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Abstract

Covariate distribution shifts and adversarial perturbations present robustness challenges to
the conventional statistical learning framework: mild shifts in the test covariate distribution
can significantly affect the performance of the statistical model learned based on the training
distribution. The model performance typically deteriorates when extrapolation happens:
namely, covariates shift to a region where the training distribution is scarce, and naturally,
the learned model has little information. For robustness and regularization considerations,
adversarial perturbation techniques are proposed as a remedy; however, careful study needs
to be carried out about what extrapolation region adversarial covariate shift will focus
on, given a learned model. This paper precisely characterizes the extrapolation region,
examining both regression and classification in an infinite-dimensional setting. We study
the implications of adversarial covariate shifts to subsequent learning of the equilibrium—
the Bayes optimal model—in a sequential game framework. We exploit the dynamics
of the adversarial learning game and reveal the curious effects of the covariate shift to
equilibrium learning and experimental design. In particular, we establish two directional
convergence results that exhibit distinctive phenomena: (1) a blessing in regression, the
adversarial covariate shifts in an exponential rate to an optimal experimental design for
rapid subsequent learning; (2) a curse in classification, the adversarial covariate shifts in a
subquadratic rate to the hardest experimental design trapping subsequent learning.

Keywords: covariate distribution shift, adversarial learning, experimental design, direc-
tional convergence, dynamics, equilibria.

1 Introduction

In supervised learning, a folklore rule is that the test data set should follow the same, or
at least resemble the probability distribution from which the training data set is drawn, for
strong guarantees of learnability and generalization (Vapnik, 1999). The reason is grounded
since, if not, either (a) concept shift, namely the conditional distribution of P (Y |X) changes,
hence the underlying Bayes optimal prediction model f⋆ : X → Y could shift, or (b)
covariate shift, namely the covariate distribution µ ∈ P(X) shifts so that the underlying
evaluation metric for the learned model f changes.1 Nevertheless, supervised learning is
often deployed “in the wild,” meaning the test data distribution typically extrapolates the
training data distribution.

Concept shift is inherently a complex problem, as if shooting for a moving target. How-
ever, covariate shift may be less severe a problem if the concept stays the same. Historically,

1. One typical evaluation metric is ∥f − f⋆∥L2(µ), where the underlying covariate distribution µ ∈ P(X)
varies.
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specific statistical methods allow for mild extrapolation,2 say the (fixed-design) linear re-
gression and the (local) nonparametric regression (Stone, 1980). Recently, a few notable
lines of work have arisen to study the covariate shift. Shimodaira (2000), Sugiyama et al.
(2007), and Sugiyama and Mueller (2005) studied covariate shift adaption assuming knowl-
edge of the density ratio of the covariate shift. Ben-David et al. (2006) and Blitzer et al.
(2007) initiated the learning-theoretic study of domain adaptation. There, the generaliza-
tion error on the target/test domain is bounded by the standard generalization error on the
source/training domain, plus a discrepancy term—for instance, total variation or its tighter
analog induced by the hypothesis class—quantifying the covariate shift between training
and test distributions. Later, on the one hand, a collection of research extended the theory
to allow for concept shifts with general loss functions by proposing other notions of discrep-
ancy measures or quantities contrasting two distributions (Mansour et al., 2009; Ben-David
et al., 2010a; Mohri and Muñoz Medina, 2012; Kpotufe and Martinet, 2018). On the other
hand, by establishing lower bounds, Ben-David et al. (2010b) studied assumptions on the
relationship between training and test distributions necessary for successful domain adapta-
tion. The learning-theoretic framework brought forth new domain adaptation algorithms,
for instance, reweighing the empirical distribution to minimize the discrepancy between
source and target (Mansour et al., 2009), and finding common representation space with
small discrepancy while maintaining good performance on the training data (Ben-David
et al., 2006; Ganin et al., 2016). A considerable body of domain adaptation literature
primarily focuses on when the conditional relationship P (Y |X) is invariant, and thus the
Bayes optimal model stays fixed, yet the covariate distribution P (X) shifts. We follow this
tradition of an invariant Bayes optimal model and investigate adversarial perturbations to
the covariate distribution.

The quest for robust domain adaptation also prompted the recent development in ad-
versarial learning (Ganin et al., 2016; Goodfellow et al., 2014; Ilyas et al., 2019; Bubeck
et al., 2021). Akin to covariate shift, adversarial perturbations have recently revived in-
terest in machine learning and robust optimization communities (Goodfellow et al., 2014;
Delage and Ye, 2010). Adversarial perturbation is motivated by the following observation:
small local perturbations to the covariate distribution can significantly compromise the
supervised learning performance (Goodfellow et al., 2014; Madry et al., 2017; Javanmard
and Soltanolkotabi, 2022). For example, given a supervised learning model f , adversarial
perturbations shift the covariate distribution µ ∈ P(X) locally under a specific metric on
the measure space P(X), such that it makes the model suffer the most in predictive per-
formance. The familiar reader will immediately identify the minimax game between the
supervised learning model f and the covariate distribution µ: the model f minimizes the
risk from a model class, yet the covariate distribution µ maximizes the risk from a proba-
bility distribution class. Such a game perspective between the learning model f and data
distribution µ has been influential since the seminal work of boosting (Freund and Schapire,
1997, 1999). Inspired by the above, we study covariate shift from a game-theoretic perspec-
tive. The connection between boosting and adversarial perturbation will be elaborated
later; in a nutshell, instead of taking Kullback-Leibler divergence as a metric, we use the

2. Here we mean the region of the extrapolation is still contained in the region of the seen data, but the
test distribution can differ from the training distribution.
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Wasserstein metric for adversarial perturbation, thus allowing for extrapolation outside the
current covariate support.

This paper studies a particular form of covariate shifts following adversarial pertur-
bations, with the underlying concept (i.e., Bayes optimal model) held fixed. We take a
game-theoretic view to examine covariate shifts and discover curious insights. We study
both regression and classification in an infinite-dimensional setting. As hinted, we will ex-
ploit the dynamics of the adversarial learning game and reveal the curious effects of the
covariate shift to subsequent learning and experimental design. The models we study are
discriminative in nature rather than generative3 for invariance considerations: for the lat-
ter, the underlying concept P (Y |X) could shift as a result of adversarial perturbations on
covariates.

Now we are ready to state the main goal of this paper:

Adversarial covariate shifts move the current covariate domain to an extrapola-
tion region. We precisely characterize the extrapolation region and, subsequently,
the implications of adversarial covariate shifts to subsequent learning of the equi-
librium, the Bayes optimal model.

Curiously, we show two directional convergence results that exhibit distinctive phenom-
ena: (1) a blessing in regression, the adversarial covariate shifts in an exponential rate to
an optimal experimental design for rapid subsequent learning, (2) a curse in classification,
the adversarial covariate shifts in a subquadratic rate to the hardest experimental design
trapping subsequent learning. The theoretical results will be later coupled with numerical
validations. The theoretical study is admittedly based on idealized models to demonstrate
clean new insights and curious dichotomy on covariate shift and adversarial learning; po-
tential future directions will be discussed in the last section. Before diving into the problem
setup, we elaborate on the background and some related literature.

1.1 Background and Literature Review

We first fix some notations to make the discussions on covariate shift and adversarial pertur-
bation concrete. Let X be space for the covariates, and Y ⊂ R be the space for a real-valued
response variable. When a pair of covariate and response data (x, y) ∈ X × Y is generated
based on the probability measure π ∈ P(X × Y ), we denote (x, y) ∼ π. Let f : X → Y be
a statistical model and ℓ(·, ·) : R × R → R be a risk or loss function (f(x), y) 7→ ℓ(f(x), y)
that quantifies how the model f performs on the data pair (x, y).

Given a statistical model f and a probability measure for data set π, one can define the
utility function that accesses the risk of model f on data π

R(f, π) := E
(x,y)∼π

[
ℓ(f(x), y)

]
.

Models, covariate distributions, and Bayes optimality Following the literature
(Shimodaira, 2000; Quinonero-Candela et al., 2008), we consider the covariate shift but
not the concept shift. For a valid marginal probability measure for the covariate µ ∈ P(X),

3. Here discriminative refers to modeling Y |X, and generative refers to modeling X|Y .
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we define the induced joint measure for the covariate and response pair

πµ :=

∫
δx ⊗ π⋆

x dµ(x) ∈ P(X × Y ) , (1)

where π⋆
x ∈ P(Y ) denotes a fixed conditional data generating process for y|x = x that does

not vary with µ, and δx denotes the delta measure at point x. Equation (1) should be read
as disintegration of measure (Villani, 2021), meaning for all bounded continuous function
h ∈ Cb(X × Y ) ∫

X×Y
h(x, y) dπµ(x, y) =

∫
X

[ ∫
Y
h(x, y) dπ⋆

x(y)
]
dµ(x) .

Given a fixed conditional distribution π⋆
x and a loss function ℓ(·, ·), one can thus define

the Bayes optimal model (suppose for now that this map is well-defined)

f⋆
Bayes : x 7→ argmin

y′∈Y

∫
ℓ(y′, y) dπ⋆

x(y) . (2)

Observe that the Bayes optimal model does not change with µ, the distribution of covariates
x.

Now, we can define the objective of the game between the model f : X → Y and the
covariate distribution µ ∈ P(X),

U(f, µ) := R(f, πµ) =

∫
X

[ ∫
Y
ℓ(f(x), y) dπ⋆

x(y)
]
dµ(x) . (3)

It turns out Bayes optimal model f⋆
Bayes is an equilibrium of the game, as we shall show

shortly.
Note that classical statistical learning theory studies U(f̂µ, µ) where f̂µ is learned based

on an empirical data set drawn from the same distribution πµ. However, when the covariate
distribution shift to another measure ν that is different from the training data distribution
µ, the performance U(f̂µ, ν) deteriorates, see Shimodaira (2000) and Quinonero-Candela
et al. (2008) for a review on covariate shifts. Assuming the knowledge of the density ratio
dν / dµ, importance weighting methods have been proposed as an adaptation to covariate
shifts.

Adversarial perturbation The theoretical insights toward understanding adversarial
perturbations have so far centered around robustness and regularization in various formula-
tions, see Xu et al. (2009) (Theorem 3) for support vector machines, Ross and Doshi-Velez
(2018); Madry et al. (2017); Sinha et al. (2017) for neural network models, and Delage and
Ye (2010) for distributionally robust optimization. Given a metric measure space (P(X), d),
a covariate distribution µ ∈ P(X), and a current model f , consider the following population
version of the adversarial perturbation,

Uγ(f, µ) := max
ν : d2(ν,µ)≤γ

U(f, ν) , (4)

where U(·, ·) is defined in (3).
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Adversarial perturbation can be viewed as smoothly regularizing the original loss func-
tion, thus enforcing stability. To see this, consider the Wasserstein metric W2; as done in
Sinha et al. (2017) (Proposition 1), one can write the Lagrangian of (4) and characterize
the coupling analytically

max
λ≥0

min
ν∈P(X)

−U(f, ν) + λ
[
W 2

2 (ν, µ)− γ
]
= max

λ≥0
E

x∼µ

[
min
x′∈X

(
− U(f, δx′) +

λ

2
∥x′ − x∥2

)
︸ ︷︷ ︸

Moreau–Yosida regularization

]
− γλ ,

where δx denotes the delta measure at point x. Both the robustness and regularization
perspectives readily unveil, as the above is the Moreau–Yosida envelope of the function
−U(f, δx) : X → R with parameter λ−1, thus serving as a smoothed regularization to the
original loss. We refer the readers to Sinha et al. (2017) for detailed derivations.

The adversarial perturbation provides a robust notion of covariate shifts without requir-
ing the explicit knowledge of density ratio. Perhaps more importantly, it extends to the ex-
trapolation case when the support of ν differs from µ. The literature on adversarial learning
is growing too fast to give a complete review. To name a few: Bubeck et al. (2021); Bartlett
et al. (2021) studied adversarial examples using gradient steps for two/multi-layer ReLU
networks with Gaussian weights; for regression, Javanmard et al. (2020) studied precise
tradeoffs between adversarial risk Uγ(f̂ , µ) and standard risk U(f̂ , µ) for a range of models

f̂ interpolating between empirical risk minimization and adversarial risk minimization, Xing
et al. (2021) studied properties of the adversarially robust estimate; for classification, Bao
et al. (2020) introduced surrogate losses that are calibrated with the adversarial 0-1 loss,
Hu et al. (2018) identified certain failure mode of distributionally robust classification under
f -divergences, Javanmard and Soltanolkotabi (2022) precisely characterized the adversarial
0-1 loss with Gaussian covariate distributions.

Wasserstein gradient flow Adversarial distribution shift is inherently connected to
Wasserstein gradient flow. Given a current model f , the covariate distribution is perturbed
incrementally within a Wasserstein ball in an adversarial way, with a stepsize γ ∈ R+,

ν := argmin
ν∈P(X)

−U(f, ν) + 1

γ
W 2

2 (ν, µ) . (5)

Denote the distribution shift map Dsγ : x 7→ argminx′∈X
(
− U(f, δx′) + 1

2γ ∥x
′ − x∥2

)
defined by the Moreau–Yosida envelope. Informally, such a map defines the worst-case
covariate shift for the model f evaluated at measure µ, as the maximizer of the adversarial
perturbation is attained at

ν = (Dsλ−1)#µ

where λ > 0 is the solution to the dual. In the infinitesimal limit γ ≍ λ−1 → 0, one can
show that (Ambrosio et al., 2005; Guo et al., 2022)(

Dsγ − Id
)
[x]

γ
→ ∂

∂x
U(f, δx) . (6)

The distribution shift map Dsγ presents a way of constructing adversarial examples (Good-
fellow et al., 2014; Ilyas et al., 2019; Bubeck et al., 2021), namely a couple x ≈ x′ such that
U(f, δx′)− U(f, δx) is large.
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The continuous-time analog of the adversarial perturbation (5) is called the Wasserstein
gradient flow as γ → 0, where the density ρt (associated with νt), w.r.t. the Lebesgue
measure, evolves according to the following PDE (Ambrosio et al., 2005)

∂tρt +∇ · (ρtV) = 0 , where V : x 7→ ∂

∂x
U(f, δx) . (7)

1.2 Problem Setup

This paper considers regression and classification problems in an infinite-dimensional set-
ting. Let X ⊂ RN be a subset of a possibly infinite-dimensional space for the covariates, and
Y ⊂ R be the space for a real-valued response variable. We concern an infinite-dimensional
linear model class F := {fθ | fθ(x) := ⟨x, θ⟩, θ ∈ ℓ2N} where the inner-product corresponds
to the Hilbert space ℓ2N. Slightly abusing the notation, we write for convenience the utility
function

U(θ, µ) = E
(x,y)∼πµ

[
ℓ(fθ(x), y)

]
=

∫
X

[ ∫
Y
ℓ(fθ(x), y) dπ

⋆
x(y)

]
dµ(x) . (8)

We investigate two types of conditional relationships for π⋆
x in (1), namely for some

θ⋆ ∈ ℓ2N:

Regression: y|x = x ∼ Gaussian
(
⟨x, θ⋆⟩, 1

)
, ℓ(f, y) = (f − y)2 ;

Classification: y|x = x ∼ Bernoulli
(
σ(⟨x, θ⋆⟩)

)
, ℓ(f, y) = −fy + log

(
1 + ef

)
.

Here σ(z) = 1/(1 + e−z) is the sigmoid function. Note that in the classification setup,
y ∈ {0, 1}. In both the regression and classification settings we study, the Bayes optimal
model (2) is uniquely defined

f⋆
Bayes(x) = ⟨x, θ⋆⟩ .

Game and equilibria In the game between the model θ ∈ ℓ2N and the covariate distri-
bution µ ∈ P(X),

min
θ

max
µ

U(θ, µ) ≥ max
µ

min
θ

U(θ, µ) ≥ max
µ

∫
X

[
min
θ∈ℓ2N

∫
Y
ℓ(fθ(x), y) dπ

⋆
x(y)

]
dµ(x) (9)

= max
µ

U(θ⋆, µ) ≥ min
θ

max
µ

U(θ, µ) .

Therefore, the min-max theorem holds in this infinite-dimensional context when the Bayes
optimal model f⋆

Bayes(x) = ⟨x, θ⋆⟩ is well-defined. A Nash equilibrium of U(·, ·) is precisely
the Bayes optimal model f⋆

Bayes. In plain language, the covariate distribution shift does not
affect the notion of equilibrium of the game.

The game perspective is not new. For example, the celebrated boosting literature (Fre-
und and Schapire, 1997, 1999; Telgarsky, 2013; Liang and Sur, 2022) is precisely harnessing
the duality between a linear predictive model (aggregating p weak learners) indexed by
θ ∈ Rp and a finitely supported data distribution (with cardinality n) parametrized by a
weight on the probability simplex µ ∈ ∆n. There, rather than adversarially perturbing data
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using the Wasserstein metric, the probability weight vector µ—and its induced joint distri-
bution πµ =

∑n
i=1 µiδ(xi,yi)—is perturbed as in (5) under the Kullback-Leibler divergence.

A crucial difference between Wasserstein and Kullback-Leibler is that in the latter case,
only the weights are allowed to vary but not the domain. Another analogy is regarding the
equilibrium concept: when the data set is linearly separable, the equilibrium concept for
boosting is the max-margin solution; for our problem, the equilibrium concept is the Bayes
optimal solution. The game perspective is also instrumental to the generative modeling and
adversarial learning literature (Goodfellow et al., 2020; Dziugaite et al., 2015; Daskalakis
et al., 2017; Liang, 2021; Liang and Stokes, 2019; Mokhtari et al., 2020), where the dual-
ity between the probability distribution given by the generative model and discriminative
function is leveraged.

Best response and information sets Given a covariate distribution µ(0) whose support
is on a linear subspace and does not span the full space supp(µ(0)) ⊂ X = ℓ2N (so that
extrapolation is meaningful), the best response model fθ(0) ∈ F solves the following risk
minimization associated with measure µ(0)

θ(0) ∈ BR(µ(0)) := argmin
θ∈ℓ2N

U(θ, µ(0)) .

In both the Gaussian and Bernoulli conditional models, the best response model θ(0) asso-
ciated with the measure µ(0) takes the form

θ(0) ∈ BR(µ(0)) =
{
Πsupp(µ(0))θ

⋆ +Π⊥
supp(µ(0))

ξ | ∀ξ ∈ ℓ2N

}
,

namely, projected to the linear subspace spanned by supp(µ(0)) ⊂ X, the perceived best
response model θ(0) collides the Bayes optimal model Πsupp(µ(0))θ

⋆, while on the orthogonal

domain Π⊥
supp(µ(0))

no information is learned.

The minimum Hilbert space norm solution in the over-identified set BR(µ(0)) is Πsupp(µ(0))θ
⋆.

Clearly, θ(0) = Πsupp(µ(0))θ
⋆ is inconsistent with the Bayes optimal model θ⋆ (Shimodaira,

2000). It is, therefore, natural to consider, for typical adversarial distribution shifts µ(0) →
µ(1), how does the information set BR(µ(1)) differ from BR(µ(0))? The information set
question is useful to understand whether θ(1) improves upon θ(0) in approaching the Bayes
optimal model θ⋆. To answer this, we will probe precisely how the supp(µ(1)) varies from
supp(µ(0)) for natural adversarial covariate shifts: what extrapolation regions supp(µ(1))
focus on.

Adversarial dynamics For the adversarial distribution shifts, we follow the Wasserstein
gradient flow setup, given a current model θ(0), the covariate distribution is perturbed
incrementally within a Wasserstein ball in an adversarial way: with a stepsize γ ∈ R+,
initialize ν0 := µ(0),

νt+1 := argmin
ν∈P(X)

−U(θ(0), ν) + 1

γ
W 2

2 (ν, νt) , for t = 0, 1, . . . , T ,

and then set µ(1) := νT+1. The continuous analog of the adversarial perturbation is called
the Wasserstein gradient flow as γ → 0, where the density ρt (associated with νt) evolves

7
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according to the following PDE

∂tρt +∇ · (ρtV) = 0 , where V : x 7→ ∂

∂x
U(θ(0), δx) . (10)

Conceptually, the adversarial distribution shift is a gradient ascent flow on the Wasser-
stein space (P(X),W2) defined in (10) with effective time γT . In this paper, we study a
discretization of (10) with stepsize γ and iterations T , as follows

xt+1 = xt + γ · ∂

∂x
U(θ(0), δx)|x=xt , for t = 0, 1, . . . , T , where x0 ∼ µ(0) . (11)

2 Main Results

2.1 Adversarial Covariate Shifts: Blessings and Curses

Let θ(0) ∈ ℓ2N be the current learning model and θ⋆ − θ(0) be the remaining signal to be
identified. Let ℓ2N(1) denote the unit norm ball. We now define two unit-norm directions:
the blessing direction ∆b ∈ RN and the curse direction ∆c ∈ RN

∆b :=
θ⋆ − θ(0)

∥θ⋆ − θ(0)∥
∈ ℓ2N(1) , (12)

∆c := −∥θ(0)∥
∥θ⋆∥

· θ⋆ − θ(0)

∥θ⋆ − θ(0)∥
+

∥θ⋆ − θ(0)∥
∥θ⋆∥

· θ(0)

∥θ(0)∥
∈ ℓ2N(1) . (13)

The name blessing comes from the fact that ∆b //θ
⋆ − θ(0) as stated in Theorem 1,

namely, the direction is parallel to the remaining signal direction, the most informative
signal direction given the current model θ(0).

The name curse arises as ∆c ⊥ θ⋆ under the assumption in Theorem 4, that is, the
direction is perpendicular to the signal direction. To see why this assumption makes sense,
we recall that the best response model θ(0) associated with the measure µ(0) takes the form

θ(0) ∈ BR(µ(0)) =
{
Πsupp(µ(0))θ

⋆ +Π⊥
supp(µ(0))

ξ | ∀ξ ∈ ℓ2N

}
. The minimum-norm solution for

the best response set satisfies the assumption in Theorem 4, namely θ(0) ⊥ θ⋆ − θ(0) and
therefore ∆c ⊥ θ⋆.

Curiously, we will show that the adversarial learning dynamic collapses to a probability
measure along the blessing direction ∆b in the regression problem; in sharp contrast, the
probability measure induced by the adversarial learning dynamic converges to the curse
direction ∆c in the classification problem. The formal directional convergence results are
stated in Theorems 1 and 4. For the flow of the exposition, the primary intuition of the
proof is deferred to Section 2.4. Appendix A collects the detailed proof of all theorems.

We first state the result for the infinite-dimensional regression problem. As a reminder,
all the relevant notations in Theorems 1 and 4 were introduced in Section 1.2.

Theorem 1 (Regression: directional convergence) Consider the regression setting where
ℓ(y′, y) = (y′ − y)2 and y|x = x ∼ Gaussian

(
⟨x, θ⋆⟩, 1

)
. Let x0 ∈ supp(µ(0)) that satisfies

⟨x0, θ⋆ − θ(0)⟩ ≠ 0. Then the induced adversarial distribution shift dynamic (11) satisfies

lim
T→∞

∣∣∣〈 xT
∥xT ∥ ,∆b

〉∣∣∣ = 1 , where ∆b//θ
⋆ − θ(0) is defined in (12) . (14)

8
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Moreover, the directional convergence is exponential in T ,∣∣∣〈 xT
∥xT ∥ ,∆b

〉∣∣∣ ∈ [1−O
(

1
ecT

)
, 1
]
,

where c = 2 log
(
1 + 2γ∥θ⋆ − θ(0)∥2

)
.

Remark 2 This theorem concerns the case when the current model θ(0) is imperfect—
namely ∥θ⋆ − θ(0)∥ ̸= 0—the only case when distribution shifts that vary µ ∈ P(X) could
impact learning the conditional relationship π⋆

x and hence identifying the equilibrium f⋆
Bayes

defined in (2). The current model could be imperfect due to (a) supp(µ(0)) ⊊ X the covariate
does not span the full infinite-dimensional space, or (b) the learner only has finite sample
access to the measure πµ(0) ∈ P(X×Y ). The theorem states that the adversarial distribution

shift dynamics µ(0) → µ(1) align all the mass of the covariates along the most informative
direction for the next stage of learning: the shifted distribution µ(1) is asymptotically a
measure along a one-dimensional “blessing” direction ∆b, reducing the subsequent learning
to a one-dimensional problem. Namely, the adversarial distribution shift asymptotically
constructs the optimal covariate design for the next stage of learning: making the
current model θ(0) suffer is revealing the information towards the equilibrium of learning,
the Bayes optimal model θ⋆. The impact of the distribution shifts on the next stage learner,
in this sequential game perspective, is formally stated in Theorem 6. The proof is based on
power iterations as in principle component analysis.

Now, we state the result for the infinite-dimensional classification problem, which con-
trasts sharply with the regression problem. We start by stating the conditions and discuss
the assumption before stating the theorem.

Assumption 1 (Initial condition) Given a fixed r > 0, we call that two real numbers
(a0, b0) satisfy the initial condition, if a0 + b0 < 0 and

ea0+b0a0

1− e2(a0+b0)
< 1 , (15)

ea0+b0a0
1 + ea0+b0

≥
1 + 1

a0

1 + r + 1
a0

, (16)

with a0 > c for some large enough constant c > 0.

Remark 3 When the initialization a0 > c with c not too small, the assumption holds for
a range of b0: (15) and (16) are equivalent to

a0
1 +

√
1 + 4a−2

0

2
< e−(a0+b0) < a0

1 + r + a−1
0

1 + a−1
0

− 1 .

This is nonempty whenever (1 + r
1+a−1

0

− a−1
0 )2 − 1− 4a−2

0 > 0, which is true for a0 not too

small.

9
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Theorem 4 (Classification: directional convergence) Consider the classification set-

ting where ℓ(y′, y) = −y′y + log
(
1 + ey

′
)

and y|x = x ∼ Bernoulli
(
σ(⟨x, θ⋆⟩)

)
. Assume

θ(0) ⊥ θ⋆ − θ(0) and define r := ∥θ⋆−θ(0)∥2
∥θ(0)∥2 > 0. Consider fixed, small step-size in the

adversarial distribution shift dynamic (11) that satisfies η := γ∥θ(0)∥2 < 1
2(2+r) . Let x0 ∈

supp(µ(0)) and assume there exists a finite t0 ∈ N with (a0, b0) :=
(
⟨xt0 , θ(0)⟩, ⟨xt0 , θ⋆−θ(0)⟩

)
satisfying Assumption 1 for constants r defined above and c > 1. Then

lim
T→∞

∣∣∣〈 xT
∥xT ∥ ,∆c

〉∣∣∣ = 1 , where ∆c ⊥ θ⋆ is defined in (13) . (17)

Moreover, the directional convergence is quadratic in T/ log(T ),∣∣∣〈 xT
∥xT ∥ ,∆c

〉∣∣∣ ∈ [1−O
( log2(T )

T 2

)
, 1
]
.

Remark 5 This theorem concerns also the case when the current model θ(0) is useful yet
imperfect—namely ∥θ⋆ − θ(0)∥ ≠ 0, and ∥θ⋆∥ ≠ 0. In particular, this theorem studies when
supp(µ(0)) ⊊ X. As stated before, the best response model θ(0) associated with the mea-

sure µ(0) takes the form θ(0) ∈ BR(µ(0)) =
{
Πsupp(µ(0))θ

⋆ +Π⊥
supp(µ(0))

ξ | ∀ξ ∈ ℓ2N

}
. The

minimum-norm solution for the best response set satisfies the assumption in the theorem,
namely θ(0) ⊥ θ⋆ − θ(0). The theorem is also about directional convergence: the adversarial
distribution shift dynamics µ(0) → µ(1) asymptotically align all the mass of the covariates
along a one-dimensional, “curse” direction ∆c ⊥ θ⋆, orthogonal to the Bayes optimal model.
This directional alignment will reduce the subsequent learning to a one-dimensional prob-
lem that is the hardest, namely, the (x, y) ∼ πµ(1) where y is a Bernoulli coin-flip that is
independent of x! Note the adversarial distribution shift (under the logistic loss) asymp-
totically constructs the hardest covariate design under the 0-1 loss, since the Bernoulli
coin-flip is impossible to predict for the next stage of learning. Qualitatively, this contrasts
sharply with the phenomenon in the regression setting. The adversarial distribution shift
constructs a difficult covariate design, trapping the next stage of learning. Namely, making
the current model θ(0) suffer is constructing the hardest experimental design for identifying
the Bayes optimal model θ⋆. The impact of the distribution shifts on the next stage learner,
in this sequential game perspective, is formally stated in Theorem 7. Quantitatively, the
directional convergence to ∆c in the classification setting is quadratic in T , much slower
than the directional convergence to ∆b in the regression setting, exponential in T . We in-
vite the readers to Section 2.3 for a preliminary numerical experiment illustrating the sharp
contrast of Theorems 1 and 4, visualized in Figure 1 and Figure 2. We find the contrast in
the speed of directional convergence interesting in its own right.

Tracking down the exact behavior of the distribution shift dynamic (non-convex and
non-linear) and establishing a sharp directional convergence rate are this paper’s main
technical innovations and difficulties. To overcome these challenges, we carefully construct
two bounding envelopes refined recursively to characterize the dynamics analytically. Sec-
tion 2.4 elaborates on the main steps of the technical proof and key ideas.

Before studying the subsequent impact on the learner, we briefly discuss why a sharp di-
chotomy exists between regression and classification. A crucial factor is the loss function.

10
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One intuition that helps shed light on the distinction between classification and regression
can be seen in the following special case. Consider when the learner θ(0) has already learned
the Bayes optimal function θ⋆: (a) for the regression problem, the covariate distribution
will not shift, since the gradient flow for covariate distribution has velocity zero, as a result
of the quadratic loss function; (b) in contrast, for the classification problem, the covariate
distribution will further shift to decrease the margin so to decrease the signal-to-noise ratio,
as a result of the logistic loss function. For the general case when θ⋆ − θ(0) ̸= 0, the explicit
directional convergence phenomenon is curious and technically challenging to derive, which
is the main focus of the current paper.

2.2 Impact on the Learner: Sequential Game Perspective

In this section, we investigate the impact of the covariate distribution shift on the next stage
learner’s gradient descent dynamic. The goal here is to demonstrate that the directional
convergence results established in Theorems 1 and 4 can translate to a direct impact on
the learner’s subsequent learning towards the Bayes optimal model f⋆

Bayes(x) = ⟨x, θ⋆⟩, the
equilibrium. The impact is a dichotomy that either comes as a blessing or a curse.

The sequential game between model fθ and covariate distribution µ evolves according
to the following protocol. Here we only focus on one round, namely from stage t = 0 to
t = 1.

1. Adversarial covariate shift: the covariate distribution shifts from µ̂(0) → µ̂(1) given
the previous model θ(0). Here µ̂(0) = 1

n

∑n
i=1 δxi

0/∥xi
0∥

where xi0 ∼ µ(0), and µ̂(1) :=
1
n

∑n
i=1 δxi

T /∥xi
T ∥, where xiT evolves according to (11) after T steps.

2. Learner’s subsequent action: the learner performs a one-step improvement using gra-
dient descent given the shifted distribution µ̂(1). Draw n-i.i.d. samples (xi, yi) ∼ πµ̂(1)

defined in (1), and update

θ(1) = θ(0) − η · 1
n

n∑
i=1

∂

∂θ
ℓ(⟨xi, θ⟩, yi)|θ=θ(0) . (18)

Note that θ(1) implicitly depends on (n, T, η) so we subsequently denote as θ
(1)
n,T,η.

The curious reader may wonder about the renormalization such that µ̂(1) is a probability
measure on the unit sphere. Note that this is for convenience of analysis and does not change
the qualitative phenomenon. The assumption is currently used to invoke the Hanson–Wright
inequality in the proofs of Theorems 6 and 7.

Theorem 6 (Regression: blessing to the learner) Consider the same setting as in The-
orem 1. For all θ(0) such that ∥θ⋆ − θ(0)∥ ≠ 0, the learner’s one-step reaction to the distri-
bution shift as in (18) with η = 1/2 satisfies

lim
n→∞

lim
T→∞

∥θ⋆ − θ
(1)
n,T,η∥ = 0 a.s. . (19)

11
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Theorem 7 (Classification: curse to the learner) Consider the same setting as in The-
orem 4. For all θ(0) such that ⟨θ⋆ − θ(0), θ⋆⟩ ≠ 0, the learner’s one-step reaction to the
distribution shift as in (18) with any fixed η > 0 satisfies

lim
n→∞

lim
T→∞

⟨θ⋆ − θ
(1)
n,T,η, θ

⋆⟩
⟨θ⋆ − θ(0), θ⋆⟩

= 1 .

Moreover,

lim inf
n→∞

lim
T→∞

∥θ⋆ − θ
(1)
n,T,η∥ > 0 . (20)

Remark 8 The result in Theorem 7 holds valid for any fixed number of gradient descent
steps for the learner

θ(t+1) = θ(t) − η · 1
n

n∑
i=1

∂

∂θ
ℓ(⟨xi, θ⟩, yi)|θ=θ(t) .

Therefore, the learner gets stuck with the adversarial distribution µ̂(1) in making progress
towards θ⋆. Comparing Theorems 6 and 7, we see that the adversarial distribution shifts
in the regression setting make the learner’s one-step subsequent move optimal! (19) shows
that one-step improvement using gradient descent dynamic as in (18) will reach the Bayes
optimal model, also the equilibrium to the minimax game as in (9). On the contrary, in the
classification setting, (20) shows that subsequent learner’s move using gradient descent dy-
namic (regardless of the number of steps) will be trapped with no improvement, preventing
the learner from reaching the Bayes optimal model.

2.3 Numerical Illustration

In this section, we provide two simple numerical simulations, one for regression and one for
classification, to contrast the sharp differences of the directional convergence established in
Theorems 1 and 4.

Experiment setup Both simulations are based on a high-dimensional setting where
X = R200 and supp(µ(0)) = R100 a randomly drawn subspace from the Haar measure
(a uniformly drawn subspace of dimension 100). Specify a Bayes optimal model θ⋆ =
[1, 1/2, . . . , 1/i, . . . , 1/200]⊤, denoted by the the Yellow ⋆ in the figures. The best response

model restricted to the subspace supp(µ(0)), { θ(0)

∥θ(0)∥ direction is noted by Green ▲, and

the remaining signal direction θ⋆−θ(0)

∥θ⋆−θ(0)∥ is denoted by Red ×. The probability distribution

of the covariates is shown by the Blue •. For the experiment, we consider the case when
θ(0) ⊥ θ⋆ − θ(0). To visualize the adversarial distribution shift on a two-dimensional plane,
we project all points to the two-dimensional subspace with horizontal and vertical axes

{ θ(0)

∥θ(0)∥ ,
θ⋆−θ(0)

∥θ⋆−θ(0)∥}. In each simulation, the adversarial distribution shift dynamic is visual-

ized by the motion of the Blue • data clouds. Since we focus on directional convergence,
every data point is visualized by its direction, normalized to the unit ball in R200. Con-
cretely, for each draw x0 ∼ µ(0), we plot at each timestamp xt

∥xt∥ , projected to the plane.

12
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Figure 1: Regression setting, directional convergence. From left to right, top to bottom, we plot
the directional information at timestamp t = 0, 5, 10, . . . , 40, once every 5 iterations.

Directional convergence: regression Consider (8) with y|x = x ∼ Gaussian
(
⟨x, θ⋆⟩, 1

)
and ℓ(y′, y) = (y′ − y)2. The adversarial distribution shift evolves according to (11). Here
the blessing direction ∆b defined in (12) is precisely marked by Red ×. As seen in Figure 1,
the Blue • data clouds collapsed to a align perfectly to ∆b, rapidly. We emphasize that
since the simulation is done in high dimensions, directional convergence |⟨ xt

∥xt∥ ,∆b⟩| = 1

is only true when the Blue • perfectly lands on {±∆b}, shown in t = 40 (the bottom
right subfigure); just aligning to a direction in the two-dimensional domain does not imply
directional convergence in R200.

Directional convergence: classification Consider (8) with y|x = x ∼ Bernoulli
(
σ(⟨x, θ⋆⟩)

)
and ℓ(y′, y) = −y′y + log

(
1 + ey

′
)
. The adversarial distribution shift evolves according to

(11). Here the curse direction ∆c defined in (13) is perpendicular to Yellow ⋆. Seen in
Figure 2, the Blue • data clouds eventually land on the directions {±∆c}. Compared
to Figure 1, the direction {±∆c} is different from the regression case {±∆b}, and the
convergence is much slower (T−2 log2(T ) vs. exp(−T )), as proved by Theorems 6 and 7.
Again we emphasize that alignment to a direction in the two-dimensional domain does not
imply directional convergence in R200: t = 50 (the top right subfigure) |⟨ xt

∥xt∥ ,∆c⟩| ≠ 1;

only when t = 175 (the bottom middle subfigure), we have roughly directional convergence
|⟨ xt

∥xt∥ ,∆c⟩| = 1.
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Figure 2: Classification setting, directional convergence. From left to right, top to bottom, we plot
the directional information at timestamp t = 0, 25, 50, . . . , 200, once every 25 iterations.

2.4 Intuition of the Proof

In this section, we elaborate on the intuition and technical innovation behind the proof of
Theorem 4. Let σ(z) = 1/(1 + e−z) be the sigmoid function and σ′(z) = σ(z)(1 − σ(z)).
The dynamic of the distribution shift is non-convex and non-linear, following the equation

xt+1 = xt + γ ·
[
−σ(⟨xt, θ⋆⟩)

(
1− σ(⟨xt, θ⋆⟩)

)
⟨xt, θ(0)⟩ · θ⋆ +

(
σ(⟨xt, θ(0)⟩)− σ(⟨xt, θ⋆⟩)

)
· θ(0)

]
.

Define η := γ∥θ(0)∥2 > 0 and r := ∥θ⋆−θ(0)∥2
∥θ(0)∥2 . We focus on two summary statistics to keep

track of the directional convergence. For all t ≥ 0, define a sequence of real values at, bt ∈ R

at := ⟨xt, θ(0)⟩ , bt := ⟨xt, θ⋆ − θ(0)⟩ .

The non-linear evolution of the summary statistics is thus defined,

at+1 = at − η · σ′(at + bt)at + η ·
(
σ(at)− σ(at + bt)

)
,

bt+1 = bt − η · rσ′(at + bt)at .

Recall that b0 = ⟨x0, θ⋆ − θ(0)⟩ = ⟨x0, θ⋆ − Πsupp(µ(0))θ
⋆⟩ = 0 since θ(0) ∈ BR(µ(0)) and

x0 ∈ supp(µ(0)). Without loss of generality, we consider a0 = ⟨x0, θ(0)⟩ > 0. The directional
convergence now hinges on studying {at, bt}t≥0, done in Lemma 11.

14
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The proof builds upon the following “rough” observation of {at, bt}t≥0: after a finite
time t0, a key quantity (L for Lyapunov)

Lt :=
σ′(at + bt)at

σ(at)− σ(at + bt)
< 1 (21)

will cross below threshold 1 and deviate away from the threshold 1 for t ≥ t0. However,
perhaps surprisingly, one can show even when t → ∞, the quantity never cross below a
threshold

Lt ≥
1

1 + r
, ∀t ≥ t0 .

Namely, the threshold 1
1+r is a stable fixed point for the quantity Lt. The quantity Lt reg-

ulates the monotonicity of the updates at, bt, at+ bt and determines the order of magnitude
for each term, see Lemma 9.

The above intuition is educative but hard to directly operate upon over iterations, due
to the non-linear form of (21) and the nonlinear recursions of {at, bt}. Instead of directly
working with Lt, we build two envelopes inspired by Lt that are easier to control during
recursions, done in Lemma 12. We define

Lenv-U
t :=

eat+btat

1− e2(at+bt)
, and Lenv-L

t :=
eat+btat
1 + eat+bt

.

We show that these two envelopes are related to Lt in the following sense (Lemma 10), but
not sandwiching it (we only have Lenv-L

t ≤ min{Lt, L
env-U
t })

Lenv-U
t < 1 =⇒ Lt < 1, and Lenv-L

t >
1

1 + r
=⇒ Lt >

1

1 + r
.

It turns out that the envelopes intervene cleanly with the non-linear recursions for t → t+1.
The crux of the argument lies in a strengthened version of the “rough observation” outlined
in the previous paragraph, specifically done in Lemma 12. On the one hand, if the lower

envelope function Lenv-L
t >

1+a−1
t

1+r+a−1
t

∈ [ 1
1+r , 1], then the upper envelope function decreases

in the recursion, Lenv-U
t+1 < Lenv-U

t < 1; On the other hand, the lower envelope function
cannot decrease too much, in the following sense

Lenv-L
t >

1 + a−1
t

1 + r + a−1
t

=⇒ Lenv-L
t+1 >

1 + a−1
t+1

1 + r + a−1
t+1

>
1

1 + r
.

The two envelope functions also ensure the monotonicity of at + bt ↓ −∞ and at ↑ +∞.
To sum up, we can show that the Lt has 1

1+r as the stable fixed point. The analytical
characterization of Lt ensures an explicit rate on the directional convergence. Finally, the
Assumption 1 is a mild condition requiring the dynamic of Lt to reach below 1. All the
detailed proof can be found in Appendix A.
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3 Discussion and Future Work

This paper studied covariate shifts from game-theoretic and dynamic viewpoints, with the
underlying Bayes optimal model being invariant. In particular, we show that under the
Wasserstein gradient flow, the distribution of covariates will converge in directions in both
regression and classification. However, the result presents as a dichotomy: a blessing in
regression, the adversarial covariate shifts in an exponential rate to an optimal experimental
design for rapid subsequent learning; a curse in classification, the adversarial covariate shifts
in a subquadratic rate fast to the hardest experimental design trapping subsequent learning.
We view the work as a starting point for unveiling new insights for adversarial learning and
covariate shift: it cautions the researchers to be aware that robust optimization is brittle
depending on the learning losses, model complexity, and early stopping. In particular,
following potential directions are left as future work.

Discriminative vs. Generative This paper considers discriminative models for the joint
distribution, where the conditional distribution P (Y |X) stays invariant, yet the covariate
distribution P (X) can shift. The main reason is to define the Bayes optimal model as
the equilibrium, invariant regardless of the covariate distribution P (X). We study at the
population level to simplify the main results and analysis. Another line of literature on
adversarial examples, in the classification setting only, considers a generative model, where
P (Y ) stays untouched, yet P (X|Y ) are allowed to shift. By simple Bayes rule, the Bayes
optimal model P (Y |X) will consequently vary, making the concept a moving target. It
is still to be determined if the notion of equilibrium or invariance exists in the generative
setting. We leave it as a future direction for investigation.

Iterative Game Updates This paper only considers running the subsequent learning
after the covariate shift reaches stationarity in direction. Generally, one may envision the
game between the learner and nature by iteratively running gradient descent and ascent
dynamics. The non-asymptotic analysis for iterative game updates, and the trade-offs on
step sizes between the learner and the covariate shift will require future work. The analysis
of iterative game updates could also benefit the understanding of generative models like
generative adversarial networks.

Complex Models This paper shows curious insights into studying infinite-dimensional
linear models with square and logistic loss. What will happen for other nonlinear models,
such as neural networks? Extensions to nonlinear models require highly technical work and
could lead to new insights on covariate shifts.
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Appendix A. Proofs

A.1 Proofs in Section 2.1

Proof [Proof of Theorem 1] In the regression setting, the utility evaluated at delta measure
δx takes the form

U(θ, δx) =
∫
Y
ℓ(fθ(x), y) dπ

⋆
x(y) = ⟨x, θ⋆ − θ⟩2 + 1 .

For each particle x0 ∼ µ(0), the adversarial distribution shift updates following the iteration

xt+1 = xt + γ · ∂

∂x
U(θ(0), δxt) ,

=
[
I + 2γ(θ⋆ − θ(0))(θ⋆ − θ(0))⊤

]
xt ,

= (I + γ̃∆b∆
⊤
b )xt ,

where γ̃ := 2γ∥θ⋆ − θ(0)∥2. Therefore

xT = (1 + γ̃)T ⟨x0,∆b⟩∆b + (I −∆b∆
⊤
b )x0 .

It is then clear to see that

⟨xT ,∆b⟩ = (1 + γ̃)T ⟨x0,∆b⟩ ,

∥xT ∥ =
[
(1 + γ̃)2T ⟨x0,∆b⟩2 + ⟨x0, (I −∆b∆

⊤
b )x0⟩

]1/2
,

and thus, we can conclude the proof by noting∣∣∣∣⟨xT ,∆b⟩
∥xT ∥

∣∣∣∣ = 1[
1 +

⟨x0,(I−∆b∆
⊤
b )x0⟩

(1+γ̃)2T ⟨x0,∆b⟩2

]1/2 .

Proof [Proof of Theorem 4] Let σ(z) = 1/(1 + e−z) be the sigmoid function and σ′(z) =
σ(z)(1− σ(z)). In the classification setting,

U(θ, δx) =
∫
Y
ℓ(fθ(x), y) dπ

⋆
x(y) =

1

1 + e−⟨x,θ⋆⟩ log
(
1 + e−⟨x,θ⟩

)
+

1

1 + e⟨x,θ⋆⟩
log
(
1 + e⟨x,θ⟩

)
.

For each particle x0 ∼ µ(0), the adversarial distribution shift reads

xt+1 = xt + γ · ∂

∂x
U(θ(0), δxt) ,

= xt + γ ·
[
−σ(⟨xt, θ⋆⟩)

(
1− σ(⟨xt, θ⋆⟩)

)
⟨xt, θ(0)⟩ · θ⋆ +

(
σ(⟨xt, θ(0)⟩)− σ(⟨xt, θ⋆⟩)

)
· θ(0)

]
.

For all t ≥ 0, define a sequence of real values (at, bt) ∈ R2

at := ⟨xt, θ(0)⟩ , bt := ⟨xt, θ⋆ − θ(0)⟩ .
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Let η := γ∥θ(0)∥2 > 0. Then the recursive relationship on {at, bt} induced by the dynamics
reads

at+1 = at − η · (1 +
√
rq)σ′(at + bt)at + η ·

(
σ(at)− σ(at + bt)

)
,

bt+1 = bt − η · (
√
rq + r)σ′(at + bt)at + η ·

√
rq
(
σ(at)− σ(at + bt)

)
,

where q :=
〈

θ⋆−θ(0)

∥θ⋆−θ(0)∥ ,
θ(0)

∥θ(0)∥

〉
and r := ∥θ⋆−θ(0)∥2

∥θ(0)∥2 . To study the directional convergence, we

need sharp characterizations of the sequence {at, bt} following the above non-linear, non-
convex updates. The main technical hurdle is to derive a precise estimate on the following
quantity, done in Lemma 9, ∣∣∣∣aT + bT

aT

∣∣∣∣ = O

(
log(T )

T

)
.

To apply Lemma 9, we note the assumption θ(0) ⊥ θ⋆ − θ(0), which in turn simplifies the
dynamics with q = 0.

Recall that the direction ∆c can be written as

∆c = − 1√
1 + r

· θ⋆ − θ(0)

∥θ⋆ − θ(0)∥
+

√
r√

1 + r
· θ(0)

∥θ(0)∥
.

Therefore

⟨xT ,∆c⟩ = − 1√
1 + r

· bT

∥θ⋆ − θ(0)∥
+

√
r√

1 + r
· aT

∥θ(0)∥

∥xT ∥ =

[
b2T

∥θ⋆ − θ(0)∥2
+

a2T
∥θ(0)∥2

+
〈
x0,Π

⊥
{θ(0),θ⋆−θ(0)}x0

〉]1/2
,

and thus we conclude the proof recalling Lemma 9

⟨xT ,∆c⟩
∥xT ∥

=
(1 + r)aT − (aT + bT )

√
1 + r

√
b2T + ra2T + ∥θ⋆ − θ(0)∥2

〈
x0,Π⊥

{θ(0),θ⋆−θ(0)}x0
〉

=
1− 1

1+r
aT+bT

aT√
1− 2

1+r
aT+bT

aT
+ 1

1+r

[(
aT+bT

aT

)2
+

⟨x0,Π⊥
{θ(0),θ⋆−θ(0)}

x0⟩

a2T

] .

Lemma 9 (Nonlinear recursions) Let σ(z) = 1/(1 + e−z) be the sigmoid function and
σ′(z) = σ(z)(1 − σ(z)). Define the nonlinear recursion for fixed r, η > 0, with a0 > 0 and
b0 = 0

at+1 = at − η · σ′(at + bt)at + η ·
(
σ(at)− σ(at + bt)

)
, (22)

bt+1 = bt − η · rσ′(at + bt)at . (23)
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Assume there exists some t0 ∈ N, such that (at0 , bt0) satisfy Assumption 1 with r > 0, c > 1.
Then as T → ∞, aT + bT → −∞ and aT → +∞ and

|aT + bT | = O(log(T )) ,

aT = Θ(T ) .

Proof [Proof of Lemma 9] at0 and bt0 satisfy the conditions in Lemma 11, therefore we
know at+1 > at > 0, and at+1 + bt+1 < at + bt < 0 for t ≥ t0. Given the monotonicity, the
proof proceeds in the following steps. First, note that

rat+1 − bt+1 = rat − bt + η · r
(
σ(at)− σ(at + bt)

)
, (24)

at+1 + bt+1 =
(
1− ησ′(at + bt)

)
(at + bt)− ησ′(at + bt)(rat − bt) + η

(
σ(at)− σ(at + bt)

)
.

(25)

Below we use the Bachmann–Landau notation: we say two sequences of positive real
numbers xt = O(zt) iff lim supt→∞ xt/zt < ∞, xt = Ω(zt) iff lim inft→∞ xt/zt > 0, and
xt = Θ(zt) iff xt = O(zt) and xt = Ω(zt).

1. Observe that at > 0, bt ≤ 0 and bt+1 < bt monotonic decreasing. The proof is
straightforward from induction observing the form of (22)-(23).

2. Claim rat − bt → +∞. Proof by contradiction. If the monotonic sequence rat − bt is
uniformly upper bounded by M . Then σ(at)− σ(at + b1) ≤ σ(at)− σ(at + bt) = o(1),
which implies at → ∞, and therefore contradicts rat ≤ rat − bt ≤ M .

3. Claim bt → −∞. Proof by contradiction. If bt is bounded below by −M , then
η · rσ′(at + bt)at → 0. Note at ≥ at0 > 0, then σ′(at + bt) → 0. Recall that
at + bt ≤ at0 + bt0 < 0 and is monotonic decreasing, then at + bt → −∞ and thus bt
must go to negative infinity. We therefore reach a contradiction.

4. Claim at → +∞. Proof by contradiction, if at bounded by above by M , then at+bt →
−∞, then at+1−at ≥ η

(
1
2−σ(at+bt)

)
−ησ′(at+bt)M ≥ η

(
1
2−(M+1)σ(at+bt)

)
≥ 1

4η
for t large enough. We thus reach a contradiction.

5. Claim at + bt → −∞. If |at + bt| ≤ M for some absolute constant M , then (25) is a
contradiction as we have proved rat − bt → +∞.

6. Claim lim
t→∞

rat−bt
t = ηr. We have shown that limt→∞ at → ∞ and limt→∞ at + bt =

−∞.

lim
t→∞

σ(at)− σ(at + bt) = 1 .

Therefore by (24) we can show lim
t→∞

rat−bt
t = ηr.

7. Claim lim inf
t→∞

σ′(at + bt)(rat − bt) ≥ lim inf
t→∞

rσ′(at + bt)at ≥ r
1+r . Here the last

inequality uses the fact σ′(at+bt)at
σ(at)−σ(at+bt)

∈
[

1+ 1
at

(1+r)+ 1
at

, 1

)
, established in Lemma 11.
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8. Claim lim sup
t→∞

|at+bt|
log(t) ≤ 1. This fact is immediate because of σ′(at+bt)(rat−bt) = Ω(1)

and rat − bt = Θ(t).

9. Claim at =
rat−bt
r+1 + at+bt

r+1 = Θ(t) − O(log(t)) = Θ(t). Similarly, we can show −bt =
Θ(t).

A.2 Technical Lemmas for Section 2.1

This section contains the technical building blocks for proofs in Section 2.1. Recall σ(z) =
1/(1 + e−z) is the sigmoid function and σ′(z) = σ(z)(1− σ(z)).

Lemma 10 Define Gδ(x, z) := −(1 + δ)σ′(z)x+ σ(x)− σ(z), for δ ≥ 0, z < 0 and x ≥ 0.
Then,

• Fix z < 0 and δ ∈ [0,∞). If x > 1
1+δ (e

−z + 1), then Gδ(x, z) < 0.

• Fix z < 0 and δ ∈ [0, 1], If x < 1
1+δ (e

−z − ez), then Gδ(x, z) > 0.

Proof [Proof of Lemma 10] Gδ(x, z) is a concave function in x for x ≥ 0 that only crosses
the x-axis once. Denote x0 > 0 to be the unique solution to Gδ(x0, z) = 0 for a fixed z < 0,
then

(1 + δ)σ′(z)x0 = σ(x0)− σ(z) ≤ 1− σ(z) .

We know x0 ≤ 1
1+δ

1−σ(z)
σ′(z) and first claim is thus established.

The second claim follows as

Gδ(−z, z) ≥ 0 , ∀0 ≤ δ ≤ 1 .

This is because infz≤0
σ(−z)−σ(z)
−σ′(z)z ≥ 2 > 1 + δ. Denote x0 > 0 to be the unique solution to

Gδ(x0, z) = 0, we just proved x0 > −z and therefore

σ(−z)− σ(z) ≤ σ(x0)− σ(z) = (1 + δ)σ(z)[1− σ(z)]x0 .

Therefore x0 >
1

1+δ
σ(−z)−σ(z)

σ′(z) . Rearrange the terms, we have proved x0 >
1

1+δ (e
−z − ez).

Lemma 11 Fix r > 0 and η < 1/2(2 + r). Consider the recursive relationship defined in
Lemma 9. Assume there exists some t0 ∈ N, such that (at0 , bt0) satisfy Assumption 1 with
r > 0 and c > 1. Then for t ≥ t0, we have

• at+1 > at is monotonic increasing ;

• at+1 + bt+1 < at + bt is monotonic decreasing ;
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and

σ′(at + bt)at
σ(at)− σ(at + bt)

∈

[
1 + 1

at

(1 + r) + 1
at

, 1

)
, ∀t ≥ t0 .

Proof [Proof of Lemma 11] The proof relies on induction. By assumption at t = t0, we
know

eat+btat

1− e2(at+bt)
< 1 ,

eat+btat
1 + eat+bt

≥
1 + 1

at

1 + r + 1
at

.

Therefore there exists some fixed small ϵ > 0 that satisfies

eat+btat

1− e2(at+bt)
≤ 1

1 + ϵ
,

eat+btat
1 + eat+bt

≥
1 + 1

at

1 + r + 1
at

. (26)

Apply Lemma 10, we know G0(at, at+ bt) > Gϵ(at, at+ bt) ≥ 0, and G r
1+1/at

(at, at+ bt) < 0,

which implies

σ′(at + bt)at
σ(at)− σ(at + bt)

∈ [
1 + 1

at

1 + r + 1
at

,
1

1 + ϵ
] ⊂ [

1

1 + r
, 1) , for t = t0 .

Furthermore, monotonicity can be established for t = t0,

at+1 = at + ηG0(at, at + bt) > at > c , (27)

at+1 + bt+1 = at + bt + ηGr(at, at + bt) < at + bt + ηG r
1+1/at

(at, at + bt) < at + bt . (28)

Now for the induction step from t to t + 1, we apply the Lemma 12. The assumptions
for Lemma 12 are verified, and therefore

eat+1+bt+1at+1

1− e2(at+1+bt+1)
<

eat+btat

1− e2(at+bt)
≤ 1

1 + ϵ
,
eat+1+bt+1at+1

1 + eat+1+bt+1
>

1 + 1
at+1

1 + r + 1
at+1

.

Repeat the induction step we can complete the proof.

Lemma 12 Fix r > 0 and η < 1/2(2 + r). Consider the one-step recursive relationship
defined in Lemma 9. Assume (at, bt) satisfy the Assumption 1 with r > 0 and c > 1. Then
we have at+1+bt+1 < at+bt and at+1 > at, and furthermore satisfy the following inequality

eat+1+bt+1at+1

1− e2(at+1+bt+1)
<

eat+btat

1− e2(at+bt)
, (29)

eat+1+bt+1at+1

1 + eat+1+bt+1
>

1 + 1
at+1

1 + r + 1
at+1

. (30)

In other words, (at+1, bt+1) satisfy Assumption 1 as well.

Proof [Proof of Lemma 12] The proof consists of two parts: a recursive estimate for the
upper bound to prove (29) and then a recursive estimate for the low bound in (30). First,
due to (27) and (28), we know at+1 + bt+1 < at + bt and at+1 > at.
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Upper bound recursion Now let’s establish the recursion for the upper bound. Note

eat+1+bt+1at+1

1− e2(at+1+bt+1)
<

eat+1+bt+1at+1

1− e2(at+bt)
∵ at+1 + bt+1 < at + bt

=
eat+btat

1− e2(at+bt)
eηGr(at,at+bt)(1 + η

G0(at, at + bt)

at
)

≤ eat+btat

1− e2(at+bt)
e
ηGr(at,at+bt)+η

G0(at,at+bt)
at ∵ 1 + z ≤ ez

=
eat+btat

1− e2(at+bt)
e
η(1+ 1

at
)G r

1+1/at
(at,at+bt)

by definition of Gθ(x, z)

<
eat+btat

1− e2(at+bt)
< 1 ∵ G r

1+1/at
(at, at + bt) < 0 .

In addition, we can prove that there exists a constant ϵ > 0 as in (26) such that Gϵ(at, at +
bt) > 0 and

at+1 − at = η(σ(at)− σ(at + bt))[1−
σ′(at + bt)at

σ(at)− σ(at + bt)
] > η(σ(c)− σ(0))

ϵ

1 + ϵ
= Ω(1).

Lower bound recursion Define

rt :=
1 + 1

at

1 + r + 1
at

, ∀t .

Define r̃t := σ(at + bt)at, we are going to establish r̃t+1 > rt+1.

Now let’s establish the recursion for the lower bound.

eat+1+bt+1at+1

1 + eat+1+bt+1
>

eat+1+bt+1at+1

1 + eat+bt
∵ at+1 + bt+1 < at + bt

=
eat+btat
1 + eat+bt

eηGr(at,at+bt)e
log

(
1+

at+1−at
at

)

>
eat+btat
1 + eat+bt

eηGr(at,at+bt)e
η
G0(at,at+bt)

at+1 ∵ log(1 + z) >
z

1 + z

= σ(at + bt)at · e
η
(
−(1+r+ 1

at+1
)σ′(at+bt)at+(1+ 1

at+1
)[σ(at)−σ(at+bt)])

)
.

Recall the definition of r̃t := σ(at + bt)at, we continue

= σ(at + bt)at · e
η
(
−(1+r+ 1

at+1
)σ′(at+bt)at+(1+ 1

at+1
)[σ(at)−σ(at+bt)])

)
= r̃t · e

η
(
−(1+r+ 1

at+1
)σ′(at+bt)at+(1+ 1

at+1
)[1−σ(at+bt)])

)
e
−η(1+ 1

at+1
)(1−σ(at))

= r̃t · e
η[1−σ(at+bt)]

(
−(1+r+ 1

at+1
)σ(at+bt)at+(1+ 1

at+1
))
)
e
−η(1+ 1

at+1
)(1−σ(at))

> r̃t ·

{
1− η[1− σ(at + bt)](1 + r +

1

at+1
)
(
r̃t −

1 + 1
at+1

1 + r + 1
at+1

)}
e
−η(1+ 1

at+1
)(1−σ(at))

.
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Here the last two lines follow from the facts σ′(z) = σ(z)(1−σ(z)) and ez ≥ 1+ z. We first
control the last term on the RHS of the above equation,

e
−η(1+ 1

at+1
)(1−σ(at)) ≥ 1− η(1 +

1

at+1
)(1− σ(at)) > 1− η

1 + c−1

1 + eat
> 1− η(1 + c−1)e−at .

Define η̃ := η(1 + r + c−1) > η[1− σ(at + bt)](1 + r + 1
at+1

), we continue with the bound

r̃t+1 > r̃t

[
1− η̃

(
r̃t − rt+1

)] [
1− η(1 + c−1)e−at

]
. (31)

For at > c some absolute constant, we have e−at < rt − rt+1, as the RHS rt − rt+1 is of

order (at+1−at)a
−2
t = Θ(a−2

t ) yet the LHS is exponential in at. Therefore η(1+ c−1)e−at <
η̃e−at < η̃

(
rt − rt+1

)
< η̃

(
r̃t − rt+1

)
, and thus (31) reads

r̃t+1 > r̃t

[
1− η̃

(
r̃t − rt+1

)]2
.

One can subtract rt+1 on both sides, and see

r̃t+1 − rt+1 > r̃t

[
1− η̃

(
r̃t − rt+1

)]2
− rt+1 ≥ (r̃t − rt+1)[1− 2η̃r̃t + η̃2r̃t(r̃t − rt+1)] .

The lower bound on Eqn. (30) is true as long as the RHS of the above is positive

(r̃t − rt+1)[1− 2η̃r̃t + η̃2r̃t(r̃t − rt+1)] > 0 .

Note η̃ = η(1 + r + c−1) < η(2 + r) < 1/2, r̃t < 1 and r̃t > rt > rt+1, we have concluded

eat+1+bt+1at+1

1 + eat+1+bt+1
= r̃t+1 > rt+1 =

1 + 1
at+1

1 + r + 1
at+1

.

A.3 Proofs in Section 2.2

Proof [Proof of Theorem 6] Let yi = ⟨xi, θ⋆⟩+ ϵi with ϵi i.i.d. Gaussian, then

θ(1) = θ(0) − η · 1
n

n∑
i=1

∂

∂θ
ℓ(⟨xi, θ⟩, yi)|θ=θ(0) ,

θ(1) − θ⋆ =

(
I − 2η

1

n

n∑
i=1

xi ⊗ xi

)
(θ(0) − θ⋆) + 2η

1

n

n∑
i=1

ϵixi .

Fix n, first let T → ∞. Theorem 1 shows that xiT → ∆b (we denote the dependence on T
explicitly) in the following sense

⟨xiT ,∆b⟩2 ≥ 1−O(e−cT ) .
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Choose η = 1/2, we have

∥θ(1) − θ⋆∥ ≤ ∥ (I − 1

n

n∑
i=1

xi ⊗ xi)(θ(0) − θ⋆)︸ ︷︷ ︸
:=Γ

∥+ ∥ 1
n

n∑
i=1

ϵixi∥ .

For the first term Γ, note Γ = ⟨∆b,Γ⟩∆b +Π⊥
∆b

Γ. Along the direction ∆b,

⟨∆b,Γ⟩ = ∥θ(0) − θ⋆∥ · (1− 1

n

n∑
i=1

⟨xi,∆b⟩2) .

Projecting to the orthogonal complement to ∆b, we know

∥Π⊥
∆b

Γ∥ ≤ 1

n

n∑
i=1

⟨xi,∆b⟩∥Π⊥
∆b

xi∥ ≤ 1

n

n∑
i=1

⟨xi,∆b⟩
√

1− ⟨xi,∆b⟩2 .

Therefore

lim
T→∞

∥Γ∥ ≤ lim
T→∞

{
∥θ(0) − θ⋆∥ · (1− 1

n

n∑
i=1

⟨xiT ,∆b⟩2) +
1

n

n∑
i=1

⟨xiT ,∆b⟩
√
1− ⟨xiT ,∆b⟩2

}
= 0 .

For the second term, we apply the Hanson–Wright inequality and recall ∥xi∥ = 1 to reach∥∥∥∥∥ 1n
n∑

i=1

ϵixi

∥∥∥∥∥ ≤

√
C1 ·

Tr(
∑n

i=1 xi⊗xi

n )(1 + log0.5(1/δ)) + C2∥
∑n

i=1 xi⊗xi

n ∥op log(1/δ)
n

= O(

√
log(1/δ)

n
)

with probability at least 1− δ.

Proof [Proof of Theorem 7] In what follows, we consider fixed n, and let T → ∞.

θ(1) = θ(0) − η · 1
n

n∑
i=1

∂

∂θ
ℓ(⟨xi, θ⟩, yi)|θ=θ(0) ,

θ(1) − θ⋆ = (θ(0) − θ⋆)− η
1

n

n∑
i=1

(
σ(⟨xi, θ(0)⟩)− yi

)
xi .

Theorem 1 shows that xiT → ∆c, where the convergence means directional convergence, and
we denote the dependence on T explicitly. Then as limT→∞ ⟨∆c, x

i
T ⟩ = 1 and ∥xiT ∥ = 1,

we know,

lim
T→∞

⟨ θ⋆

∥θ⋆∥ , x
i
T ⟩2 = 1− lim

T→∞
⟨∆c, x

i
T ⟩2 = 0 ,

and therefore

lim
T→∞

∣∣∣⟨θ⋆ − θ
(1)
n,T,η,

θ⋆

∥θ⋆∥⟩ − ⟨θ⋆ − θ(0), θ⋆

∥θ⋆∥⟩
∣∣∣ ≤ η

1

n

n∑
i=1

lim
T→∞

|σ(⟨xiT , θ(0)⟩)− yiT
∣∣ · ∣∣⟨ θ⋆

∥θ⋆∥ , x
i
T ⟩
∣∣→ 0 .

The final claim is a direct fact from

lim
T→∞

∥θ⋆ − θ
(1)
n,T,η∥ ≥

∣∣∣⟨θ⋆ − θ
(1)
n,T,η,

θ⋆

∥θ⋆∥⟩
∣∣∣ = ∣∣∣⟨θ⋆ − θ(0), θ⋆

∥θ⋆∥⟩
∣∣∣ .

We conclude the proof by taking lim inf w.r.t. to n.
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