High-dimensional Asymptotics of Langevin Dynamics in Spiked Matrix Models

We study Langevin dynamics for recovering the planted signal in the spiked matrix model. We provide a path-wise characterization of the overlap between the output of the Langevin algorithm and the planted signal. This overlap is characterized in terms of a self-consistent system of integro-differential equations, usually referred to as the Crisanti-Horner-Sommers-Cugliandolo-Kurchan (CHSCK) equations in the spin glass literature.

April 2022 · Tengyuan Liang, Subhabrata Sen, Pragya Sur

Local Optimality and Generalization Guarantees for the Langevin Algorithm via Empirical Metastability

We study the detailed path-wise behavior of the discrete-time Langevin algorithm for non-convex Empirical Risk Minimization (ERM) through the lens of metastability, adopting some techniques from Berglund and Gentz (2003).

February 2018 · Belinda Tzen, Tengyuan Liang, Maxim Raginsky