGM in connection with GW and isomorphisms,
as opposed to establishing new analytical results for GW and GM.

Finally, we conclude this section by pointing out a connection between inductive biases in
RGM motivated by [8]. Given two Polish probability spaces (\scrX , \mu ) and (\scrY , \nu ), there exist cost
functions c\scrX and c\scrY (that depend on \mu ,\nu ) such that the resulting network spaces (\scrX , \mu , c\scrX )
and (\scrY , \nu , c\scrY ) are strongly isomorphic. Then, more importantly, among (possibly) infinitely
many pairs (F,B)'s in \scrI (\mu ,\nu ), which are all valid for transform sampling, any optimal pair
(F  \star ,B \star ) minimizing the RGM term (3.1) achieves the strong isomorphism

RGM(\mu ,\nu ) =

\int 
\scrX \times \scrY 

(c\scrX (x,B \star (y))  - c\scrY (F  \star (x), y))2 d\mu \otimes \nu = 0 ,(5.2)

and thus c\scrX (x,B \star (y)) = c\scrY (F  \star (x), y) almost surely. In plain language, the RGM introduces
an inductive bias favoring strong isomorphisms, in the same spirit as the Wasserstein-2 metric
favors the transport map with the optimal cost seen in the introduction. Please refer to
the supplementary material (supplement.pdf [local/web 1.35MB]) for a detailed discussion in
section SM5 in the supplementary material.

5.2. Convex relaxation and representer theorem. As the last bit of the study, we utilize
an operator viewpoint and develop a convex relaxation of (3.3) by relaxing and lifting it to
an infinite-dimensional space. There are two reasons behind our convex relaxation: first, as a
computational alternative to the possibly nonconvex optimization, and second, to point out
a connection with the Nadaraya--Watson estimator in classic nonparametric statistics. The
crux lies in relaxing optimizing over the map F : \scrX \rightarrow \scrY to optimizing over its induced (dual)

5Technically speaking, GM is not a distance as it is not symmetric.
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linear operator \bfF : L2
\scrY \rightarrow L2

\scrX that maps functions on \scrY to functions on \scrX , where L2
\scrX is the

collection of real-valued measurable functions f defined on \scrX such that
\int 
\scrX f

2 d\pi \scrX <\infty given
a Borel measure \pi \scrX on \scrX ; similarly, define L2

\scrY given a Borel measure \pi \scrY on \scrY . Then, for a
measurable map F : \scrX \rightarrow \scrY , we can define \bfF :L2

\scrY \rightarrow L2
\scrX by letting \bfF (g) = g \circ F for all g \in L2

\scrY .
Similarly, we define \bfB : L2

\scrX \rightarrow L2
\scrY for each measurable map B : \scrY \rightarrow \scrX . Then, one can verify

that \bfF and \bfB are well-defined bounded linear operators under a mild assumption (detailed
proofs are provided in the supplementary material (supplement.pdf [local/web 1.35MB])).

We derive the representer theorem for the convex relaxation of (3.3) under c\scrX = K\scrX 
and c\scrY = K\scrY , namely, the cost functions are the kernel functions specified in MMD terms.
We show that this problem can be reduced to a finite-dimensional convex optimization by
proving a representer theorem. Moreover, since finite-dimensional convex optimization can
be optimized globally with provable guarantees, such a formulation can be solved numerically
efficiently.

Let us lay out more details to state the result. Due to Mercer's theorem, let \{ \phi k \in L2
\scrX \} k\in \BbbN 

and \{ \psi \ell \in L2
\scrY \} \ell \in \BbbN be countable orthonormal bases of L2

\scrX and L2
\scrY where the kernels admit the

following spectral decompositions:

K\scrX (x,x\prime ) =
\sum 
k

\lambda k\phi k(x)\phi k(x\prime ) , K\scrY (y, y\prime ) =
\sum 
\ell 

\gamma \ell \psi \ell (y)\psi \ell (y
\prime )(5.3)

with positive eigenvalues \lambda k, \gamma \ell > 0. Since \bfF : L2
\scrY \rightarrow L2

\scrX defines a bounded linear operator,
one can represent \bfF (correspondingly \bfB ) under the orthonormal bases

\bfF [\psi \ell ] =

\infty \sum 
k=1

\bfF k\ell \phi k , \bfB [\phi k] =

\infty \sum 
\ell =1

\bfB \ell k\psi \ell .(5.4)

Here, [\bfF k\ell ] is a semi-infinite matrix with each column describing the L2
\scrX representation of

\bfF [\psi \ell ] under the basis \{ \phi k \in L2
\scrX \} k\in \BbbN . With a slight abuse of notation, we will write \bfF and \bfB 

to denote these matrices [\bfF k\ell ] and [\bfB \ell k].6 Then, we can prove that the objective function in
(3.3) with c\scrX =K\scrX and c\scrY =K\scrY is

\Omega (\bfF ,\bfB ) :=
1

mn

\sum 
i,j

(\Psi \top 
yj
\bfB \Lambda \Phi xi

 - \Phi \top 
xi
\bfF \Gamma \Psi yj

)2

+ \lambda 1 \cdot 

\Biggl( 
1

m2

\sum 
i,i\prime 

\Phi \top 
xi

\Lambda \Phi x\prime 
i
\Phi \top 
xi
\bfF \Gamma \bfF \top \Phi xi\prime +

1

n2

\sum 
j,j\prime 

\Psi \top 
yj

\Gamma \Psi yj\prime \Psi 
\top 
yj
\bfB \Lambda \bfB \top \Psi yj\prime 

 - 2

mn

\sum 
i,j

\Psi \top 
yj
\bfB \Lambda \Phi xi

\Phi \top 
xi
\bfF \Gamma \Psi yj

\Biggr) 

6In other words, \bfF and \bfB are infinite-dimensional matrices, in which the number of rows and the number
of columns can be infinite.
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+ \lambda 2 \cdot 

\left(  1

m2

\sum 
i,i\prime 

\Phi \top 
xi

\Lambda \Phi x\prime 
i
+

1

n2

\sum 
j,j\prime 

\Psi \top 
yj
\bfB \Lambda \bfB \top \Psi yj\prime  - 

2

mn

\sum 
i,j

\Psi \top 
yj
\bfB \Lambda \Phi xi

\right)  
+ \lambda 3 \cdot 

\left(  1

m2

\sum 
i,i\prime 

\Phi \top 
xi
\bfF \Gamma \bfF \top \Phi xi\prime +

1

n2

\sum 
j,j\prime 

\Psi \top 
yj

\Gamma \Psi yj\prime  - 
2

mn

\sum 
i,j

\Phi \top 
xi
\bfF \Gamma \Psi yj

\right)  .

Here, \bfF and \bfB are the matrices denoting the operators induced by F and B, respectively,
\Phi x = [\cdot \cdot \cdot , \phi k(x), \cdot \cdot \cdot ]\top \in \BbbR \infty and \Psi y = [\cdot \cdot \cdot ,\psi \ell (y), \cdot \cdot \cdot ]\top \in \BbbR \infty for any x \in \scrX and y \in \scrY ,
and \Lambda = diag(\lambda 1, \lambda 2, . . . ) and \Gamma = diag(\gamma 1, \gamma 2, . . . ) are diagonal matrices; detailed proofs are
provided in the supplementary material (supplement.pdf [local/web 1.35MB]). Hence, (3.3)
can be lifted to an infinite-dimensional optimization problem

min
(\bfF ,\bfB )\in \scrC 

\Omega (\bfF ,\bfB ) ,(5.5)

where \scrC denotes the constraint set implying that \bfF and \bfB are matrices corresponding to
bounded linear operators induced by some maps F : \scrX \rightarrow \scrY and B : \scrY \rightarrow \scrX .

We will relax this problem by removing the constraint set \scrC , namely, by considering all
matrices in \BbbR \infty \times \infty as the decision variables,

min
\bfF ,\bfB \in \BbbR \infty \times \infty 

\Omega (\bfF ,\bfB ).(5.6)

In other words, this relaxed problem minimizes \Omega over any pair of infinite-dimensional ma-
trices. The next result, which we refer to as the representer theorem, shows that (5.6) boils
down to a finite-dimensional convex program; the proof and relevant details can be found in
the supplementary material (supplement.pdf [local/web 1.35MB]).

Theorem 5.7. Consider (5.5) under the assumptions in Proposition SM3.2. Then, for any
minimizer (\bfF  \star ,\bfB  \star ) to the relaxed problem (5.6), we can find finite-dimensional matrices F \star m,n \in 
\BbbR m\times n and B \star 

n,m \in \BbbR n\times m such that

\bfF  \star = \Lambda \Phi mF \star m,n\Psi \top 
n , \bfB  \star = \Gamma \Psi nB

 \star 
n,m\Phi \top 

m ,

where \Lambda = diag(\lambda 1, \lambda 2, . . . ), \Gamma = diag(\gamma 1, \gamma 2, . . . ), and \Phi m \in \BbbR \infty \times m and \Psi n \in \BbbR \infty \times n are
matrices whose elements are \phi k(xi) and \psi \ell (yj), as defined in (5.3). In this case, \Omega (\bfF  \star ,\bfB  \star )
can be rewritten as \omega (F \star m,n,B

 \star 
n,m) for some convex function \omega defined over \BbbR m\times n \times \BbbR n\times m.

Hence, by minimizing \omega over \BbbR m\times n \times \BbbR n\times m, we obtain a relaxation of (5.6), that is,

min
\bfF ,\bfB \in \BbbR \infty \times \infty 

\Omega (\bfF ,\bfB ) \geq min
Fm,n\in \BbbR m\times n

Bn,m\in \BbbR n\times m

\omega (Fm,n,Bn,m).

In particular, the right-hand side is a finite-dimensional convex optimization. Last, this re-
laxation is tight, that is,

min
\bfF ,\bfB \in \BbbR \infty \times \infty 

\Omega (\bfF ,\bfB ) = min
Fm,n\in \BbbR m\times n

Bn,m\in \BbbR n\times m

\omega (Fm,n,Bn,m) ,
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REVERSIBLE GROMOV--MONGE SAMPLER 303

if kernel matrices \bfK \scrX and \bfK \scrY whose elements are K\scrX (xi, xi\prime ) and K\scrY (yj , yj\prime ) are positive
definite.

Remark 5.8. Looking inside the proof of Theorem 5.7, we know the solution to the infinite-
dimensional optimization is an operator taking the form of \bfF  \star = \Lambda \Phi mF \star m,n\Psi \top 

n with a finite-
dimensional matrix F \star m,n \in \BbbR m\times n. Therefore, for any g \in L2

\scrY , we can deduce

\bfF  \star [g](x) =K\scrX (x,Xm)\underbrace{}  \underbrace{}  
1\times m

F \star m,n\underbrace{}  \underbrace{}  
m\times n

g(Yn)\underbrace{}  \underbrace{}  
n\times 1

,(5.7)

where K\scrX (x,Xm) maps each x\in \scrX to a row vector whose ith element is K\scrX (x,xi) and g(Yn)
denotes a column vector whose jth element is g(yj).

Now let's draw a connection between the classic Nadaraya--Watson estimator and (5.7).
For now consider a special case: (xi, yi)'s are paired with m= n. In such a case, the Nadaraya--
Watson estimator takes the form\sum 

i,j

K\scrX (x,xi) \cdot 1
m\delta i=j \cdot g(yj);(5.8)

namely, for a new point x, the corresponding function value g(y) evaluated on its coupled
y = F (x) is a weighted average of g(yj)'s according to the affinity K\scrX (x,xi). Our solution
(5.7) extends the above nonparametric smoothing idea to the decoupled data case, where the
coupling weights F \star m,n are based on a solution to a convex program, with

(5.7) =
\sum 
i,j

K\scrX (x,xi) \cdot F \star m,n[i, j] \cdot g(yj).(5.9)

Last, we draw another connection to the Monte Carlo integration. One downstream
task after learning the distribution \nu is to perform numerical integration of g \in L2

\scrY under
the measure \nu \in \scrP (\scrY ). In our transform sampling framework, this amounts to evaluating
\BbbE y\sim F  \star 

\#\mu [g(y)] = \BbbE x\sim \mu [g \circ F  \star (x)]. The integration, cast in the induced operator form, has the
expression

\BbbE 
x\sim \mu 

[\bfF  \star [g](x)] = \BbbE 
x\sim \mu 

\left[   K\scrX (x,Xm)F \star m,n\underbrace{}  \underbrace{}  
=:W (x)\in \BbbR n

g(Yn)

\right]   = \BbbE 
x\sim \mu 

\left[  n\sum 
j=1

Wj(x)g(yj)

\right]  ,(5.10)

where W (x) can be interpreted as the importance weights in the Monte Carlo integration.
We conclude with one more remark as a sanity check: if plug-in instead x\sim \widehat \mu m in (5.10), one
can verify that under mild conditions,

\BbbE 
x\sim \widehat \mu m

[\bfF  \star [g](x)] =
1

n

n\sum 
j=1

g(yj) .(5.11)

That is, with the empirical measure as input, (5.10) outputs the simple sample average.
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304 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

6. Experiments. This section studies the empirical performance of the RGM sampler as a
proof of concept. Following section 3, we find a minimum ( \widehat F , \widehat B) of (3.3) over a suitable class
\scrF \times \scrB via gradient descent; then, we inspect the quality of transform sampling. Complete
implementation details of the experiments are deferred to section SM4.

6.1. Gaussian distributions. Consider two strongly isomorphic Gaussian distributions on
\scrX = \scrY = \BbbR 2: the base measure \mu = N(0, I2) and the target distribution \nu = N(0,\Sigma ), where
I2 is the identity matrix and the entries of \Sigma are \Sigma 11 = \Sigma 22 = 1 and \Sigma 12 = \Sigma 21 = 0.7. We let
c\scrX (x,x\prime ) = x\top x\prime and c\scrY (y, y\prime ) = y\top \Sigma  - 1y\prime ; then two network spaces are strongly isomorphic by
design; indeed, any pair (F,B) given by F (x) = \Sigma 1/2Qx and B(y) =Q\top \Sigma  - 1/2y for Q \in O(2),
where O(2) is the orthogonal group, yields c\scrX (x,B(y)) = c\scrY (F (x), y) for all x, y \in \BbbR 2; hence
F and B are strong isomorphisms. We aim at obtaining such a pair of (linear) isomorphisms
by letting \scrF = \scrB = \{ x \mapsto \rightarrow Wx : W \in \BbbR 2\times 2\} , that is, the collection of all linear maps from \BbbR 2

to \BbbR 2. We set K\scrX =K\scrY as a degree-2 polynomial kernel that maps (x, y) to (x\top y + 1)2; the
resulting MMD compares distributions by matching the first two moments, which is sufficient
to distinguish Gaussian distributions. The linear maps found by solving the optimization
problem (3.3) are given by \widehat F (x) = \bfF x and \widehat B(y) = \bfB y for some \bfF ,\bfB \in \BbbR 2\times 2 satisfying

\bfF \bfF \top  - \Sigma \approx 
\biggl( 
 - 0.015  - 0.009
 - 0.009  - 0.007

\biggr) 
, \bfB \Sigma \bfB \top  - I2 \approx 

\biggl( 
0.023  - 0.011
 - 0.011 0.013

\biggr) 
,

\bfF \bfB  - I2 \approx 
\biggl( 

0.006 0.002
0.004 0.002

\biggr) 
.

Since \bfF \bfF \top \approx \Sigma , \bfB \Sigma \bfB \top \approx I2, and \bfF \bfB \approx I2, the pair ( \widehat F , \widehat B) can be seen as an instance
of the pair of strong isomorphisms described above. Figure 1 illustrates that \widehat F is a strong
isomorphism (Definition 2.4): (a) shows that \widehat F\#\mu \approx \nu , that is, \widehat F is roughly a transport map,

and (b) implies that c\scrX (x,x\prime ) \approx c\scrY ( \widehat F (x), \widehat F (x\prime )) holds.

3 2 1 0 1 2 3

x1
3

2

1

0

1

2

3

x2

samples from 
samples from F#

(a)

5 0 5 10

c (x, x′)

5

0

5

10

c
(F

(x
),

F(
x′

))

(b)

Figure 1. Gaussian experiment: m = n = 50000 and \lambda 1 = \lambda 2 = \lambda 3 = 1. (a) \{ \~yj\} 400j=1 versus \{ \widehat F (\~xi)\} 400i=1,
where \{ \~yj\} 400j=1 and \{ \~xi\} 400i=1 are i.i.d. from \nu = N(0,\Sigma ) and \mu = N(0, I2), respectively; they are new samples

independent from \{ yj\} 1000j=1 and \{ xi\} 1000i=1 used in (3.3). (b) Points \{ (c\scrX (\~xi, \~xi\prime ), c\scrY ( \widehat F (\~xi), \widehat F (\~xi\prime )))\} 40i,i\prime =1 and a
straight line y= x.
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REVERSIBLE GROMOV--MONGE SAMPLER 305

6.2. MNIST. Let \nu be the distribution of images corresponding to four digits (2, 4, 6, 7)
from the MNIST data set, which is supported on \BbbR 784. Recall from section 1 that the support
\scrY of \nu is low-dimensional [19]; hence, choosing \scrX = \BbbR d with d\ll 784 is reasonable. Here, for
visualization, we first try an extreme embedding task with d = 2 and \mu = N(0, I2), that is,
generate MNIST images by transforming two-dimensional Gaussian samples.

Model specifications. Unlike the Gaussian example, where we design the cost functions in
advance to make the two spaces strongly isomorphic, specifying them can be more complicated
in general cases, which might affect the quality of the RGM sampler. One common choice is
the RBF kernel, also called the heat kernel, widely used in the object matching literature [47].
In this MNIST example, we have found that using RBF kernels as cost functions provides
reasonable performance once they are scaled properly. Concretely, first define the RBF kernel
Kd(x, y) = exp( - \| x - y\| 2/d) for d\in \BbbN and x, y \in \BbbR d; here, the constant (1/d) serves as a scaling
factor. Then, we define the cost functions as c\scrX = (K2 - m\scrX )/sd\scrX and c\scrY = (K784 - m\scrY )/sd\scrY ,
where m\scrX and sd\scrX are the median and the standard error of \{ K\scrX (xi, xi\prime )\} mi,i\prime =1, respectively;
m\scrY and sd\scrY are defined analogously. This additional standardization process helps to align
the cost functions. Similarly, K\scrX and K\scrY must be properly specified; comparing the first two
moments using the degree-2 polynomial kernel is no longer sufficient as the target distribution
is non-Gaussian. We also suggest using RBF kernels for the MMD terms; let K\scrX = K2

and K\scrY = K784. The MMD induced by the RBF kernel indeed defines a metric between
distributions under mild assumptions [39], which allows the resulting MMD terms to represent
the binding constraint mentioned in section 3. We need richer classes than the linear maps
used in the Gaussian case for the function classes \scrF and \scrB . To this end, we will use the fully
connected neural network (FCNN) with three hidden layers, each consisting of 50 neurons.
Last, we let m= n= 20000.

Key features of the RGM sampler. Figure 2(a) shows the images generated by applying the
resulting map \widehat F to new i.i.d. samples from \mu =N(0, I2), which are independent of the samples
used for training \widehat F , \widehat B. Though not perfect, we see that recognizable images can be generated
by transforming two-dimensional Gaussian samples, efficient in computation.7 Meanwhile, the
map \widehat B shows how the MNIST images can be embedded in \BbbR 2. Figure 3(a) shows \{ \widehat B(\~yj)\} 500j=1,

where \{ \~yj\} 500j=1 are drawn from \nu (125 images for each digit), which are independent of the

samples used for training \widehat F , \widehat B. We see that each digit forms a local cluster in \BbbR 2, each of
which is roughly representable according to the range of the angular coordinate. Last, though
not perfect as in Figure 1(b) (strongly isomorphic case), Figure 3(b) shows that \widehat B leads to a
reasonable alignment of c\scrX ( \widehat B(y), \widehat B(y\prime )) versus c\scrY (y, y\prime ).

Quantitative evaluation and ablation analysis. We clarify that the above experiment with
\mu = N(0, I2) is a proof of concept to demonstrate the key features of the RGM sampler. To
obtain high-fidelity images comparable to those generated by dedicated MNIST generators,
exhaustive tests should be done for tuning every component of the RGM sampler and opti-
mization strategies, which is beyond the scope of this paper. Instead, we conclude this section
by quantitatively evaluating some key components---discrepancy measures, the source dimen-
sion, and the neural network architecture---to inspect the performance of the RGM sampler
more systematically.

7Computational cost for obtaining \widehat F :\BbbR 2 \rightarrow \BbbR 784 and computing \widehat F (X) from X \sim \mu is far less than that of
the OT-based sampler as explained in section 1.
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306 YOONHAENG HUR, WENXUAN GUO, AND TENGYUAN LIANG

(a) MMD (R2) (b) MMD (R4) (c) Sinkhorn (R4) (d) Original

Figure 2. Panel (a) is generated by transforming new i.i.d. samples from \mu = N(0, I2) using \widehat F , trained
under the aforementioned model specifications. Panel (b) is generated analogously, but with replacing the
source dimension d = 2 with d = 4, namely, \mu =N(0, I4); for (c), we further replace the three MMD terms in
(3.3) with Sinkhorn divergences. Panel (d) shows real MNIST images.

3 2 1 0 1 2 3 4

x1
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(a)

2 1 0 1 2 3 4

c (B(y), B(y′))
2

1

0

1

2

3

4

c
(y

,y
′ )

(b)

Figure 3. Panel (a) is generated by applying \widehat B to 500 out-of-sample MNIST images, i.i.d. \{ \~yj\} 500j=1 from \nu .

Panel (b) shows the points \{ (c\scrX ( \widehat B(\~yj), \widehat B(\~yj\prime )), c\scrY (\~yj , \~yj\prime ))\} 50j,j\prime =1 and a straight line y= x.

The first component is choosing the discrepancies \scrL \scrX ,\scrL \scrY ,\scrL \scrX \times \scrY . Though we have been
using MMD as the leading example, one may use other discrepancies. Here, we consider a
modification of (3.3) by replacing the MMD terms in (3.3) with Sinkhorn divergences, which
has shown good performance for generative modeling tasks [21]. Next, we also try higher
source dimensions, namely, \mu =N(0, Id) with d= 4,10,20,50. Last, we test a different neural
network architecture called the deep convolutional neural network (DCNN), which has shown
good empirical performance in representing image-type data [42].8 In summary, we test the
combinations of two different discrepancies (MMD and Sinkhorn), five choices for the source
dimension d \in \{ 2,4,10,20,50\} , and two choices for the neural network architecture (FCNN
and DCNN). To quantitatively evaluate the performance of \widehat F trained under each combination,
we should quantify the closeness of \widehat F\#\mu and the target distribution \nu ; though there are many
suggestions in the literature for such a task, we take a straightforward approach by comparing
the moments and evaluating log likelihood scores.

8Roughly speaking, we adapt the structures of the generator and discriminator in [42] to construct \scrF and
\scrB , respectively.
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REVERSIBLE GROMOV--MONGE SAMPLER 307

Table 1
Evaluation scores using the squared differences between the first moments of the generated distribution\widehat F\#\mu and the target distribution \nu ; these are estimated by new samples \{ \~xi\} 2000i=1 from \mu =N(0, Id) and \{ \~yj\} 2000j=1

from the MNIST test set. We repeat the evaluation process for 100 times in each setting, and present the
average evaluation score with the corresponding standard deviation in parentheses. The baseline is computed
by randomly dividing the MNIST test set of 4000 samples into two subsets of 2000 samples and calculating
the squared difference between the first moments of the two subsets analogously to the evaluation score. Here
smaller evaluation scores imply better empirical results.

d 2 4 10 20 50

\bfF \bfC \bfN \bfN 
Sinkhorn 0.852(0.017) 0.743(0.011) 0.627(0.013) 0.587(0.012) 0.672(0.015)
MMD 0.784(0.015) 0.875(0.014) 0.941(0.020) 1.004(0.018) 1.131(0.021)
MMD-GAN 0.804(0.018) 1.016(0.024) 0.777(0.018) 1.121(0.024) 0.999(0.021)

\bfD \bfC \bfN \bfN 
Sinkhorn 0.841(0.014) 0.729(0.015) 0.671(0.014) 0.695(0.016) 0.647(0.015)
MMD 0.900(0.018) 0.913(0.017) 1.031(0.020) 1.249(0.025) 1.155(0.021)
MMD-GAN 0.927(0.022) 0.825(0.019) 1.044(0.020) 0.841(0.018) 1.069(0.023)

Baseline 0.432

Table 1 summarizes the evaluation scores defined as 2\| 
\sum 

i
\widehat F (\~xi)/ \~m - 

\sum 
j \~yj/\~n\| 2,9 where

\{ \~xi\} \~m
i=1 and \{ \~yj\} \~nj=1 are i.i.d. samples from \mu and \nu , respectively; in words, we estimate

the squared difference between the first moments of \widehat F\#\mu and \nu by using new samples that

are independent of the samples used to train \widehat F , \widehat B. By comparing the first two rows, we
can observe that replacing the MMD terms with the Sinkhorn divergence leads to smaller
(= better) evaluation scores (exception: FCNN with d = 2). By comparing Figures 2(b)
and 2(c), we can see that images generated by Sinkhorn divergences tend to have smoother
boundaries, which are visually more natural.10 Next, we can see that the RGM sampler with
the MMD terms often (but not always) has smaller evaluation scores than the MMD-GAN
[18, 29], which aims to solve minF MMD2

K\scrY 
(F\#\widehat \mu m,\widehat \nu n), that is, only minimizing the last MMD

term associated with \scrY in (3.3); note that the RGM sampler is better when d is very small,
especially when d = 2.11 Increasing the source dimension d or using a more sophisticated
neural network architecture DCNN shows mixed results. For instance, for the Sinkhorn one,
increasing d often (but not always) leads to smaller (= better) evaluation scores; however,
for the MMD one, larger d results in the opposite. Similarly, DCNN often (but not always)
leads to better scores for the Sinkhorn one, but the other way around for the MMD one.
The main reason for such mixed results is likely related to the optimization; larger d and
DCNN usually require more sophisticated and tailored optimization schemes. We can similarly
analyze different evaluation scores defined by comparing the second moments or computing the
log likelihood (estimated using a kernel density estimator [22]) to complement Table 1, which

9This formulation is motivated by the energy distance [51], which is obtained by replacing the distance in
the energy distance formulation with the squared distance.

10Of course, given that many images in MNIST have uneven boundaries, one cannot conclude that Sinkhorn
outperforms MMD.

11One should, however, be reminded of the following difference when comparing the RGM sampler and
MMD-GAN: the former requires training of both maps F,B, whereas the latter is a minimization over F only.
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we present in the supplementary material (supplement.pdf [local/web 1.35MB]). Omitted
details of this section can also be found therein.

7. Discussions. In this work, we proposed the reversible Gromov--Monge (RGM) sampler,
a new variant of transform sampling based on the RGM distance operating between distri-
butions on heterogeneous spaces. The RGM sampler fuses the Gromov--Wasserstein (GW)
idea with the transform sampling task, aiming at introducing inductive biases toward iso-
morphisms (see section SM5). We have established statistical results as the main theoretical
contribution, along with several supporting results on analytic properties of the RGM distance
and the convex relaxation based on the operator viewpoint and the representer theorem.

Last, we mention two directions for future research. First, as briefly mentioned in section 3,
the RGM sampler is easily implementable by solving a minimization problem via the gradient
descent algorithm; however, it is unclear whether one can derive global convergence results
from this minimization, which we leave as future research. Next, another interesting direction
is to study analytic properties of the RGM distance; investigating deeper connections with
the GW distance and strong isomorphisms would be an interesting topic in the GW analysis
literature.
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