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Statistical Modeling: Parameters and Estimates
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A First Modeling Exercise

▶ I have US$ 1,000 invested in the Brazilian stock index, the
IBOVESPA. I need to predict tomorrow’s value of my portfolio.

▶ I also want to know how risky my portfolio is, in particular, I
want to know how likely am I to lose more than 3% of my
money by the end of tomorrow’s trading session.

▶ What should I do?
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IBOVESPA - Data
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As a first modeling decision, let’s call the random variable
associated with daily returns on the IBOVESPA X and assume that
returns are independent and identically distributed as

X ∼ N(µ, σ2)

▶ Question: What are the values of µ and σ2 ?

▶ We need to estimate these values from the sample in hands
(n=113 observations). . .
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▶ Let’s assume that each observation in the random sample
{x1, x2, x3, . . . , xn} is independent and distributed according to
the model above, i.e., xi ∼ N(µ, σ2)

▶ An usual strategy is to estimate µ and σ2, the mean and the
variance of the distribution, via the sample mean (X̄ ) and the
sample variance (s2). . . (their sample counterparts)

X̄ = 1
n

n∑
i=1

xi

s2 = 1
n − 1

n∑
i=1

(
xi − X̄

)2
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For the IBOVESPA data in hands,
BOVESPA

Daily Returns
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X̄ = 0.04 and s2 = 2.19

▶ The red line represents our “model,” i.e., the normal
distribution with mean and variance given by the estimated
quantities X̄ and s2.

▶ What is Pr(X < −3)?
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Estimating Proportions. . . another modeling example

Your job is to manufacture a part. Each time you make a part, it is
defective or not. Below we have the results from 100 parts you just
made. Yi = 1 means a defect, 0 a good one.

How would you predict the next one?
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There are 18 ones and 82 zeros.
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In this case, it might be reasonable to model the defects as
independent identically distributed. . .

We can’t be sure this is right, but, the data looks like the kind of
thing we would get if we had iid draws with that p!!!

If we believe our model, what is the chance that the next 10 are
good?

.8210 = 0.137.
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Models, Parameters, Estimates. . .

In general we talk about unknown quantities using the language of
probability. . . and the following steps:

▶ Define the random variables of interest

▶ Define a model (or probability distribution) that describes the
behavior of the RV of interest

▶ Based on the data available, we estimate the parameters
defining the model

▶ We are now ready to describe possible scenarios, generate
predictions, make decisions, evaluate risk, etc. . .
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Annual Returns on the US market. . .

Assume I invest some money in the U.S. stock market. Your job is
to tell me the following:

▶ what is my expected one year return?
▶ what is the standard deviation (volatility)?
▶ what is the probability my investment grow by 10%?

▶ What happens in 20 years if I invest $1 today on the market?
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Building Portfolios
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Building Portfolios

▶ Let’s assume we are considering 3 investment opportunities
1. IBM stocks
2. ALCOA stocks
3. Treasury Bonds (T-bill)

▶ How should we start thinking about this problem?
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Building Portfolios

Let’s first learn about the characteristics of each option by assuming
the following models:

▶ IBM ∼ N(µI , σ2
I )

▶ ALCOA ∼ N(µA, σ2
A)

and

▶ The return on the T-bill is 3%

After observing some return data we can came up with estimates for
the means and variances describing the behavior of these stocks
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Building Portfolios
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Building Portfolios

▶ How about combining these options? Is that a good idea? Is it
good to have all your eggs in the same basket? Why?

▶ What if I place half of my money in ALCOA and the other half
on T-bills. . .

▶ Remember that:

E (aX + bY ) = aE (X ) + bE (Y )
Var(aX + bY ) = a2Var(X ) + b2Var(Y ) + 2ab ∗ Cov(X , Y )
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Building Portfolios

▶ So, by using what we know about the means and variances we
get to:

µ̂P = 0.5µ̂A + 0.5µTbill

σ̂2
P = 0.52σ̂2

A + 0.52 ∗ 0 + 2 ∗ 0.5 ∗ 0.5 ∗ 0

▶ µ̂P and σ̂2
P refer to the estimated mean and variance of our

portfolio

▶ What are we assuming here?
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Building Portfolios

▶ What happens if we change the proportions. . .
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Building Portfolios

▶ What about investing in IBM and ALCOA?
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How much more complicated this gets if I am choosing between 100
stocks?

19



Sampling distribution of an individual

vs.

Sampling distribution of the sample mean
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Oracle vs SAP Example (understanding variation)
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Oracle vs. SAP

▶ Do we “buy” the claim from this add?
▶ We have a dataset of 81 firms that use SAP. . .
▶ The industry ROE is 15% (also an estimate but let’s assume it

is true)
▶ We assume that the random variable X represents ROE of SAP

firms and can be described by

X ∼ N(µ, σ2)

X̄ s2

SAP firms 0.1263 0.065

▶ Well, 0.12
0.15 ≈ 0.8! I guess the ad is correct, right?

▶ Not so fast...
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Oracle vs. SAP

▶ Let’s assume the sample we have is a good representation of
the “population” of firms that use SAP. . .

▶ What if we have observed a different sample of size 81?
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Oracle vs. SAP

▶ One approach: Bootstrap.

▶ Selecting a random, with replacement, from the original 81
samples I get a new X̄ = 0.09. . . I do it again, and I get
X̄ = 0.155. . . and again X̄ = 0.132. . .The Bootstrap: why it works

data sample

� ↓ �

bootstrap samples

You are pretending that the emperical data distribution is the

sampling distribution, and using it to draw alternative samples.

7
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Oracle vs. SAP
▶ After doing this 1000 times. . . here’s the histogram of X̄ . . .

Now, what do you think about the ad?
Histogram of sample mean
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This is called the sampling distribution of the mean...
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Sampling Distribution of Sample Mean

The approach we numerically obtain the sampling distribution (of
the sample mean) is called the Bootstrap.

Bootstrap is a very useful technique in statistics that allow us to
obtain the sampling distribution of almost any statistic using
random sampling methods.
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Sampling Distribution of Sample Mean

Yet another approach: normal approximation, or Central Limit
Theorem.

Consider the mean for an iid sample of n observations of a random
variable {X1, . . . , Xn}

If X is normal, then

X̄ ∼ N
(

µ,
σ2

n

)
.

This is called the sampling distribution of the mean...
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Back to the Oracle vs. SAP example
Back to our simulation. . .

Histogram of sample mean
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Sampling Distribution of Sample Mean
▶ The sampling distribution of X̄ describes how our estimate

would vary over different datasets of the same size n

▶ It provides us with a vehicle to evaluate the uncertainty
associated with our estimate of the mean. . .

▶ It turns out that s2 is a good proxy for σ2 so that we can
approximate the sampling distribution by

X̄ ∼ N
(

µ,
s2

n

)

▶ We call
√

s2
n the standard error of X̄ . . . it is a measure of its

variability. . . I like the notation

sX̄ =

√
s2

n
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Sampling Distribution of Sample Mean

X̄ ∼ N
(
µ, s2

X̄

)
▶ X̄ is unbiased. . . E (X̄ ) = µ. On average, X̄ is right!

▶ X̄ is consistent. . . as n grows, s2
X̄ → 0, i.e., with more

information, eventually X̄ correctly estimates µ!
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Back to the Oracle vs. SAP example
Back to our simulation. . .

Histogram of sample mean
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Confidence Intervals
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Confidence Intervals

X̄ ∼ N
(
µ, s2

X̄

)
so. . .

(X̄ − µ) ∼ N
(
0, s2

X̄

)
right?

▶ What is a good prediction for µ? What is our best guess??

X̄

▶ How do we make mistakes? How far from µ can we be??

95% of the time ±2 × sX̄

▶ [X̄ ±2 × sX̄ ] gives a 95% range of plausible values for µ. . .
this is called the 95% Confidence Interval for µ.
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Oracle vs. SAP example. . . one more time

In this example, X̄ = 0.1263, s2 = 0.065 and n = 81. . . therefore,
s2
X̄ = 0.065

81 so, the 95% confidence interval for the ROE of SAP
firms is [

X̄ − 2 × sX̄ ; X̄ + 2 × sX̄

]
=

0.1263 − 2 ×

√
0.065

81 ; 0.1263 + 2 ×

√
0.065

81


= [0.069; 0.183]

▶ Is 0.15 a plausible value? What does that mean?
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Back to the Oracle vs. SAP example
Back to our simulation. . .

Histogram of sample mean
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Let’s revisit the US stock market example from before. . .

Let’s run a simulation based on our results. . .
# Generate 1000 parallel worlds, each 90 years of SP500 returns
returns = matrix(rnorm(1000*90, mean=11.5, sd=19.5),

nrow = 1000, ncol = 90)
x_bar = apply(returns, 1, mean)
se_x = apply(returns, 1, sd)/sqrt(90)

# Volatility of X_bar
sd(x_bar)

## [1] 2.127459

# Our mathmatical formula for s_{X_bar}
19.5/sqrt(90)

## [1] 2.05548
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Let’s revisit the US stock market example from before. . .

# coverage of CI
CI = data.frame(CI_lower = x_bar-1.96*se_x,

CI_upper = x_bar+1.96*se_x,
Covers_mu = as.logical((x_bar-1.96*se_x<11.5)*(x_bar+1.96*se_x>11.5)))

head(CI)

## CI_lower CI_upper Covers_mu
## 1 10.542645 18.48394 TRUE
## 2 8.868337 16.22562 TRUE
## 3 5.174801 13.57510 TRUE
## 4 6.092413 13.68552 TRUE
## 5 8.381275 15.92040 TRUE
## 6 9.861156 18.92676 TRUE

mean(CI$Covers_mu)

## [1] 0.942
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Estimating Proportions. . .

We used the proportion of defects in our sample to estimate p, the
true, long-run, proportion of defects.

Could this estimate be wrong?!!

Let p̂ denote the sample proportion.

The standard error associated with the sample proportion as
an estimate of the true proportion is:

sp̂ =

√
p̂ (1 − p̂)

n
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Estimating Proportions. . .

We estimate the true p by the observed sample proportion
of 1’s, p̂.
The (approximate) 95% confidence interval for the true
proportion is:

p̂ ± 2 sp̂.
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Defects:

In our defect example we had p̂ = .18 and n = 100.

This gives

sp̂ =

√
(.18) (.82)

100 = .04.

The confidence interval is .18 ± .08 = (0.1, 0.26)
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Polls: yet another example. . . (Read chapter 10 of “Naked
Statistics” if you have a chance)

If we take a relatively small random sample from a large population
and ask each respondent yes or no with yes ≈ Yi = 1 and no
≈ Yi = 0, where p is the true population proportion of yes.

Suppose, as is common, n = 1000, and p̂ ≈ .5.

Then,

sp̂ =

√
(.5) (.5)

1000 = .0158.

The standard error is .0158 so that the ± is .0316, or about ± 3%.

(Sounds familiar?!)
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Example: Salary Difference

Say we are concerned with potential salary difference between males
and females in the banking industry. . . To study this issue, we get a
sample of salaries for both 100 males and 150 females from multiple
banks in Chicago. Here is a summary of the data:

average std. deviation
males 150k 30k
females 143k 15k

What do we conclude? Is there a difference FOR SURE?
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Example: Salary Difference, Naive Approach

Let’s compute the confidence intervals:

males:

(150 − 2 ×

√
302

100; 150 + 2 ×

√
302

100) = (144; 156)

females:

(143 − 2 ×

√
152

150; 143 + 2 ×

√
152

150) = (140.55; 145.45)

How about now, what do we conclude?
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Example: Google Search Algorithm

Google is testing a couple of modifications in its search algorithms. . .
they experiment with 2,500 searches and check how often the result
was defined as a “success.” Here’s the data from this experiment:

Algorithm current mod 1 mod 2
success 1755 1850 1760
failure 745 650 740

The probability of success is estimated to be p̂ = 0.702 for the
current algorithm, p̂A = 0.74 for modification (A) and p̂B = 0.704
for modification (B) .

Are the modifications better FOR SURE?
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Example: Google Search Algorithm, Naive Approach
Let’s compute the confidence intervals and check if these
modifications are REALLY working. . .
current:(

.702 − 2 ×

√
.702 ∗ (1 − .702)

2500 ; .702 + 2 ×

√
.702 ∗ (1 − .702)

2500

)
= (0.683; 0.720)

mod (A):(
.740 − 2 ×

√
.740 ∗ (1 − .740)

2500 ; .740 + 2 ×

√
.740 ∗ (1 − .740)

2500

)
= (0.723; 0.758)

mod (B):(
.704 − 2 ×

√
.704 ∗ (1 − .704)

2500 ; .704 + 2 ×

√
.704 ∗ (1 − .704)

2500

)
= (0.686; 0.722)

What do we conclude?
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Standard Error for the Difference in Means

It turns out there is a more precise way to address these
comparisons problems (for two groups). . .

We can compute the standard error for the difference in means:

s(X̄a−X̄b) =

√
s2
Xa

na
+

s2
Xb

nb

or, for the difference in proportions

s(p̂a−p̂b) =
√

p̂a(1 − p̂a)
na

+ p̂b(1 − p̂b)
nb
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Confidence Interval for the Difference in Means

We can then compute the

confidence interval for the difference in means:

(X̄a − X̄b) ± 2 × s(X̄a−X̄b)

or, the confidence interval for the difference in proportions

(p̂a − p̂b) ± 2 × s(p̂a−p̂b)
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Let’s revisit the examples. . . Salary Difference

s(X̄males−X̄females) =

√
302

100 + 152

150 = 3.24

so that the confidence interval for the difference in means is:

(150 − 143) ± 2 × 3.24 = (0.519; 13.48)

What is the conclusion now?
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Let’s revisit the examples. . . Google Search

Let’s look at the difference between the current algorithm and
modification B. . .

s(p̂current−p̂new ) =

√
0.702 ∗ 0.298

2500 + 0.704 ∗ 0.296
2500 = 0.0129

so that the confidence interval for the difference in means is:

(0.702 − 0.704) ± 2 × 0.0129 = (−0.0278; 0.0238)

What is the conclusion now?
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The Bottom Line. . .

▶ Estimates are based on random samples and therefore random
(uncertain) themselves

▶ We need to account for this uncertainty!

▶ "Standard Error" measures the uncertainty of an estimate

▶ We define the "95% Confidence Interval" as

estimate ± 2 × s.e.

▶ This provides us with a plausible range for the quantity we are
trying to estimate.
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The Bottom Line. . .

▶ When estimating a mean the 95% C.I. is

X̄ ± 2 × sX̄

▶ When estimating a proportion the 95% C.I. is

p̂ ± 2 × sp̂

▶ The same idea applies when comparing means or proportions
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Hypothesis Testing
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Testing

Suppose we want to assess whether or not µ equals a proposed
value µ0. This is called hypothesis testing.

Formally we test the null hypothesis:

H0 : µ = µ0

vs. the alternative

H1 : µ ̸= µ0
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Testing

That are 2 ways we can think about testing:

1. Building a test statistic. . . the t-stat,

t = X̄ − µ0

sX̄

This quantity measures how many standard deviations the estimate
(X̄ ) from the proposed value (µ0).

If the absolute value of t is greater than 2, we need to worry
(why?). . . we reject the hypothesis.

54



Testing

2. Looking at the confidence interval. If the proposed value is
outside the confidence interval you reject the hypothesis.

Notice that this is equivalent to the t-stat. An absolute value for t
greater than 2 implies that the proposed value is outside the
confidence interval. . . therefore reject.

This is my preferred approach for the testing problem. You can’t go
wrong by using the confidence interval!
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Testing (Proportions)

▶ The same idea applies to proportions. . . we can compute the
t-stat testing the hypothesis that the true proportion equals p0

t = p̂ − p0

sp̂

Again, if the absolute value of t is greater than 2,
we reject the hypothesis.

▶ As always, the confidence interval provides you with the same
(and more!) information.

(Note: In the proportion case, this test is sometimes called a z-test)
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Testing (Differences)

▶ For testing the difference in means:

t = (X̄a − X̄b) − d0

s(X̄a−X̄b)

▶ For testing a difference in proportions:

t = (p̂a − p̂b) − d0

s(p̂a−p̂b)

In both cases d0 is the proposed value for the difference (we often
think of zero here. . . why?)

Again, if the absolute value of t is greater than 2,
we reject the hypothesis.

(Note: In the proportion case, this test is sometimes called a z-test)
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Testing. . . Examples

Let’s recap by revisiting some examples:

▶ What hypothesis were we interested in the Oracle vs. SAP
example? Use a t-stat to test it. . .

▶ Using the t-stat, test whether or not the Patriots are cheating
in their coin tosses

▶ Use the t-stat to determine whether or not males are paid more
than females in the Chicago banking industry

▶ What does the t-stat tells you about Google’s new search
algorithm?
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t-values in top Economic Journal Publications
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t-values in top Economic Journal Publications
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The Importance of Considering and Reporting: Uncertainty

In 1997 the Red River flooded Grand Forks, ND overtopping its
levees with a 54-feet crest. 75% of the homes in the city were
damaged or destroyed!

It was predicted that the rain and the spring melt would lead to a
49-feet crest of the river. The levees were 51-feet high.

The Water Services of North Dakota had explicitly avoided
communicating the uncertainty in their forecasts as they were afraid
the public would loose confidence in their abilities to predict such
events.
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The Importance of Considering and Reporting: Uncertainty

It turns out the prediction interval for the flood was 49ft ± 9ft
leading to a 35% probability of the levees being overtopped!!

Should we take the point prediction (49ft) or the interval as an
input for a decision problem?

In general, the distribution of potential outcomes are very relevant
to help us make a decision
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The Importance of Considering and Reporting: Uncertainty

The answer seems obvious in this example (and it is!). . . however,
you see these things happening all the time as people tend to
underplay uncertainty in many situations!

"Why do people not give intervals? Because they are embarrassed!"
Jan Hatzius, Goldman Sachs economists talking about economic
forecasts. . .

Don’t make this mistake! Intervals are your friend and will lead to
better decisions!
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