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ABSTRACT
Detecting weak, systematic distribution shifts and quantitatively modeling individual, heterogeneous
responses to policies or incentives have found increasing empirical applications in social and economic
sciences. Given two probability distributions P (null) and Q (alternative), we study the problem of detecting
weak distribution shift deviating from the null P toward the alternative Q, where the level of deviation
vanishes as a function of n, the sample size. We propose a model for weak distribution shifts via displacement
interpolation between P and Q, drawing from the optimal transport theory. We study a hypothesis testing
procedure based on the Wasserstein distance, derive sharp conditions under which detection is possible, and
provide the exact characterization of the asymptotic Type I and Type II errors at the detection boundary using
empirical processes. We demonstrate how the proposed testing procedure works in modeling and detecting
weak distribution shifts in real datasets using two empirical examples: distribution shifts in consumer
spending after COVID-19, and heterogeneity in the published p-values of statistical tests in journals across
different disciplines.
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1. Introduction

Classic detection problem aims to distinguish a shifted distribu-
tion Q from the null distribution P based on data, formulated as
a nonparametric goodness-of-fit test:

H0 : X1, . . . , Xn
iid∼ P versus H1 : X1, . . . , Xn

iid∼ Q. (1.1)

It is understood that the power of certain test statistics, such
as Kolmogorov-Smirnov (Kolmogorov 1933; Smirnoff 1939) or
Anderson-Darling (Anderson and Darling 1952), is asymptoti-
cally 1, implying that detection is possible if the sample size is
large.

In many applications, one confronts situations where the
signal in the alternative distribution is weaker. One natural
formulation is to replace Q in H1 (1.1) by a suitable interpolation
scheme between P and Q. A common choice is the linear inter-
polation (1−ε)P+εQ, or the so-called Huber’s ε-contamination
model (Huber 1964), where one parameterizes ε = εn → 0 as
n → ∞ to represent weak signals. This model represents that
only a small ε-fraction of the data deviates from P, often seen in
applications such as large-scale inference with high-throughput
measurements (Efron 2010). For instance, microarray data—
widely used in genetics and genomics—measure the expression
level of thousands of genes, where only some portions are rele-
vant to detecting certain diseases. See Donoho and Jin (2015)
for a comprehensive overview of such applications. In those
applications, weak signals are modeled as small perturbations in
the frequencies of the histogram of the data, that is, deviations
along the y-axis.
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Detecting the presence of distribution shifts is also essential
in social and economic applications. There, the main inter-
est is often to quantify individual, heterogeneous responses to
policies or other incentives. For instance, consider the eco-
nomic impacts of the coronavirus pandemic (COVID-19) and
government policies (Chetty et al. 2020); when analyzing how
the economy—measured by weekly statistics such as consumer
spending—recovers from the shock caused by the pandemic, it
is natural to consider individual, heterogeneous shifts to reflect
that each individual adjusts the spending differently according
to the income level and other characteristics. In this context, the
individual responses can be modeled as perturbations along the
x-axis of the data histogram, whereas the aforementioned per-
turbation along the y-axis (frequencies) rooted in engineering
applications is arguably less informative. Another example is the
study of the effect of financial or nonfinancial incentives given
to students or parents to improve educational performance,
measured by test scores (Fryer et al. 2015; Levitt et al. 2016).
There, the main interest is measuring the shifts in test score
distributions in response to the incentives. It is worth noting
that the shifts are arguably heterogeneous, depending on gender,
race/ethnicity, and other demographic information (Levitt et al.
2016).

In the above examples, perturbations along the y-axis—the
fraction of individuals deemed responsive to a given policy
or incentive—may be of interest but are insufficient to model
individual, heterogeneous responses. Unlike the earlier genetics
example, where the identification of a handful of non-null genes
showing distinct expression levels provides crucial scientific evi-
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dence of certain diseases, the goal of socioeconomic research is
beyond simply finding a proportion of shifted observations; the
fundamental interest is to quantify individual, heterogeneous
responses to policy, which is more relevant to the shift along the
x-axis of histograms.

This article proposes a different interpolation scheme for
detecting weak distribution shifts motivated by the above. We
study a natural test statistic motivated by optimal transport and
conduct an exact study of the asymptotic power of the test. We
represent the signal strength as the level of deviation, rather than
the proportion of deviated units. In a nutshell, we are interested
in how much the data histogram shifts along the x-axis instead
of the y-axis. To this end, we model weak signals using dis-
placement interpolation (McCann 1997) with a viewpoint from
optimal transport theory (Villani 2003), where the interpolation
parameter ε represents a certain transport distance of data from
the null P along the geodesics, thus, characterizing the level of
distribution shifts from P.

1.1. Displacement Interpolation and Optimal Transport

Let P and Q be Borel probability measures on R whose cumula-
tive distribution functions are F and G, respectively; also, let F−1

and G−1 be their quantile functions, respectively. Displacement
interpolation between P and Q is defined as

Pε := ((1 − ε)Id + εT)#P ∀ε ∈ [0, 1],
where Id : R → R is the identity map and T = G−1 ◦ F,
namely, the composition of G−1 and F. Here, S#P denotes the
pushforward measure of P by a map S : R → R defined by
S#P(B) = P{x ∈ R : S(x) ∈ B} for any Borel set B ⊂ R. If P is
absolutely continuous with respect to the Lebesgue measure, it
is known that T = G−1 ◦ F is the unique monotone map such
that T#P = Q. More importantly, it is also the unique solution to
the following optimal transport problem (Brenier 1991; Villani
2003) provided P and Q have finite second moments, namely,

T = argmin
S : R→R

S#P=Q

∫
R

|x − S(x)|2dP(x). (1.2)

Intuitively, the constraint S#P = Q means that a map S trans-
ports mass from the source distribution P to the target distribu-
tion Q by moving the infinitesimal mass at x in the support of P
to S(x) such that dP(x) = dQ(S(x)). Accordingly, (1.2) tells that
the unique monotone map T = G−1 ◦ F provides the optimal
way of transporting mass from P to Q, minimizing the squared
transport distance |x − T(x)|2 on average.

Now, for each x, let us view the segment {(1 − ε)x + εT(x) :
ε ∈ [0, 1]} as the transport path from x to the destination T(x)

along its displacement T(x) − x. It turns out that transporting
mass from the source distribution P along such a path gives
rise to a geodesic connecting P and Q in the Wasserstein space
(Ambrosio, Gigli, and Savaré 2005), namely, ε = Wp(P,Pε )

Wp(P,Q)
for all

ε ∈ [0, 1], where for p ≥ 1, we denote by Wp the Wasserstein-p
distance defined by

Wp(μ, ν) :=
(∫ 1

0
|F−1

μ (u) − F−1
ν (u)|pdu

)1/p

Figure 1. Illustration of two interpolation schemes. Linear interpolation (1−ε)P +
εQ vertically combines the cumulative distribution functions F and G; namely, its
cumulative distribution function (blue, dashed) is (1 − ε)F + εG. Meanwhile,
displacement interpolation (red, solid) horizontally combines F and G, or equiva-
lently, vertically combines the quantile functions F−1 and G−1. In other words, the
quantile function of ((1 − ε)Id + εG−1 ◦ F)#P is (1 − ε)F−1 + εG−1.

for any probability measures μ, ν whose quantile functions are
F−1

μ , F−1
ν , respectively. To see this, it suffices to observe that the

quantile function of Pε is (1 − ε)F−1 + εG−1 as P = (F−1)#U
implies Pε = ((1 − ε)Id + εG−1 ◦ F)#((F−1)#U) = ((1 −
ε)F−1 + εG−1)#U, where U is the Lebesgue measure on [0, 1];
see Figure 1 for details. Therefore, displacement interpolation
represents the optimal path—shortest path under the distance
Wp—for transporting mass from P to Q, where the parameter
ε naturally characterizes the deviation from P via the relative
distance ε = Wp(P,Pε )

Wp(P,Q)
.1

We finish this section with a concrete example to contrast two
interpolation schemes. Consider P = N(0, 1) and Q = N(τ , σ 2)
for some τ , σ > 0. Linear interpolation (1 − ε)P + εQ is the
mixture of two Gaussian distributions P, Q, where the parameter
ε is essentially the frequency of signals from Q. Displacement
interpolation is the optimal transport path from P to Q, where
T(x) = σx + τ for all x ∈ R and Pε := ((1 − ε)Id + εT)#P =
N(ετ , (1 − ε + εσ )2); in words, the optimal path is simply to
move each x to σx + τ . The resulting interpolation N(ετ , (1 −
ε + εσ )2) suggests that the parameter ε provides an intuitive
characterization of the signal strength which controls the level
of distribution shift. Lastly, it is worth noting that displacement
interpolation preserves the unimodality as the interpolation is
always Gaussian, whereas linear interpolation may result in two
modes.

1.2. Distribution Shift as Displacement Interpolation

As discussed in the previous section, displacement interpolation
constructs an optimal path transporting mass from P to Q,
providing a natural notion of distribution shift from P to Q. Such
a viewpoint has recently found several applications in machine
learning and computer vision, where displacement interpolation
serves as a method to optimally synthesize two objects, such
as textures (Rabin et al. 2012), colors (Kolouri et al. 2017), and
styles (Mroueh 2020).

Before diving into theory and methodology, in this section,
we adopt this viewpoint to model distribution shifts using real-
world data; we see that displacement interpolation is better

1It is possible to generalize the aforementioned concepts—displacement
interpolation, optimal transport, and the Wasserstein-p distance—to R

d

with d > 1; see (Villani 2003).
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Figure 2. (a) plots a time series of consumer spending from January 13, 2020 to June 5, 2022, where some noticeable events are marked: March 13, 2020 (national emergency
declared) and April 15, 2020, January 4, 2021, and March 17, 2021 (first, second, and third stimulus payments start, respectively). (b) and (c) show the smoothed histograms
of monthly average consumer spending by county from March 16, 2020 to March 15, 2021 and from March 16, 2021 to March 15, 2022, respectively.

suited to model such distribution shifts than linear interpola-
tion. Later, after laying out the theory, we revisit this empirical
example to study the power of our testing procedure. To this
end, we use the data from (Chetty et al. 2020), which studies
the economic impacts of the coronavirus pandemic (COVID-
19) and policy responses in the United States using a wide
range of statistics, such as consumer spending, business rev-
enues, employment rates, and so on.2 Here, we focus on the
consumer spending data—recorded as seasonally adjusted per-
cent changes based on anonymized card transactions data—and
analyze how consumer expenditures have recovered from the
steep plunge caused by COVID-19. Figure 2(a) shows the aver-
age consumer spending between January 2021 and June 2022.
More specifically, we look at the distribution of monthly average
consumer spending over 1655 counties, where the spending
is disaggregated based on the ZIP code where the cardholder
lives. The monthly average is calculated by averaging the daily
expenditures from the 16th of each month to the 15th of the
following month. Figure 2(b) shows the smoothed histograms
of monthly average spending for the first 12 months since March
2020, which clearly shows how the distribution has shifted in the
increasing spending direction, namely, the spending is recov-
ering from the shock of the pandemic. Meanwhile, Figure 2(c)
shows the next 12 months from March 2021, where we can no
longer observe such an evident distribution shift, suggesting the
consumer spending has stabilized after the recovery; see also the
corresponding period in Figure 2(a).

2Data are publicly available at https://tracktherecovery.org/ .

Empirically, we illustrate that displacement interpolation
serves as a reasonable model for the distribution shift during
the recovery period shown in Figure 2(b). To this end, we
generate two interpolation paths, displacement interpolation
and linear interpolation, and contrast them with the real data.
First, let {Pi/11}11

i=0 be the distributions of monthly spending by
county during that period, namely, they correspond to the 12
histograms of Figure 2(b); here, P0 and P1 are the start and end
of that period (from March 16, 2020 to April 15, 2020 and from
February 16, 2021 to March 15, 2021, respectively). Then, we
compute the relative Wasserstein-2 distances εt = W2(P0,Pt)

W2(P0,P1)
and

the relative Total Variation (TV) distances γt = TV(P0,Pt)
TV(P0,P1)

for t ∈
{0, 1/11, . . . , 10/11, 1}, as visualized in Figure 3(a). From these,
we generate displacement interpolation Qdis

t = ((1 − εt)Id +
εtT)#P0, where T is the composition of the quantile function
of P1 and the cumulative distribution function of P0; similarly,
we generate linear interpolation Qlin

t = (1 − γt)P0 + γtP1.
Essentially, Qdis

t amounts to displacement interpolation between
P0 and P1 that shifts from P0 at the same rate as Pt under the
Wasserstein-2 distance, namely, W2(P0, Qdis

t ) = W2(P0, Pt);
analogously, Qlin

t corresponds to linear interpolation such that
TV(P0, Qlin

t ) = TV(P0, Pt). Figure 3(b) and (c) show Qdis
t and

Qlin
t , respectively. Comparing Figure 3(b) and (c) with the real

distribution shift in Figure 2(b), we can see that displacement
interpolation provides a better approximation. Particularly, dis-
placement interpolation preserves the unimodality of distribu-
tions as in Figure 2(b), while linear interpolation creates two

https://tracktherecovery.org/
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Figure 3. (a) plots the relative Wasserstein-2 distances εt = W2(P0,Pt)
W2(P0,P1)

and the relative TV distances γt = TV(P0,Pt)
TV(P0,P1)

for t ∈ {0, 1/11, . . . , 1}, with the 45 degree line shown

as a dashed line; relative Wasserstein-1 distances W1(P0,Pt)
W1(P0,P1)

are plotted for reference as well, which almost coincide with εt . (b) and (c) show displacement interpolation

Qdis
t = ((1 − εt)Id + εt T)#P0 and linear interpolation Qlin

t = (1 − γt)P0 + γt P1, respectively.

modes, in reminiscence of the Gaussian example in the previous
section.

Together with theoretical foundations in Section 1.1, the
above example provides the empirical underpinnings of the dis-
placement interpolation model for distribution shifts. Returning
to the detection problem (1.1), in what follows, we will consider
a detection problem where Q in H1 is replaced by displacement
interpolation ((1−ε)Id+εT)#P and propose a testing procedure
based on the Wasserstein-2 distance. Later, we will apply the pro-
posed testing procedure to revisit the above empirical example
and analyze the power under the strong distribution shift during
the recovery period.

1.3. Problem Description

Motivated by the discussion above, we study the problem of
detecting weak distribution shifts represented as displacement
interpolation: given two distributions P and Q on R whose
cumulative distribution functions are F and G, respectively,

H0 : X1, . . . , Xn
iid∼ P versus

H1 : X1, . . . , Xn
iid∼ ((1 − ε)Id + εG−1 ◦ F)#P. (1.3)

Here, F−1 and G−1 are the quantile functions of P and Q,
respectively.

We propose a testing procedure based on the weighted
Wasserstein distance between the empirical measure Pn—
constructed by the observations X1, . . . , Xn—and the null dis-
tribution P. Assuming a weak signal in a sense ε = εn → 0

as n → ∞, we derive sharp conditions under which detection
is possible: (a) when n1/2εn → 0, detection is impossible; (b)
when n1/2εn → ∞, the testing procedure has asymptotic power
1; (c) at the detection boundary n1/2εn → constant ∈ (0, ∞),
sharp asymptotic Type I and Type II errors are analyzed using
Gaussian processes.

1.4. Related Literature

Sparse mixture detection. A popular approach to formulating
the weak signal detection problem is to replace the alternative
hypothesis of (1.1) with Huber’s ε-contamination model (1 −
ε)P + εQ, also known as sparse mixtures, where ε = εn → 0
as n → ∞. Donoho and Jin (2004) proposes Tukey’s higher
criticism as a test statistic and analyzes the asymptotic phase
transition depending on the rate ε = εn → 0 and the sig-
nal strength. A recent endeavor extending the higher criticism
test to compare two large frequency tables is given in Donoho
and Kipnis (2022). See also Cai, Jessie Jeng, and Jin (2011)
and Cai and Wu (2014) on optimal detection of general sparse
mixtures.

Wasserstein distances for testing. Our testing procedure is
based on the Wasserstein distance, which has been studied
extensively in the testing literature. For example, Munk and
Czado (1998) and Del Barrio, Giné, and Utzet (2005) study
Goodness-of-Fit (GoF) testing using the Wasserstein distance
between the null hypothesis and the empirical measure based
on the observations; see Hallin, Mordant, and Segers (2021) for
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an extension to the multivariate case. As mentioned earlier, the
standard GoF testing is related to the classic detection problem
(1.1), where the alternative distribution is fixed to some signal Q
or a collection of distributions from a specific parametric family
(de Wet 2002; Csörgő 2003).

Notation. For a, b ∈ R, denote a ∧ b = min{a, b}. For positive
sequences {an} and {bn}, denote an = o(bn) if an/bn → 0
as n → ∞. We write Yn � Y if a sequence {Yn} of random
variables converges weakly to some random variable Y .

2. Main Results

Testing procedure. We propose a distance-based test statistic
for the testing problem (1.3), motivated by optimal transport and
displacement interpolation. More specifically, we compare Pn—
the empirical measure based on the observations X1, . . . , Xn—
with P under the following distance, called the weighted Wasser-
stein distance, and reject H0 if it is larger than a specific critical
value.

Definition 1. Let ω be a finite Borel measure on (0, 1). For
two distributions μ and ν on R, we define the ω-weighted
Wasserstein distance by

W2,ω(μ, ν) :=
(∫ 1

0
|F−1

μ (u) − F−1
ν (u)|2dω(u)

)1/2
,

where F−1
μ , F−1

ν denote the quantile functions of μ, ν,
respectively.

Remark 1. Note in Definition 1 that W2,ω = W2 if ω is
the Lebesgue measure. Weighted versions of the Wasserstein
distance are introduced in (de Wet 2002; Csörgő 2003). Here,
we introduce the weighted base measure as in the Anderson-
Darling test because, for certain detection problems, the signal
may hide unevenly among quantiles. For example, the signal is
contained in the extreme quantiles in higher criticism (Donoho
and Jin 2004).

Asymptotic phase transition. We analyze the testing error in the
asymptotic regime where ε = εn vanishes as n → ∞. More
precisely, we rewrite (1.3) as follows specifying dependency on
the sample size n:

H(n)
0 : X1, . . . , Xn

iid∼ P,

H(n)
1 : X1, . . . , Xn

iid∼ ((1 − εn)Id + εnG−1 ◦ F)#P,

where limn→∞ εn = 0, namely, εn = o(1). Our main
result shows that the asymptotic testing error behaves differently
depending on the vanishing rate of εn, highlighting a phase tran-
sition phenomenon. In particular, we study a testing procedure
such that the asymptotic Type I error is a given level α ∈ (0, 1)

by deriving the limit of the test statistic W2,ω(Pn, P) under the
null hypothesis, based on the fundamental limit theorem of
the empirical quantile process: assuming F admits a positive
density f ,

√
n(F−1

n (u) − F−1(u)) � Bu
f (F−1(u))

, (2.1)

where F−1
n is the empirical quantile function based on

X1, . . . , Xn from H(n)
0 and (Bu)u∈[0,1] is the standard Brownian

bridge, namely, a mean-zero Gaussian process whose covariance
satisfies E[Bu1 Bu2 ] = u1 ∧ u2 − u1u2; rigorous asymptotic
analysis is provided in the subsequent section. For such a testing
procedure, we can characterize the asymptotic Type II error
based on the three phases of εn determined by

lim
n→∞ n1/2εn =

⎧⎪⎨
⎪⎩

0,
∞,
γ ∈ (0, ∞).

We formally state the main result as follows.

Theorem 1. Suppose F has a density f that is continuous and
bounded away from 0 on some compact interval IF and is 0 on
R\IF , G−1 is bounded on (0, 1), and G−1 ◦ F is Lipschitz. Let ω

be a finite Borel measure on (0, 1) that is absolutely continuous
with respect to the Lebesgue measure such that W2,ω(P, Q) �= 0.
Also, let 	 be the cumulative distribution function of∫ 1

0

∣∣∣∣ Bu
f (F−1(u))

∣∣∣∣
2

dω(u), (2.2)

where (Bu)u∈[0,1] is the standard Brownian bridge. Fix α ∈ (0, 1)

and let Cα be the (1−α)th quantile of 	 , that is, 	(Cα) = 1−α.
Consider the following testing procedure:

reject H(n)
0 if and only if nW2

2,ω(Pn, P) > Cα .

Then, the asymptotic Type I error is α, and the asymptotic Type
II error is as follows.

(i) If n1/2εn → 0, the asymptotic Type II error is 1 − α.
(ii) If n1/2εn → ∞, the asymptotic Type II error is 0.
(iii) If n1/2εn is a constant, say n1/2εn = γ > 0, the asymptotic

Type II error is

	γ (Cα − γ 2W2
2,ω(P, Q)),

where 	γ is the cumulative distribution function of
∫ 1

0

∣∣∣∣ Bu
f (F−1(u))

∣∣∣∣
2

dω(u) + 2γ

∫ 1

0

Bu
f (F−1(u))

· (
G−1(u) − F−1(u)

)
dω(u). (2.3)

Remark 2. Theorem 1 implies that the asymptotic testing error,
namely, the sum of the asymptotic Type I and II errors, is 1
(undetectable) if n1/2εn → 0 and α (detectable) if n1/2εn →
∞. The phase transition occurs at the boundary if n1/2εn is a
constant, where the testing error is determined by the constant
γ := n1/2εn and 
 := W2,ω(P, Q), which denotes the signal
strength. The detection boundary (iii) still holds if we replace
n1/2εn = γ with limn→∞ n1/2εn = γ > 0; see the formal proof
of Theorem 1 which is deferred to Appendix A. The main ideas
of the analysis will be presented in the next section.

3. Asymptotic Analysis

In this section, we rigorously derive the asymptotic limit of the
test statistic W2,ω(Pn, P), under the null H(n)

0 and the alternative
H(n)

1 , respectively.
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3.1. Preliminaries

Let �∞(0, 1) denote the set of all bounded functions defined on
(0, 1), which is a Banach space under the uniform norm given
by

‖h‖∞ = sup
u∈(0,1)

|h(u)| ∀h ∈ �∞(0, 1).

We first provide the exact statement of (2.1) based on weak
convergence in �∞(0, 1), see van der Vaart and Wellner (1996);
in what follows, for any random element Z in �∞(0, 1), let Z(u)

denote the random variable at coordinate u ∈ (0, 1).

Assumption 1. F has a density f that is continuous and bounded
away from 0 on some compact interval IF and is 0 on R\IF .

Lemma 1. Let F−1
n be the empirical quantile function based on

X1, . . . , Xn that are iid from a cumulative distribution function
F. Under Assumption 1, view (

√
n(F−1

n −F−1))n∈N as a sequence
of random elements in �∞(0, 1), then it converges weakly to
some tight measurable random element H in �∞(0, 1), which
we denote as

√
n(F−1

n − F−1) � H in �∞(0, 1). (3.1)

The limit H satisfies the following.

(i) {H(u) : u ∈ (0, 1)} is a mean-zero Gaussian process with
covariance function

E[H(u1)H(u2)] = u1 ∧ u2 − u1u2
f (F−1(u1))f (F−1(u2))

∀u1, u2 ∈ (0, 1).

(ii) The sample path u �→ H(u) is continuous.

Remark 3. Lemma 1 is from Lemma 3.9.23 of (van der Vaart
and Wellner 1996). Assumption 1 ensures that F−1 is bounded
on (0, 1), thereby viewing

√
n(F−1

n − F−1) as a random element
in �∞(0, 1). Though this assumption rules out distributions
supported on the whole real line, such as normal distributions,
we can still apply Assumption 1 to such distributions by restrict-
ing their support to a sufficiently large yet bounded interval.
Alternatively, one may modify Lemma 1 by considering weak
convergence in �∞[δ, 1 − δ] with a suitable δ > 0. Such
a modification provides limit theorems of the integration of
|F−1

n −F−1|2 on [δ, 1−δ], often called the trimmed Wasserstein
distance (Munk and Czado 1998). It is also possible to modify
Lemma 1 by considering weak convergence in L2(0, 1) under
suitable assumptions on the behavior of F−1 near the endpoints
0 and 1 (Del Barrio, Giné, and Utzet 2005).

Remark 4. In Lemma 1, the limit H is tight, meaning that for
any ε > 0, we can find a compact subset K of �∞(0, 1) such
that P(H ∈ K) ≥ 1 − ε. Though this technicality is not
used explicitly in the main analysis, it is required to apply the
extended continuous mapping theorem, which we adapt from
Theorem 1.11.1 of van der Vaart and Wellner (1996) and rewrite
as Theorem A.1.

Next, we consider the following integrated processes: letting
Hn := √

n(F−1
n − F−1), define

An :=
∫ 1

0
|Hn(u)|2dω(u), (3.2)

Bn :=
∫ 1

0
|(G−1 ◦ F)(F−1(u) + n−1/2Hn(u))

− F−1(u)|2dω(u), (3.3)

Cn :=
∫ 1

0
Hn(u) · ((G−1 ◦ F)(F−1(u) + n−1/2Hn(u))

− F−1(u)
)

dω(u). (3.4)

Under the assumptions of Lemma 1, the limit of An is essentially
the limit of the test statistic nW2

2,ω(Pn, P) under the null. Later,
we will use Bn and Cn to derive the limit of the test statistic under
the alternatives. The following lemma derives the limits of the
above processes, which we prove in Appendix A.

Lemma 2. Let F−1
n be the empirical quantile function based

on X1, . . . , Xn that are iid from a cumulative distribution func-
tion F. Let ω be a finite Borel measure on (0, 1) that is abso-
lutely continuous with respect to the Lebesgue measure. Under
Assumption 1 and assuming G−1 is bounded on (0, 1), let Hn =√

n(F−1
n − F−1) and H be the random element mentioned in

Lemma 1, then

An �
∫ 1

0
|H(u)|2dω(u), (3.5)

Bn �
∫ 1

0
|G−1(u) − F−1(u)|2dω(u), (3.6)

Cn �
∫ 1

0
H(u) · (G−1(u) − F−1(u))dω(u), (3.7)

where An, Bn, Cn are as in (3.2), (3.3), (3.4), respectively.

3.2. Asymptotic Distributions

Now, we analyze the limit of the test statistic W2,ω(Pn, P) under
H(n)

0 . By (3.5) of Lemma 2, the following holds.

Proposition 1 (Limit under the null). For each n ∈ N, let
Pn be the empirical measure based on X1, . . . , Xn following
H(n)

0 . Let ω be a finite Borel measure on (0, 1) that is abso-
lutely continuous with respect to the Lebesgue measure. Under
Assumption 1,

nW2
2,ω(Pn, P) �

∫ 1

0
|H(u)|2dω(u),

where H is the random element mentioned in Lemma 1.

Next, we analyze the limit of the test statistic under H(n)
1 .

Theorem 2 (Limit under the alternatives). For each n ∈ N,
let Pn be the empirical measure based on X1, . . . , Xn following
H(n)

1 . Let ω be a finite Borel measure on (0, 1) that is abso-
lutely continuous with respect to the Lebesgue measure. Under
Assumption 1 and assuming G−1 is bounded on (0, 1) and G−1 ◦
F is Lipschitz, we can characterize the limit of nW2

2,ω(Pn, P) as
follows.

(i) If n1/2εn → 0,

nW2
2,ω(Pn, P) �

∫ 1

0
|H(u)|2dω(u). (3.8)
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Figure 4. (a) visualizes the sum of Type I and Type II errors of Experiment 1; the red dashed line represents the level α = 0.05. (b) plots Type II errors of Experiment 2 as a
color map, where the red solid curves represent γ · 
 = constant ∈ {0.2, 0.45, 0.7}

.

(ii) If n1/2εn → ∞,

n1/2ε−1
n

(
W2

2,ω(Pn, P) − ε2
nW2

2,ω(P, Q)
)

� 2
∫ 1

0
H(u) · (

G−1(u) − F−1(u)
)

dω(u). (3.9)

(iii) If n1/2εn is a constant, say n1/2εn = γ > 0,

nW2
2,ω(Pn, P) − γ 2W2

2,ω(P, Q)

�
∫ 1

0
|H(u)|2dω(u) + 2γ

∫ 1

0
H(u)

· (
G−1(u) − F−1(u)

)
dω(u). (3.10)

Remark 5. One can also show that the limit distribution in (3.9)
is a mean-zero Gaussian distribution with variance∫ 1

0

∫ 1

0

4(u1 ∧ u2 − u1u2)

f (F−1(u1))f (F−1(u2))
· (

G−1(u1) − F−1(u1)
)

· (
G−1(u2) − F−1(u2)

)
dω(u1)dω(u2).

Remark 6. The Lipschitzness assumption on G−1 ◦ F is used for
(3.9), but not for (3.8) and (3.10). Such an assumption is well
studied in the literature; see Appendix of Bobkov and Ledoux
(2019).

4. Simulations

4.1. Phase Transition and Power Analysis

This section delivers results using two experiments to numer-
ically verify Theorem 1. For both experiments, we fix P =
Unif[0, 1] and let ω be the Lebesgue measure so that 	 is the
cumulative distribution function of∫ 1

0
|Bu|2du.

Such a distribution is well studied, and the quantile of 	 is
available, see Table 1 of Anderson and Darling (1952); we choose
α = 0.05, then Cα ≈ 0.46136.

Experiment 1: phase transition. In this experiment, we verify
that the phase transition occurs at β = 0.5 for the scaling εn =
n−β . To this end, we fix Q = N(0, 1) and let εn = n−β with
n = 106, and a range of β ∈ {0.05, 0.1, . . . , 0.95, 1}. For each
β , we compute nW2

2(Pn, P) using samples from H(n)
0 and H(n)

1 ,
which we repeat 100 times, then compute the Type I and Type
II errors using those 100 realizations, respectively. We plot the
sum of Type I and Type II errors against β . Figure 4(a) confirms
that the phase transition occurs at β = 0.5.

Experiment 2: sharp power analysis. We focus on the power
behavior at the detection boundary, namely, εn = γ n−0.5 with
n = 106. Specifically, we analyze the Type II error based on
two parameters representing the signal strength: γ and 
 :=
W2(P, Q). By Theorem 1, the Type II error should be approx-
imately 	γ (Cα − γ 2
2). To vary 
, we parameterized Q as
follows: the quantile function of Q is u �→ u + p

2π
sin(2πu),

where we vary p ∈ (0, 1); note that this is a valid quantile
function as it is monotonically increasing. Then,

W2
2(P, Q) = p2

4π2

∫ 1

0
| sin(2πu)|2 du = p2

8π2 = 
2,

which results in 
2 ∈ (0, (8π2)−1). We can easily generate
Q’s with desired signal strength 
 using this parameterization.
For each pair (
, γ ), where 
 ∈ {0.01, 0.015, . . . , 0.105, 0.11}
and γ ∈ {3.5, 3.75, . . . , 11.5, 11.75}, we compute the Type II
error and visualize it as a color map. Figure 4(b) visualizes Type
II errors on the 
-γ plane using colors; this essentially plots
	γ (Cα − γ 2
2). Notice that the level set of Type II errors and
the curve γ · 
 = constant do not perfectly coincide because
Type II errors can vary on the curve γ · 
 = constant, namely,
	γ (Cα − constant2) can change as γ varies.

4.2. Comparison to Other Methods and Robustness Checks

This section first compares the power of the proposed procedure
and the Kolmogorov-Smirnov (KS) test. Later, we carry out
preliminary robustness checks on how the choice of the weight
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Figure 5. (a) and (b) show the powers of the proposed testing procedure and the KS test in Example I and Example II, respectively; solid lines correspond to the proposed
testing procedure, whereas dotted lines represent the KS test. (c) shows the powers of the proposed testing procedures in the setting of Example II, using the weight measure
given by (4.2). By design, the solid lines of (b) and (c) coincide; both correspond to the Lebesgue measure, namely, a = 0 in (4.2).

measure ω affects the power. Throughout this section, we again
fix P = Unif[0, 1] and n = 106.

Example I. First, we repeat the previous setting used for the
boundary case: εn = γ n−0.5 and the quantile function of Q
is u �→ u + p

2π
sin(2πu). This time, we parameterize p ∈

{0, 0.05, . . . , 0.95, 1} instead of 
 = W2(P, Q) and restrict our
interest to γ ∈ {4, 7, 10}. For each pair (p, γ ), we compute
the power of the proposed testing procedure—with ω being
the Lebesgue measure—and the KS test; to ensure both are
asymptotically level α tests with α = 0.05, we use the critical
value Cα ≈ 0.46136 for the proposed testing procedure as
before and the critical value 1.36 for the KS test statistic

√
n ·

KS(Pn, P) = √
n · supx∈R |Fn(x) − F(x)| based on Table 1 of

(Shorack and Wellner 2009). Figure 5(a) shows the results. First,
observe that for γ ∈ {7, 10}, the powers of both tests exceed
0.5 once the parameter p is above certain values, which means
that both are better than a trivial test that randomly rejects the
null with probability 0.5. In this case, the power of the proposed
procedure is slightly larger than that of the KS test, as the solid
lines are above the dotted lines. For γ = 4, the power of the
KS test is mostly larger than that of the proposed procedure,

as shown in the blue lines; in this case, however, the powers of
both tests are far less than 0.5, implying that both tests practically
failed. In other words, the signal strength γ = 4 is too weak for
both tests to detect.

Example II. Next, we consider a different setting where the
quantile function of Q differs with that of P = Unif[0, 1] at tails.
To this end, suppose the quantile function of Q is as follows:

⎧⎪⎪⎨
⎪⎪⎩

u + 0.45 · 2p
π

cos
(

πu
2p

)
0 ≤ u ≤ p,

u p ≤ u ≤ 1 − p,
u − 0.45 · 2p

π
cos

(
π(1−u)

2p

)
1 − p ≤ u ≤ 1,

(4.1)

where we parameterize p ∈ {0.025, 0.05, . . . , 0.5}. Note that
the quantile function of Q deviates from the identity only at
tails, namely, [0, p] ∪ [1 − p, 1]. As in Example I, we keep using
εn = γ n−0.5 for γ ∈ {4, 7, 10} and compute the powers for each
pair (p, γ ) which are shown in Figure 5(b). For γ ∈ {7, 10}, the
results are similar to Example I; for sufficiently large p, both tests
have enough powers. Now, for γ = 4, the power of the proposed
procedure is slightly larger than that of the KS test; however, as
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in Example I, both tests are practically useless as their powers are
too small; namely, γ = 4 is again too weak for them to detect.

The role of the weight measure. Lastly, we compare the powers
by differing the weight measure ω. Let us keep considering the
setting of Example II. As the quantile function Q mainly deviates
from that of P at tails, it is reasonable to put more weights at
tails for better performance when computing the test statistic.
To verify this, consider a simple weight measure whose density
with respect to the Lebesgue measure is a quadratic function: for
a ≥ 0,

dω(u)

du
= a

(
u − 1

2

)2
+ 1 − a

12
, (4.2)

which satisfies
∫ 1

0 dω = 1. Clearly, a = 0 corresponds to the
Lebesgue measure; large a means more weights at both tails. We
compute the powers of the proposed procedure for a ∈ {0, 1, 2}.
Here, we again set critical values to ensure that all of them are
asymptotically level α = 0.05; for a = 0, we can reuse the
previous critical value as before. For a ∈ {1, 2}, we estimate the
quantile of the asymptotic distribution

∫ 1
0 |Bu|2dω(u) by Monte

Carlo simulations. Figure 5(c) shows the results. As expected,
we obtain larger powers with the quadratic weight measure,
namely, both a = 1 and a = 2 achieve better performance
than the unweighted procedure a = 0; particularly, assigning
more weights at tails (a = 2) yields the largest power. For
γ = 4, though we have increased powers for the weighted
procedures, they are still practically too weak to detect the signal,
as discussed in the previous examples.

4.3. Application I: Distribution Shifts in Consumer
Spending

We revisit the data example in Section 1.2 and apply the pro-
posed testing procedure to study the power. Recall that {Pi/11}11

i=0
are the distributions of monthly average spending by county dur-
ing the recovery period between March 16, 2020 and March 15,
2021. For t ∈ {0, 1/11, . . . , 10/11, 1} and n ∈ {10, 50, 100, 500},
we construct the empirical measure Pn

t using n points that are
iid from Pt and compute W2(P0, Pn

t ). Essentially, for each t and
sample size n, we want to distinguish Pt from P0 using a finite
sample. To this end, we first estimate the quantile of W2(P0, Pn

0)

via Monte Carlo simulations to define a level α = 0.05 test; this
will give us a critical value, say, Cn

α . Then, for each t > 0, we
compute W2(P0, Pn

t ) and reject the null—that is, data are from
P0—if it exceeds Cn

α ; by repeating this for 100 times, we can
evaluate the power of the test using simulations. The results are
shown in the first 4 rows (Recovery Period) of Table 1. In this
case, for t ≥ 3/11, namely, after three months from March, 2020,
we can detect the distribution shift from P0 for any sample size n.
In other words, we can tell there has been a significant recovery
after three months; indeed, the shift is significant enough so we
can tell the difference from P0 by estimating Pt using only 10
randomly chosen counties instead of the total 1655 counties. The
first month after P0, that is, for t = 1/11, the shift is relatively
weaker compared to the subsequent months, so n = 10 yields
power 0.56, which is not enough to detect the shift; in other
words, for t = 1/11, we need at least n = 50 to distinguish it
from P0.

Table 1. Powers for the recovery and stable periods.

11t

n 1 2 3 4 5 6 7 8 9 10 11

10 0.56 0.98 1 1 1 1 1 1 1 1 1 Recovery period
50 0.98 1 1 1 1 1 1 1 1 1 1
100 1 1 1 1 1 1 1 1 1 1 1
500 1 1 1 1 1 1 1 1 1 1 1
10 0.04 0.05 0.09 0.1 0.05 0.07 0.1 0.05 0.07 0.11 0.23 Stable period
50 0.2 0.23 0.36 0.38 0.22 0.18 0.1 0.14 0.09 0.4 0.75
100 0.57 0.45 0.66 0.66 0.45 0.29 0.43 0.33 0.16 0.76 0.96
500 1 0.99 1 1 1 0.94 1 0.99 0.88 1 1

How about the power for the stable period? We repeat the
above procedure by taking {Pi/11}11

i=0 as the distributions during
the stable period, namely, they amount to the histograms in
Figure 2(c); again, P0 and P1 correspond to the start and end
of this period (from March 16, 2021 to April 15, 2021 and from
February 16, 2022 to March 15, 2022). Recall from Figure 2(c)
that we no longer see a significant distribution shift as in the
recovery period. The resulting powers are shown in the last
four rows (Stable Period) of Table 1. Unlike the recovery period,
we can observe the powers are much smaller for n ≤ 100;
particularly, most of the powers—except for a few periods with
n = 100—are far below 0.5, meaning that we cannot detect a
meaningful shift from P0 using finite samples. For detection to
be possible, we can see that we need a sufficiently large sample
size n = 500.

In summary, the results in Table 1 essentially demonstrate
that the proposed testing procedure can detect the distribution
shifts during the recovery period as it is reasonably approx-
imated by displacement interpolation as seen in Figure 2(b),
while there are no such shifts to be captured by the proposed
procedure during the stable period because the distributions are
similar to each other as shown in Figure 2(c).

4.4. Application II: p-value Heterogeneity across
Disciplines

We apply our testing procedure to the data set from Head et al.
(2015), which collects p-values of statistical tests published in
journals across different disciplines. In this example, we use our
procedure to determine if the distribution of p-values differs
depending on disciplines.

To this end, we first collect p-values across nine disciplines
subsampled from total 21 disciplines, then take 80% of them
as the null distribution PNull, which consists of 90,950 observa-
tions; this is shown as the solid blue curve in Figure 6. Then,
from the remaining 20%, we sample two disciplines “medi-
cal and health sciences” (PMH) and “multidisciplinary” (PMu),
which consist of 12,928 and 5731 observations, respectively.3
Figure 6 shows the cumulative distribution functions of the
null PNull, PMH, and PMu, which are close to each other. This
suggests that both PMH and PMu are weak signals that are hard to
distinguish from PNull visually. To tackle this problem, we apply
our testing procedure to H0 : PMH = PNull. First, we compute
the test statistic TMH := nW2

2(PMH, PNull), where n := |PMH| =
12,928 observations. Then, setting α = 0.05, we estimate the

3They have the largest number of observations among all nine disciplines.
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Figure 6. This figure plots the cumulative distribution functions of p-values (below
0.05) across nine disciplines subsampled from (Head et al. 2015), which is shown as
the solid blue curve, along with two disciplines: “medical and health sciences” (red,
dotted) and “multidisciplinary” (green, dashed).

(1 − α)th quantile of nW2
2(Pn, PNull), where Pn is the empirical

measure based on X1, . . . , Xn that are iid from PNull, which
can be done by resampling Pn. We obtain TMH = 0.004821
which is larger than the estimated quantile 0.002918; also, we
can estimate the p-value of TMH, which is 0.005 � α, suggesting
that we reject H0 : PMH = PNull. We apply the same procedure
to PMu with n := |PMu| = 5,731 observations. We obtain
TMu = 0.002334, which is slightly below the estimated quantile
0.002412, and the p-value of TMu is 0.066 > α, implying that
we cannot H0 : PMu = PNull at level α. Therefore, our testing
procedure provides a rigorous framework to detect weak signals
that are otherwise indistinguishable, as visualized in Figure 6.

5. Discussion

Comparison with existing methods. Notice that the problem
(1.3) can be viewed as an instance of general testing

H0 : X1, . . . , Xn
iid∼ P versus H1 : X1, . . . , Xn

iid∼ Qn,

where Qn → P as n → ∞; our problem is the case where Qn is
given as displacement interpolation between P and Q. Existing
approaches to such a general problem characterize detection by
using the following (related) notions: likelihood ratio dQn

dP (sec.
13.10.1 of van der Vaart and Wellner 1996) or Hellinger dis-
tance H2(P, Qn) (sec. 13.1 of Lehmann and Romano 2005). The
former approach—often referred to as Le Cam’s third lemma—
derives limit distributions based on asymptotic normality; the
latter characterizes the detection boundary depending on the
rate of nH2(P, Qn). The first principle behind these methods is
clear: quantify a distance/discrepancy between P, Qn and char-
acterize the limit. Our results also use such a first principle: we
use weighted Wasserstein distances. Though our method and
the existing methods share a similar high-level idea, the existing
methods are unsuitable for our problem for several reasons.
First, though Le Cam’s third lemma applies to any abstract
setting under certain conditions, it does not lead to the exact
characterization of testing errors unless there is a suitable para-

metric assumption. Second, the Hellinger distance is not pre-
ferred in analyzing the case where Qn is given as displacement
interpolation as its relationship with the interpolation parameter
εn is not transparent. Moreover, the Hellinger distance-based
characterization generally does not calculate testing errors at the
detection boundary. On the other hand, our method motivated
by weighted Wasserstein distances not only interplays well with
displacement interpolation but also provides the exact charac-
terization of testing errors, including the boundary case; more-
over, unlike the likelihood ratio test, which requires information
on both P and Qn, our test is implementable as long as P is
known.

Lifting technical assumptions. As remarked in Remark 6, the
Lipschitzness assumption on G−1 ◦ F is used in the detectable
case (n1/2εn → ∞), but not in the other two cases. Removing
the Lipschitzness assumption, there is no restriction on Q as
long as its quantile function G−1 is bounded. Accordingly, our
main results hold even when Q is discrete; in particular, there
are cases where our method applies, but Le Cam’s third lemma
cannot because contiguity is not satisfied. As a concrete example,
suppose P = Unif[0, 1] and Q = 1

2δ0 + 1
2δ1. Then, Qn :=

((1 − εn)Id + εnG−1 ◦ F)#P is a uniform measure supported on
the union of two disjoint intervals Un := [0, (1 − εn)/2] ∪ [(1 +
εn)/2, 1]. One can verify that Q⊗n

n —the n tensor product of Qn—
is not contiguous with respect to P⊗n because Q⊗n

n (Un
n ) = 1

while P⊗n(Un
n ) = (1 − εn)n → 0 at the boundary εn � n−1/2.

Hence, Le Cam’s third lemma cannot be applied to derive the
limit distribution for such a case, whereas our method can.
Lastly, we briefly discuss Assumption 1. Though it is a reasonable
assumption to impose from a practical viewpoint as discussed
in Remark 3, it is natural to ask—from a technical viewpoint—
whether such an assumption can be relaxed. To circumvent
Assumption 1, we can use an alternative pivotal test based on
the weighted Wasserstein between Unif[0, 1] and the empirical
measure based on F(X1), . . . , F(Xn); then, we can show that
similar theory holds.

Optimal testing procedure. Displacement interpolation moti-
vates the weighted Wasserstein distance as a natural test statis-
tic for (1.3). While the main theory of this article focuses on
the asymptotic power of the testing procedure based on the
weighted Wasserstein distance, we believe there are several inter-
esting theoretical questions to be addressed in future work.
Particularly, one may ask whether the proposed procedure is
optimal for testing (1.3). The simulation results in Section 4.2
suggest that optimality would depend on P and Q. Hence, it
would be interesting to derive a minimax optimal procedure
that minimizes the worst case testing error over some class of
distributions P, Q, which we leave as important future work.

Extension to two-sample testing. The problem (1.3) itself and
the proposed procedure essentially postulate that P is known.
In the empirical applications presented in Section 4, we treated
finite data points as the null distribution P and applied the
proposed procedure. Though the purpose of such treatment
was to demonstrate the applicability of the proposed procedure
in simplified settings, the fact that the finite data points, say,
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Y1, . . . , Ym, are usually noisy samples from some distribution
P of interest is a crucial limitation in practice. To address this
issue, one may consider a two-sample testing framework asking
if X1, . . . , Xn and Y1, . . . , Ym are from the same distribution.
We can still consider a local alternative given as displacement
interpolation, say, X1, . . . , Xn

iid∼ ((1 − ε)Id + εG−1 ◦ F)#P and
Y1, . . . , Ym

iid∼ P. The weighted Wasserstein distance between
the empirical measures of X1, . . . , Xn and Y1, . . . , Ym is deemed
a plausible test statistic under this framework. We leave the
analysis of such a two-sample testing framework as future work.

Appendix A: Proofs

A.1. Proof of Lemma 2

Proof. Recall from Lemma 1 that Hn � H in �∞(0, 1). Now, define

�∞
m (0, 1) = {h ∈ �∞(0, 1) : h is measurable},

then one can verify that �∞
m (0, 1) is a closed subset of the Banach space

(�∞(0, 1), ‖ · ‖∞). Also, as the sample path of Hn is always monotone
and the sample path of H is always continuous, Hn and H take values
in �∞

m (0, 1). Now, define a map I : �∞
m (0, 1) → R by

I(h) =
∫ 1

0
|h(u)|2dω(u).

We claim thatI is continuous. To this end, consider a sequence (hn)n∈N
in �∞

m (0, 1) and h ∈ �∞
m (0, 1) such that ‖hn − h‖∞ → 0. Then,

supn∈N ‖hn‖∞ ≤ M for some M > 0, hence, the dominated conver-
gence theorem shows that I(hn) → I(h). Now, applying Theorem A.1
(stated below), we conclude that I(Hn) � I(H), which proves (3.5).
Similarly, for each n ∈ N, define a map En : �∞

m (0, 1) → R by

En(h) =
∫ 1

0
|(G−1 ◦ F)(F−1(u) + n−1/2h(u)) − F−1(u)|2dω(u).

For any sequence (hn)n∈N in �∞
m (0, 1) and h ∈ �∞

m (0, 1) such that ‖hn−
h‖∞ → 0, we claim

En(hn) →
∫ 1

0
|G−1(u) − F−1(u)|2dω(u). (A.1)

As G−1 is continuous almost everywhere on (0, 1), we can see that
G−1 ◦ F ◦ (F−1 + n−1/2hn) converges to G−1 almost everywhere; as
ω is absolutely continuous with respect to the Lebesgue measure, this
convergence holds ω-almost everywhere as well. As G−1 and F−1 are
bounded on (0, 1), the dominated convergence theorem shows (A.1).
By Theorem A.1,

En(Hn) �
∫ 1

0
|G−1(u) − F−1(u)|2dω(u),

showing (3.6). Lastly, to prove (3.7), for each n ∈ N, define a map
Jn : �∞

m (0, 1) → R by

Jn(h) =
∫ 1

0
h(u)·

(
(G−1 ◦ F)(F−1(u) + n−1/2h(u)) − F−1(u)

)
dω(u).

Also, define J : �∞
m (0, 1) → R by

J (h) =
∫ 1

0
h(u) ·

(
G−1(u) − F−1(u)

)
dω(u).

Similarly to I , one can verify that J is continuous. Also, for any
sequence (hn)n∈N in �∞

m (0, 1) and h ∈ �∞
m (0, 1) such that ‖hn −

h‖∞ → 0, we can show that Jn(hn) → J (h) by means of the
dominated convergence theorem. Therefore, Jn(Hn) � J (H) holds
by Theorem A.1, hence, (3.7) holds.

Theorem A.1 (Extended Continuous Mapping Theorem). Let H and
K be metric spaces. Let H0 be a Borel subset of H and consider a
measurable map I : H0 → K. Suppose there is a sequence (In)n∈N
of maps from H0 to K satisfying the following: for any sequence
(hn)n∈N in H0 converging to some h ∈ H0, the sequence (In(hn))n∈N
converges to I(h) in K. If a sequence (Hn)n∈N of random elements
in H converges weakly to a tight measurable random element H in H,
where both Hn and H take values in H0, the sequence (In(Hn))n∈N of
random elements in K converges weakly to the random element I(H)

in K.

Remark A.1. Theorem A.1 is adapted from Theorem 1.11.1 of van der
Vaart and Wellner (1996), where the latter uses separability instead of
tightness. As tightness implies separability, we have stated Theorem A.1
with tightness, which is sufficient in our analysis.

A.2. Proof of Theorem 2

Proof. For each n ∈ N, let φn = (1 − εn)Id + εnG−1 ◦ F. As we are
concerned with the limit distribution of nW2

2,ω(Pn, P), we may assume
(Xn)n∈N is iid from P and let Pn be the empirical measure based on
φn(X1), . . . , φn(Xn) as φn(X1), . . . , φn(Xn) also follow H(n)

1 . Now, let
F−1

n be the empirical quantile function based on X1, . . . , Xn, then

φn ◦ F−1
n − F−1

= (1 − εn)F−1
n + εnG−1 ◦ F ◦ F−1

n − F−1

= (1 − εn)n−1/2Hn + εn(G−1 ◦ F ◦ (F−1 + n−1/2Hn) − F−1),

where Hn := √
n(F−1

n −F−1). Hence, using An, Bn, Cn defined in (3.2),
(3.3), (3.4), respectively, we have

W2
2,ω(Pn, P) = (1 − εn)2n−1An + ε2

nBn + 2(1 − εn)n−1/2εnCn.

Case I: Suppose n1/2εn → 0. Recall that we have shown in Lemma 2
that An, Bn, and Cn are weakly convergent. Note that

nW2
2,ω(Pn, P) = (1 − εn)2An + (n1/2εn)2Bn + 2(1 − εn)(n1/2εn)Cn.

As (n1/2εn)2Bn, (n1/2εn)Cn � 0, by Slutsky’s theorem,

nW2
2,ω(Pn, P) � lim

n→∞ An =
∫ 1

0
|H(u)|2dω(u).

Case II: Suppose n1/2εn → ∞ and note that

n1/2ε−1
n

(
W2

2,ω(Pn, P) − ε2
nW2

2,ω(P, Q)
)

= (1 − εn)2(n1/2εn)−1An

+ n1/2εn(Bn − W2
2,ω(P, Q)) + 2(1 − εn)Cn.

First, notice that (n1/2εn)−1An � 0. We claim n1/2εn(Bn −
W2

2,ω(P, Q)) � 0. To this end, observe that

Bn − W2
2,ω(P, Q)

=
∫ 1

0
|(G−1 ◦ F)(F−1(u) + n−1/2Hn(u)) − F−1(u)|2dω(u)

−
∫ 1

0
|G−1(u) − F−1(u)|2dω(u)

=
∫ 1

0
|(G−1 ◦ F)(F−1(u) + n−1/2Hn(u)) − G−1(u)|2dω(u)

+ 2
∫ 1

0

(
(G−1 ◦ F)(F−1(u) + n−1/2Hn(u)) − G−1(u)

)
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·
(

G−1(u) − F−1(u)
)

dω(u)

=: Bo
n + 2B∗

n.

Let L be the Lipschitz constant of G−1 ◦ F, then

n1/2εn|B∗
n| ≤ n1/2εn

∫ 1

0
Ln−1/2|Hn(u)| · |G−1(u) − F−1(u)|dω(u)

≤ Lεn
√

AnW2
2,ω(P, Q),

where εn
√

An � 0 by Lemma 2, hence, n1/2εnB∗
n � 0. Similarly,

n1/2εn|B0
n| ≤ n1/2εn

∫ 1

0
L2n−1|Hn(u)|2dω(u)

= L2n−1/2εnAn � 0,

hence, n1/2εnBo
n � 0. Therefore, applying Slutsky’s theorem, we have

n1/2ε−1
n

(
W2

2,ω(Pn, P) − ε2
nW2

2,ω(P, Q)
)

� lim
n→∞ 2(1 − εn)Cn

= 2
∫ 1

0
H(u) ·

(
G−1(u) − F−1(u)

)
dω(u).

Case III: Suppose n1/2εn = γ , then

nW2
2,ω(Pn, P) = (1 − εn)2An + γ 2Bn + 2(1 − εn)γ Cn

= (1 − εn) · ((1 − εn)An + 2γ Cn) + γ 2Bn.

We claim that

(1 − εn)An + 2γ Cn �
∫ 1

0
|H(u)|2dω(u)

+ 2γ

∫ 1

0
H(u) ·

(
G−1(u) − F−1(u)

)
dω(u).

We apply the same argument used in the proof of Lemma 2; for each
n ∈ N, define Kn : �∞

m (0, 1) → R by

Kn(h) = (1 − εn)

∫ 1

0
|h(u)|2dω(u) + 2γ

∫ 1

0
h(u)

·
(
(G−1 ◦ F)(F−1(u) + n−1/2h(u)) − F−1(u)

)
dω(u).

In the proof of Lemma 2, we have shown that

Kn(hn) →
∫ 1

0
|h(u)|2dω(u)+2γ

∫ 1

0
h(u)·

(
G−1(u) − F−1(u)

)
dω(u)

for any sequence (hn)n∈N in �∞
m (0, 1) and h ∈ �∞

m (0, 1) such that
‖hn−h‖∞ → 0. Therefore, the extended continuous mapping theorem
shows that

(1 − εn)An + 2γ Cn = Kn(Hn) �
∫ 1

0
|H(u)|2dω(u)

+ 2γ

∫ 1

0
H(u) ·

(
G−1(u) − F−1(u)

)
dω(u).

Hence, by Slutsky’s theorem,

nW2
2,ω(Pn, P) = (1 − εn) · ((1 − εn)An + 2γ Cn) + γ 2Bn

�
∫ 1

0
|H(u)|2dω(u) + 2γ

∫ 1

0
H(u)

·
(

G−1(u) − F−1(u)
)

dω(u) + γ 2W2
2,ω(P, Q).

A.3. Proof of Theorem 1

Proof. For the asymptotic Type I error, we invoke Proposition 1: letting
Pn be the empirical measure based on X1, . . . , Xn from H(n)

0 ,

the asymptotic Type I error = lim
n→∞P(nW2

2,ω(Pn, P) > Cα)

= P(A > Cα) = 1 − 	(Cα) = α,

where A is the limit distribution of nW2
2,ω(Pn, P) under H(n)

0 , namely,
A = (2.2). Here, weak convergence implies the above limit as the open
set (Cα , ∞) is a continuity set of 	 . Therefore, the asymptotic Type I
error is α.

Next, we compute the asymptotic Type II error: assuming Pn be the
empirical measure based on X1, . . . , Xn from H(n)

1 ,

the asymptotic Type II error = lim
n→∞P(nW2

2,ω(Pn, P) ≤ Cα).

If n1/2εn → 0, we have shown in Theorem 2 that the limit distribution
of nW2

2,ω(Pn, P) is exactly A, hence

lim
n→∞P(nW2

2,ω(Pn, P) ≤ Cα) = P(A ≤ Cα) = 	(Cα) = 1 − α.

If n1/2εn → ∞, we apply Slutsky’s theorem by multiplying n−1/2ε−1
n

to both sides of (3.9), which yields

ε−2
n

(
W2

2,ω(Pn, P) − ε2
nW2

2,ω(P, Q)
)

� 0.

In other words, ε−2
n W2

2,ω(Pn, P) converges to a constant W2
2,ω(P, Q) >

0 under H(n)
1 , hence,

lim
n→∞P(nW2

2,ω(Pn, P) ≤ Cα)

= lim
n→∞P(ε−2

n W2
2,ω(Pn, P) ≤ n−1ε−2

n Cα) = 0.

If n1/2εn = γ > 0, the limit distribution of Tn := nW2
2,ω(Pn, P) −

γ 2W2
2,ω(P, Q) under H(n)

1 is (2.3) by (3.10), hence

lim
n→∞P(nW2

2,ω(Pn, P) ≤ Cα) = lim
n→∞P(Tn ≤ Cα − γ 2W2

2,ω(P, Q))

= 	γ (Cα − γ 2W2
2,ω(P, Q)).

Here, weak convergence implies the above limit as the set (−∞, Cα] is
a continuity set of 	γ .

Remark A.2. As noted in Remark 2, we may replace the detection
boundary n1/2εn = γ > 0 with limn→∞ n1/2εn = γ > 0 by
modifying the proofs of Theorem 2 and 1.
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