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Motivation



Learning vs. domain adaptation

Two environments: source/training and target/testing

X covariate, Y response or label

Learn a statistical model/hypothesis f̂ : X → Y using data collected

from source/training dom

Deploy f̂ to target/testing dom

Question

Small discrepancy between source/training and target/testing makes

domain adaptation possible?
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Adversarial examples

Question

Small discrepancy between source/training and target/testing makes

domain adaptation possible?

Goodfellow, Shlens, and Szegedy, 2014
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Quest for robustness

How to make the learned model f̂ robust to distributional shift, domain

extrapolation or adversarial perturbation?

• robust features/representations (invariance)

• robust learning procedure (adversarial)

• regularization perspective

• loss function perspective

• other notions of robustness? boosting?
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Environment shift and learning

Chicken and egg problem:

Environment 1 Environment 2 Environment 3

Decision 1 Decision 2 Decision 3

• model environment change:

RL, control, time series analysis

• study equilibria:

game-theoretic, dynamics

Lucas Critique, 1976

“Given that the structure of an econometric model

consists of optimal decision rules of economic agents,

and that optimal decision rules vary systematically

with changes in the structure of series relevant to the

decision maker, it follows that any change in policy

will systematically alter the structure of econometric

models.”
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This paper: game-theoretic and dynamic viewpoints

to study covariate shift and adversarial learning
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Literature and Background



Learning vs. domain adaptation

Learnability πsource Vapnik, 1999

R(f̂ , πsource) ≤ R̂(f̂ , πsource) + VC bound

R(f̂ , πsource) ≤ inf
f
R(f , πsource) + excess risk

Dom Adaptation πsource vs. πtarget Ben-David, Blitzer, Crammer, and Pereira,

2006
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Learning vs. domain adaptation

Learnability πsource Vapnik, 1999

R(f̂ , πsource) ≤ R̂(f̂ , πsource) + VC bound

R(f̂ , πsource) ≤ inf
f
R(f , πsource) + excess risk

Dom Adaptation πsource vs. πtarget Ben-David, Blitzer, Crammer, and Pereira,

2006

Common hypothesis f with small error in both πsource and πtarget

Small discrepancy between measures disc(πtarget, πsource)

Hypothesis shift Psource(Y |X ) 6= Ptarget(Y |X )

concept (Bayes optimal) is a moving target, hard problem

Ben-David, Lu, et al., 2010

Covariate shift Psource(X ) 6= Ptarget(X )

same concept, different evaluation metric, feasible problem

Stone, 1980; Shimodaira, 2000; Sugiyama, Krauledat, and Müller, 2007
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Discrepancy and perturbation

What discrepancy disc(πtarget, πsource)? How to encourage small

discrepancy, or directly, small target error?

• IPM: disc(πt, πs) = supf |
∫
`(f , z)dπt(z)−

∫
`(f , z)dπs(z) |

total variation, adversarial metric Ben-David, Blitzer, Crammer, Kulesza, et al.,

2010; Mansour, Mohri, and Rostamizadeh, 2009

• KL and likelihood ratio:
∫
`(f , z)dπt(z) =

∫
`(f , z)dπt(z)

dπs(z) dπs(z)

reweighted ERM: weight data by likelihood ratio dπt

dπs
Sugiyama,

Krauledat, and Müller, 2007; Sugiyama and Mueller, 2005

• Regularization: `(f , z)− `(f , z ′) is small if z , z ′ close
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`(f , z)dπt(z)

dπs(z) dπs(z)

reweighted ERM: weight data by likelihood ratio dπt

dπs
Sugiyama,

Krauledat, and Müller, 2007; Sugiyama and Mueller, 2005

• Regularization: `(f , z)− `(f , z ′) is small if z , z ′ close

Closely connected! optimal transport/Wasserstein metric

|R(f , πt)−R(f , πs)| = |
∫
`(f , z)dπt(z)−

∫
`(f , z)dπs(z) |

≤ inf
γ∈Π(πt,πs)

∫
ωf (‖z − z ′‖)dγ(z , z ′)

≤ discW(πt, πs)
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Adversarial learning and robust optimization

Learn the best model within small discrepancy perturbation

• Adversarial learning and examples Goodfellow, Shlens, and Szegedy, 2014; Ilyas

et al., 2019; Madry et al., 2017

• Distributionally robust optimization Delage and Ye, 2010

min
f∈F

max
π: dW(π,πs)≤γ

R(f , π)

A long list: Bartlett, Bubeck, and Cherapanamjeri, 2021; Bubeck et al., 2021; Javanmard and

Soltanolkotabi, 2022; Javanmard, Soltanolkotabi, and Hassani, 2020; Ross and Doshi-Velez, 2018...
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Adversarial learning vs. robust optimization

min
f∈F

max
π: dW(π,πs)≤γ

R(f , π)

Two views:

• Game-theoretic view: finding equilibria

• Dynamic view: finding adversarial examples
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R(f , π)

Two views:

• Game-theoretic view: finding equilibria

• game between learner (statistical model, f ) and nature (data

distribution, π)

• infinite dimensional game: does minimax theorem hold?

• what notions of equilibria? Stackelberg, Nash

• Dynamic view: finding adversarial examples
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Adversarial learning vs. robust optimization

min
f∈F

max
π: dW(π,πs)≤γ

R(f , π)

Two views:

• Game-theoretic view: finding equilibria

• Dynamic view: finding adversarial examples

• for a given model f , gradient ascent on data finds adversarial

examples

• equiv. Wasserstein gradient flow on π

π := arg min
π

−R(f , π) +
1

γ
dW(π, πs)

• hardest extrapolation domain for a given model f ?
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Game-theoretic and dynamic views: boosting

Boosting and KL discrepancy Freund and Schapire, 1997, 1999

Learner linear fθ(x) = 〈θ, x〉, x ∈ Rp prediction of weak learners

Nature finitely supported on fixed points πw =
∑n

i=1 wiδ(xi ,yi ),

w ∈ ∆n prob. simplex

Dynamics exponentiated gradient step

w t+1 := arg min
w∈∆n

−R(θ,w) +
1

γ
dKL(w ,w t)

Equilibria max-min margin solution

θ? = arg min
θ: ‖θ‖≤1

max
w∈∆n

R(θ,w), where R(θ,w) := −
n∑

i=1

wiyi 〈xi , θ〉

No extrapolation: nature shift weights, same domain/support

Kullback-Leibler as discrepancy measure, exponentiated gradient

Hypothesis shift: no. Psource(Y |X ) ≡ Ptarget(Y |X )

Covariate shift: yes. Psource(X ) 6= Ptarget(X )
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This paper

Extrapolation: nature change domain, move outside support

Wasserstein as discrepancy measure, Wasserstein gradient

Hypothesis shift: no. Psource(Y |X ) ≡ Ptarget(Y |X )

Covariate shift: yes. Psource(X ) 6= Ptarget(X )

Our goal: game-theoretic and dynamic

Adversarial covariate shifts move the current covariate

domain to an extrapolation region. We precisely

characterize the region driven by the adversarial

dynamics, and subsequent implications to subsequent

learning of equilibrium of the game.
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Main Results



Problem setup

• Model class: infinite-dimensional linear model

F := {fθ | fθ(x) := 〈x , θ〉, θ ∈ `2
N}

• Risk or utility:

U(θ, µ) = E
(x,y)∼πµ

[
`(fθ(x), y)

]
=

∫
X

[ ∫
Y

`(fθ(x), y)dπ?x (y)
]
dµ(x)

• Conditional concept Y |X : π?x (y)

Regression: y|x = x ∼ Gaussian
(
〈x, θ?〉, 1

)
, `(f , y) = (f − y)2

Classification: y|x = x ∼ Bernoulli
(
σ(〈x, θ?〉)

)
, `(f , y) = −fy + log

(
1 + e f

)
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Equilibrum and dynamics

• Game: model θ ∈ `2
N and covariate distribution µ ∈ P(X ),

competing for the risk

• Equilibrium: Bayes optimal model f ?Bayes(x) = 〈x , θ?〉 is a Nash

equilibrium of U(·, ·)

min
θ

max
µ
U(θ, µ) ≥ max

µ
min
θ
U(θ, µ) ≥ max

µ

∫
X

[
min
θ∈`2

N

∫
Y

`(fθ(x), y) dπ?x (y)
]
dµ(x)

= max
µ
U(θ?, µ) ≥ min

θ
max
µ
U(θ, µ)

• Dynamics: given model θ(0), the covariate distribution µ(0) is

adversarially perturbed incrementally with Wasserstein as disc.
set stepsize γ ∈ R+, initialize ν0 := µ(0),

νt+1 := arg min
ν∈P(X )

− U(θ(0)
, ν) +

1

γ
W 2

2 (ν, νt) , for t = 0, 1, . . . ,T

and then set µ(1) := νT+1
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Main contributions

We show two directional convergence results that exhibit distinctive

phenomena:

Contributions

1. a blessing in regression, the adversarial covariate shifts in an

exponential rate to an optimal experimental design for rapid

subsequent learning

2. a curse in classification, the adversarial covariate shifts in a

subquadratic rate to the hardest experimental design trapping

subsequent learning

15



Let θ(0) ∈ `2
N be the current learning model and θ? − θ(0) be the

remaining signal to be identified

Define two unit-norm directions: the blessing direction ∆b and the curse

direction ∆c

∆b :=
θ? − θ(0)

‖θ? − θ(0)‖
∈ `2

N(1)

∆c := −‖θ
(0)‖
‖θ?‖

· θ? − θ(0)

‖θ? − θ(0)‖
+
‖θ? − θ(0)‖
‖θ?‖

· θ(0)

‖θ(0)‖
∈ `2

N(1)

blessing direction: ∆b//θ
? − θ(0)

curse direction: ∆c ⊥ θ?
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Regression
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Regression: directional convergence

Theorem (L., 2022)

Consider the regression setting where `(y ′, y) = (y ′ − y)2 and

y|x = x ∼ Gaussian
(
〈x , θ?〉, 1

)
.

Let x0 ∈ supp(µ(0)) that satisfies a mild initialization condition, then

the adversarial distribution shift dynamic satisfies

lim
T→∞

∣∣∣〈 xT
‖xT‖ ,∆b

〉∣∣∣ = 1 , where ∆b//θ
? − θ(0)

Moreover, the directional convergence is exponential in T ,∣∣∣〈 xT
‖xT‖ ,∆b

〉∣∣∣ ∈ [1− O
(

1
ecT

)
, 1
]
.

18



Regression: directional convergence

Some remarks

• adversarial distribution shift dynamics µ(0) → µ(1) align all the mass

of the covariates along the most informative direction for the

next stage of learning: a one-dimensional “blessing” direction ∆b

• the adversarial distribution shift asymptotically constructs the

optimal covariate design for the next stage of learning: making

the current model θ(0) suffer is revealing the information towards the

equilibrium of learning, the Bayes optimal model θ?

• directional alignment is fast, exponential!

19



Regression: numeric study

1

0

1

1

0

1

0 1
1

0

1

0 1 0 1

Regression setting, directional convergence. From left to right, top to bottom, we plot the

directional information at timestamp t = 0, 5, 10, . . . , 40, once every 5 iterations.
20



Regression: impact on subsequent learning

Theorem (L., 2022)

The learner’s one-step reaction to the distribution shift with η = 1/2

satisfies

lim
n→∞

lim
T→∞

‖θ? − θ(1)
n,T ,η‖ = 0 a.s. .

For regression, the adversarial distribution shifts make the learner’s

one-step subsequent move optimal! The above shows that one-step

improvement using gradient descent dynamic will reach the Bayes

optimal model.
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Classification
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Classification: directional convergence

Theorem (L., 2022)

Consider the classification setting where

`(y ′, y) = −y ′y + log
(

1 + ey
′
)

and y|x = x ∼ Bernoulli
(
σ(〈x , θ?〉)

)
.

Let x0 ∈ supp(µ(0)) that satisfies a mild initialization condition, then

the adversarial distribution shift dynamic satisfies

lim
T→∞

∣∣∣〈 xT
‖xT‖ ,∆c

〉∣∣∣ = 1 , where ∆c ⊥ θ?

Moreover, the directional convergence is quadratic in T/ log(T ),∣∣∣〈 xT
‖xT‖ ,∆c

〉∣∣∣ ∈ [1− O
( log2(T )

T 2

)
, 1
]

Proof non-trivial: a non-convex non-linear system for covariate shift

dynamics.
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Classification: directional convergence

Some remarks

• adversarial distribution shift dynamics µ(0) → µ(1) asymptotically

align all the mass of the covariates along a one-dimensional, “curse”

direction ∆c ⊥ θ?, orthogonal to the Bayes optimal model.

• adversarial shift (under the logistic loss) asymptotically constructs

the hardest covariate design under the 0− 1 loss, for the next

stage of learning. Namely, the (x , y) ∼ πµ(1) where y is a Bernoulli

coin-flip that is independent of x , impossible to predict!

• directional alignment is slower, sub-quadratic!

Contrasts sharply with the phenomenon in the regression setting.
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Classification: numeric study

0

1

0

1

0 1

0

1

0 1 0 1

Classification setting, directional convergence. From left to right, top to bottom, we plot the

directional information at timestamp t = 0, 25, 50, . . . , 200, once every 25 iterations.
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Classification: impact on subsequent learning

Theorem (L., 2022)

The learner’s one-step reaction to the distribution shift with any fixed

η > 0 satisfies

lim
n→∞

lim
T→∞

〈θ? − θ(1)
n,T ,η, θ

?〉
〈θ? − θ(0), θ?〉

= 1 .

Moreover,

lim inf
n→∞

lim
T→∞

‖θ? − θ(1)
n,T ,η‖ > 0 .

For classification, the above shows that subsequent learner’s move using

gradient descent dynamic (regardless of the number of steps) will be

trapped with no improvement, preventing the learner from reaching the

Bayes optimal model.
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Future Directions and

Discussions



• Connections: adversarial learning and (automated) experiment

design

• regression: optimal design

• classification: hardest design

• Tradeoffs: myopic learning vs. eventual learning

• adversarial perturbation makes the current model suffer

• yet, it may be beneficial to subsequent learning

• Lucas Critique:
“Given that the structure of an econometric model consists of optimal decision rules

of economic agents, and that optimal decision rules vary systematically with changes

in the structure of series relevant to the decision maker, it follows that any change in

policy will systematically alter the structure of econometric models.”

• Finite-sample bounds and nonlinear models

• Insights to understand GANs, domain adaptation, and more...
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Thank you.

Liang, Tengyuan (2022). “Blessings and Curses of Covariate Shifts: Adversarial Learning

Dynamics, Directional Convergence, and Equilibria”. In: arXiv preprint arXiv:2212.02457.
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Intuition of the Proof

• Regression: PCA-based analysis

• Classification: novel proof technique

• dynamic of the distribution shift is non-convex and non-linear

• two summary statistics at , bt to keep track of the directional

convergence

• rough intuition: after a finite time t0, a key quantity (L for Lyapunov)

Lt :=
σ′(at + bt)at

σ(at)− σ(at + bt)
< 1

will cross below threshold 1 and deviate away from the threshold 1

for t ≥ t0. However, perhaps surprisingly, one can show even when

t →∞, the quantity never cross below a threshold

Lt ≥
1

1 + r
, ∀t ≥ t0

• still hard to operate with recursions, define two envelope functions to

confine the flow

Lenv−U
t :=

eat+bt at
1− e2(at+bt )

, and Lenv−L
t :=

eat+bt at
1 + eat+bt



Intuition of the Proof

• Lenv−Ut < 1 =⇒ Lt < 1, and Lenv−Lt > 1
1+r =⇒ Lt >

1
1+r

• if the lower envelope function Lenv−Lt > 1+a−1
t

1+r+a−1
t

∈ [ 1
1+r , 1], then the

upper envelope function decreases in the recursion,

Lenv−Ut+1 < Lenv−Ut < 1

• the lower envelope function cannot decrease too much

Lenv−Lt >
1 + a−1

t

1 + r + a−1
t

=⇒ Lenv−Lt+1 >
1 + a−1

t+1

1 + r + a−1
t+1

>
1

1 + r
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Bartlett, Peter, Sébastien Bubeck, and Yeshwanth Cherapanamjeri

(2021). “Adversarial examples in multi-layer random relu networks”.

In: Advances in Neural Information Processing Systems 34,

pp. 9241–9252.

Ben-David, Shai, John Blitzer, Koby Crammer, Alex Kulesza, et al.

(2010). “A theory of learning from different domains”. In: Machine

learning 79, pp. 151–175.

Ben-David, Shai, John Blitzer, Koby Crammer, and Fernando Pereira

(2006). “Analysis of representations for domain adaptation”. In:

Advances in neural information processing systems 19.

Ben-David, Shai, Tyler Lu, et al. (2010). “Impossibility theorems for

domain adaptation”. In: Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics. JMLR Workshop

and Conference Proceedings, pp. 129–136.



References ii
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