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The Multiple Regression Model

Many problems involve more than one independent variable or factor
which affects the dependent or response variable.

» More than size to predict house price!
» Multi-factor asset pricing models (beyond CAPM)

» Demand for a product given prices of competing brands,
advertising, house hold attributes, etc.

In SLR, the conditional mean of Y depends on X. The Multiple
Linear Regression (MLR) model extends this idea to include more
than one independent variable.



The MLR Model

Same as always, but with more covariates.

Y:60+B1X1+62X2+"'+6pxp+€

Recall the key assumptions of our linear regression model:

1. The conditional mean of Y is linear in the X variables.
2. The error term (deviations from line)

» are normally distributed

» independent from each other

» identically distributed (i.e., they have constant variance)

Y|X1 .. .Xp ~ N(BO +61X1 N —f-ﬂpo,OQ)



The MLR Model

Our interpretation of regression coefficients can be extended from
the simple single covariate regression case:

COE[Y X, X

Holding all other variables constant, 3; is the
average change in Y per unit change in X;.



The MLR Model

If p =2, we can plot the regression surface in 3D.

Consider sales of a product as predicted by price of this product
(P1) and the price of a competing product (P2).

Sales = Bo + P1P1+ BoP2 + ¢
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Least Squares

Y =Bo+BiXe... 4+ BpXp+e, e~ N(0,5°)

How do we estimate the MLR model parameters?
The principle of Least Squares is exactly the same as before:
» Define the fitted values

» Find the best fitting plane by minimizing the sum of squared
residuals.



Least Squares

The data. ..
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Least Squares

Model: Sales; = o + B1P1; + B2P2; + €i, € ~ N(0,0?)

Regression Statistics

Multiple R 0.99
R Square 0.99
Adjusted R Square 0.99
Standard Error 28.42
Observations 100.00
ANOVA
df SS MS F Significance F

Regression 2.00 6004047.24  3002023.62 3717.29 0.00
Residual 97.00 78335.60 807.58
Total 99.00 6082382.84

Coefficients _Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 115.72 8.55 13.54 0.00 98.75 132.68
p1 -97.66 2.67 -36.60 0.00 -102.95 -92.36
p2 108.80 1.41 77.20 0.00 106.00 111.60

bg = g = 115.72, by = 31 = —97.66, by = 3, = 108.80,

s =06 =28.42



Plug-in Prediction in MLR

Suppose that by using advanced corporate espionage tactics, |
discover that my competitor will charge $10 the next quarter. After
some marketing analysis | decided to charge $8. How much will |
sell?

Our model is
Sales = Bg + B1P1 + BoP2 + ¢

with € ~ N(0, 0?)
Our estimates are by = 115, by = —97, bp = 109 and s = 28
which leads to

Sales = 115+ —97 %« P1 + 109 * P2 + ¢

with € ~ N(0,282)



Plug-in Prediction in MLR

By plugging-in the numbers,

Sales = 115+ —97 %8+ 109 % 10 + ¢
= 437+ ¢

Sales|P1 =8, P2 = 10 ~ N(437,28%)

and the 95% Prediction Interval is (437 £ 2 x 28)

381 < Sales < 493
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Least Squares

Just as before, each b; is our estimate of 5;

Fitted Values: Y; = bo + b1 X1i + bo Xoi ... 4 bpXp.
Residuals: ¢, = Y; — \A/,

Least Squares: Find by, by, by, ..., b, to minimize Y7 e?.
In MLR the formulas for the b;'s are too complicated so we won't
talk about them...
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Least Squares

Y

[

12



Residual Standard Error

The calculation for s? is exactly the same:

§2 — el Y (Y- V)

n—p—1 n—p-—1
> Yi=bo+ by Xy + -+ bpXpi

» The residual “standard error” is the estimate for the standard
deviation of ¢,i.e,

& =s5=1/s2.
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Residuals in MLR

As in the SLR model, the residuals in multiple regression are purged
of any linear relationship to the independent variables. Once again,
they are on average zero.

Because the fitted values are an exact linear combination of the X's
they are not correlated to the residuals.

We decompose Y into the part predicted by X and the part due to
idiosyncratic error.

Y=Y+e

A

e=0; corr(Xj,e)=0; corr(Y,e)=0
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Residuals in MLR

Consider the residuals from the Sales data:
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Fitted Values in MLR

Another great plot for MLR problems is to look at
Y (true values) against Y (fitted values).

y=Sales
600 800 1000

400

200

T T T T T T
0 200 400 600 800 1000

y.hat (MLR: p1 and p2)
If things are working, these values should form a nice straight line.
Can you guess the slope of the blue line?
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Fitted Values in MLR

Now, with P1 and P2...

y=Sales
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» First plot: Sales regressed on P1 alone...

» Second plot: Sales regressed on P2 alone...

» Third plot: Sales regressed on P1 and P2

200 400 600 800 1000
y.hat(MLR:p1 and p2)
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R-squared

> We still have our old variance decomposition identity. . .

SST = SSR + SSE

» ... and R? is once again defined as
R2 — ﬁ —1— 557E
SST SST

telling us the percentage of variation in Y explained by the X's.

» In Excel, R? is in the same place and “Multiple R" refers to the
correlation between Y and Y.
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Back to Baseball

R/G = Bo + fL1OBP + BaSLG + ¢

Regression Statistics

Multiple R 0.955698
R Square 0.913359
Adjusted R Square 0.906941
Standard Error 0.148627
Observations 30
ANOVA
df SS MS F Significance F

Regression 2 6.28747 3.143735 142.31576 4.56302E-15
Residual 27 0.596426 0.02209
Total 29 6.883896

Coefficients:andard Errc  t Stat P-value Lower 95% Upper 95%
Intercept -7.014316  0.81991 -8.554984 3.60968E-09 -8.69663241 -5.332
OBP 27.59287 4.003208 6.892689 2.09112E-07 19.37896463 35.80677
SLG 6.031124 2.021542 2.983428 0.005983713 1.883262806 10.17899
R? =0.913

Multiple R = ry, ¢ = corr(Y,Y) = 0.955
Note that R? = corr(Y, ¥)? 1



Intervals for Individual Coefficients

As in SLR, the sampling distribution tells us how close we can

expect b; to be from 3;
The LS estimators are unbiased: E[b;| = f; for j =0,...,d.

)

» We denote the sampling distribution of each estimator as

bJ ~ N(6]7sgj)
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Intervals for Individual Coefficients

Intervals and t-statistics are exactly the same as in SLR.

>

| 2

A 95% C.I. for 3; is approximately b; 4 2s),
(b = B7)

Sbj
between the LS estimate and the null value (BJQ)

The t-stat: t; = is the number of standard errors

As before, we reject the null when t-stat is greater than 2 in
absolute value

Also as before, a small p-value leads to a rejection of the null

Rejecting when the p-value is less than 0.05 is equivalent to
rejecting when the [tj| > 2
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In Excel. ..

Regression Statistics

Do we know all of these numbers?

Multiple R 0.99
R Square 0.99
Adjusted R Square 0.99
Standard Error 28.42
Observations 100.00
ANOVA
df SS MS F Significance F

Regression 2.00 6004047.24  3002023.62 3717.29 0.00
Residual 97.00 78335.60 807.58
Total 99.00 6082382.84

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 115.72 8.55 13.54 0.00 98.75 132.68
p1 -97.66 2.67 -36.60 0.00 -102.95 -92.36
p2 108.80 1.41 77.20 0.00 106.00 111.60

95% C.1. for 31 ~ bl £2 X sp,

[~97.66 — 2 x 2.67; —97.66 + 2 x 2.67]

= [~102.95; —92.36]
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F-test and R2
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F-tests

» In many situation, we need a testing procedure that can address
simultaneous hypotheses about more than one coefficient

> Why not the t-test?

» We will look at the Overall Test of Significance... the F-test.
It will help us determine whether or not our regression is worth
anything!
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Supervisor Performance Data

Suppose you are interested in the relationship between the overall
performance of supervisors to specific activities involving
interactions between supervisors and employees (from a psychology
management study)

The Data

» Y = Overall rating of supervisor

> X; = Handles employee complaints
Xo = Does not allow special privileges
X3 = Opportunity to learn new things
X4 = Raises based on performance

Xs = Too critical of poor performance
Xe = Rate of advancing to better jobs

vVvyvyYVvyy
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Supervisor Performance Data

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.855921721
R Square 0.732601993
Adjusted R Square 0.662845991
Standard Error 7.067993765
Observations 30
ANOVA
df SS MS F ignificance F
Regression 6 3147966342 5246611 10.50235 1.24041E-05
Residual 23 1149.000325 4995654
Total 29  4296.966667
Coefficients _ Standard Error __t Stat P-value _ Lower 95% Upper 95%Lower 99.0% Upper 99.0%
Intercept 1078707639  11.58925724 0.930782 0.361634 -13.18712868 3476128 -21.747859 43.32201173
X1 0613187608 0.160983115 3.809018 0.000903 0.280168664 0.946207 0.161254 1.06512125
X2 -0.073050143 0.13572469 -0.538223 0595594 -0.353818055 0.207718 -0.4540749 0307974622
X3 0.320332116  0.168520319 1.900852 0.069925 -0.028278721 0.668943 -0.152761 0.793425219
X4 0.081732134 0221477677 0.369031 0.71548 -0.376429347 0.539894 -0.5400301 0.703494319
X5 0.038381447  0.146995442 0261106 0.796334 -0.265701791 0.342465 -0.3742841 0451046997
X6 -0.217056682  0.178209471 -1.217986 0.235577 -0.585711058 0.151598 -0.7173505 0.283237125

Is there any relationship here? Are all the coefficients significant?
What about all of them together?
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Why not look at R?

» R2in MLR is still a measure of goodness of fit.

» However it ALWAYS grows as we increase the number of
explanatory variables.

» Even if there is no relationship between the X’s and Y,
R? > 0l

» To see this let's look at some "Garbage" Data

» The Adjusted R? (but not a great one!) is an attempt at fixing
the problem. ..

27



Garbage Data

| made up 6 “garbage” variables that have nothing to do with Y. ..

SUMMARY OUTPUT
Regression Stafistics
Multiple R 0.516876852
R Square 0.26716168
Adjusted R Square 0.075986466
Standard Error 11.70095097
Observations 30
ANOVA
df SS MS F Sk F

Regression 6 1147985 191.3308 1.39747 0.257927747
Residual 23 3148982 136.9123
Total 29 4296.967

Coefficients 'andard Ern t Stat P-value Lower 95% Upper 95% Lower 99.0% Upper 99.0%
Intercept 94.8053024 386485 2453014 0.022169 14.85478564 174.7558 -13.6940154 203.3046202
G1 0.241049359 0369932 0651605 0.521115 -0.524213203 1.006312 -0.79747383 1.279572553
G2 -0.739495869 0.341006 -2.168569 0.040705 -1.444921431 -0.03407 -1.69681541 0.217823675
G3 -0.564272368 0463453 -1.217539 0.235744 -1.522998304 0.394454 -1.86534101 0.736796272
G4 0.156297568 0291278 0.536592 0.596702 -0.446257444 0.758853 -0.66141832 0.974013455
G5 -0.267328742 0.266723 -1.002269 0.326642 -0.819088173 0.284431 -1.01611092 0.481453434

G6 0441170035 0.329715 1.338034 0.193965 -0.240897504 1.123238 -0.48445078 1.366790852




Garbage Data

> R2is 26% !

» We need to develop a way to see whether a R? of 26% can
happen by chance when all the true [3’s are zero.

» It turns out that if we transform R? we can solve this.

Define
R?/p

i =5 vy

A big f corresponds to a big R? but there is a distribution that tells
what kind of f we are likely to get when all the coefficients are
indeed zero... The f statistic provides a scale that allows us to
decide if "big" is "big enough”.

29



The F-test

We are testing:

Ho:f1=P2=...8,=0

Hy @ at least one 3; # 0
This is the F-test of overall significance. Under the null hypothesis f
is distributed:

f~Fpnp-1

» Generally, f > 4 is very significant (reject the null).

30



The F-test

What kind of distribution is this?

F dist. with 6 and 23 df

0.6

density
04

0.2

0.0

T T T T T T
0 2 4 6 8 10

It is a right skewed, positive valued family of distributions indexed
by two parameters (the two df values).
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The F-test

Let's check this test for the “garbage” data. ..

ANOVA

dr SS MS__/ F__ \ Significance F
Regression 6 1147985 191.3308 @ 0.257927747
Residual 23 3148982 136.9123
Total 29 4296.967

How about the original analysis (survey variables). ..
ANOVA

df SS MS / F \Significance F
Regression 6  3147.966342 524.6611 \10.50235 ) 1.24041E-05
Residual 23 1149.000325 49.95654

Total 29  4296.966667
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F-test

The p-value for the F-test is
p-value = Pr(Fp n—p—1 > f)
» We usually reject the null when the p-value is less than 5%.

» Big f — REJECT!
» Small p-value — REJECT!

33



The F-test

In Excel, the p-value is reported under “Significance F”

ANOVA _

df SS MS  / F  \ Significance F
Regression 6 1147985 191.3308 @ 0.257927747
Residual 23 3148.982 136.9123
Total 29 4296.967
ANOVA

df SS MS  / F \Significance F
Regression 6  3147.966342 524.6611 @ 1.24041E-05
Residual 23 1149.000325 49.95654
Total 29  4296.966667
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Understanding MLR
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Understanding Multiple Regression

The Sales Data:
» Sales : units sold in excess of a baseline
» P1I: our price in $ (in excess of a baseline price)

» P2: competitors price (again, over a baseline)

36



Understanding Multiple Regression

> |If we regress Sales on our own price, we obtain a somewhat

surprising conclusion. .. the higher the price the more we sell!!

1000 —

500 —f

Sales

» It looks like we should just raise our prices, right? NO, not if
you have taken this statistics class!
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Understanding Multiple Regression

» The regression equation for Sales on own price (P1) is:

Sales = 211 + 63.7P1

» If now we add the competitors price to the regression we get

Sales = 116 — 97.7P1 + 109P2

» Does this look better? How did it happen?

» Remember: —97.7 is the affect on sales of a change in P1 with
P2 held fixed!!
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Understanding Multiple Regression

» How can we see what is going on? Let's compare Sales in two
different observations: weeks 82 and 99.

> We see that an increase in P1, holding P2 constant,
corresponds to a drop in Sales!

p1

99

» Note the strong relationship (dependence) between P1 and

P21

p2

Sales

1000 —

500 —

.ul-. - ’
T
.'_-"-:-l :

p1
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Understanding Multiple Regression

> Let's look at a subset of points where P1 varies and P2 is held

p1

approximately constant. ..
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Understanding Multiple Regression

» Below, different colors indicate different ranges for P2. ..

larger p1 are associated with
larger p2

for each fixed level of p2
there is a negative relationship
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Understanding Multiple Regression

> Summary:
1. A larger P1 is associated with larger P2 and the overall effect
leads to bigger sales
2. With P2 held fixed, a larger P1 leads to lower sales
3. MLR does the trick and unveils the “correct” economic
relationship between Sales and prices!
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Understanding Multiple Regression

Beer Data (from an MBA class)

» nbeer — number of beers before getting drunk
» height and weight

20 — °
[ ]
“ [ ] ° o0 o o
8 — L I [ ]
8 10 .
® & o o o
t 13
[ ] [ ] e o
o o o [ ]
[ ] [ ]
d [ ] .I °
0 ° .
T T T T
60 65 70 75
height

Is number of beers related to height?
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Understanding Multiple Regression

nbeers = [y + (1 height + €

Regression Statistics

Multiple R 0.58
R Square 0.34
Adjusted R Square 0.33
Standard Error 3.1
Observations 50.00
ANOVA
df SS MS F Significance F
Regression 1.00 237.77 237.77 24.60 0.00
Residual 48.00 463.86 9.66
Total 49.00 701.63

Coefficients _Standard Error _ t Stat _P-value  Lower 95% Upper 95%
Intercept -36.92 896 -4.12 0.00 -54.93 -18.91
height 0.64 0.13 4.96 0.00 0.38 0.90

Yes! Beers and height are related. . .



Understanding Multiple Regression

nbeers = [y + Pyweight + Paheight 4 €

Regression Statistics

Multiple R 0.69
R Square 0.48
Adjusted R Square 0.46
Standard Error 2.78
Observations 50.00
ANOVA
df SS MS F Significance F

Regression 2.00 337.24 168.62  21.75 0.00
Residual 47.00 364.38 7.75
Total 49.00 701.63

Coefficients Standard Error  t Stat  P-value  Lower 95% Upper 95%
Intercept -11.19 10.77 -1.04 0.30 -32.85 10.48
weight 0.09 0.02 3.58 0.00 0.04 0.13
height 0.08 0.20 0.40 0.69 -0.32 0.47

What about now?? Height is not necessarily a factor. ..
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Understanding Multiple Regression

™ . ° The correlations:
LN L]

- 70 — . ..:l.:.. o0 nbeer weight
= R weight 0.692
< « e ° . height 0.582 0.806

65 — [ .

60 - e ‘ ‘ The two x’s are

100 150 200 highly correlated !!
weight

> If we regress “beers” only on height we see an effect. Bigger
heights go with more beers.

» However, when height goes up weight tends to go up as well. ..
in the first regression, height was a proxy for the real cause of
drinking ability. Bigger people can drink more and weight is a
more accurate measure of “bigness”.
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Understanding Multiple Regression

7 . ° The correlations:
. 70 - . ceees®’ .o nbeer weight
< e L]
2 e S u weight 0.692
< e o ° . height 0.582 0.806
65 — [ [
60 = ‘ ‘ The two x’s are
100 150 200

highly correlated !!
weight

In the multiple regression, when we consider only the variation
in height that is not associated with variation in weight, we see
no relationship between height and beers.
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Understanding Multiple Regression

nbeers = [y + [S1weight + €

Regression Statistics

Multiple R 0.69
R Square 0.48
Adjusted R 0.47
Standard E 2.76
Observatio 50
ANOVA
df SS MS F Significance F
Regressior 1 336.0317807 336.0318 44.11878 2.60227E-08
Residual 48  365.5932193 7.616525
Total 49 701.625

Coefficients Standard Error __t Stat P-value  Lower 95% Upper 95%
Intercept -7.021 2.213 -3.172 0.003 -11.471 -2.571
weight 0.093 0.014 6.642 0.000 0.065 0.121

Why is this a better model than the one with weight and height??
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Understanding Multiple Regression

In general, when we see a relationship between y and x (or x's),
that relationship may be driven by variables “lurking” in the
background which are related to your current x's.

This makes it hard to reliably find "causal" relationships. Any
correlation (association) you find could be caused by other variables
in the background. .. correlation is NOT causation

Any time a report says two variables are related and there's a
suggestion of a "causal" relationship, ask yourself whether or not
other variables might be the real reason for the effect. Multiple
regression allows us to control for all important variables by
including them into the regression. "Once we control for weight,
height and beers are NOT related"!!
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correlation is NOT causation

also. ..

» http://www.tylervigen.com /spurious-correlations

T USED T THINK,
CORRELATION mPuED
CAVSATION.

T

THEN I TOK A
STATISTICS CLASS.
Now T DON'T,

f

SOUNDS LIKE THE
CLA‘SS HELPED.

WELL, MR‘( BE.

§i
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http://www.tylervigen.com/spurious-correlations

Back to Baseball — Let's try to add AVG on top of OBP

Regression Statistics

Multiple R 0.948136
R Square 0.898961
Adjusted R Square 0.891477
Standard Error 0.160502
Observations 30
ANOVA
df SS MS F Significance F

Regression 2 6.188355 3.094177 120.1119098 3.63577E-14
Residual 27 0.695541 0.025761
Total 29 6.883896

Coefficients.andard Errc  t Stat P-value Lower 95%  Upper 95%
Intercept -7.933633 0.844353 -9.396107 5.30996E-10 -9.666102081 -6.201163
AVG 7.810397 4.014609 1.945494 0.062195793  -0.426899658 16.04769
OBP 31.77892 3.802577 8.357205 5.74232E-09 23.9766719 39.58116

R/G = By + B1AVG + BOBP + ¢

Is AVG any good?
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Back to Baseball - Now let's add SLG

Regression Statistics

Multiple R 0.955698
R Square 0.913359
Adjusted R Square 0.906941
Standard Error 0.148627
Observations 30
ANOVA
df SS MS F Significance F

Regression 2 6.28747 3.143735 142.31576 4.56302E-15
Residual 27 0.596426 0.02209
Total 29 6.883896

Coefficientsandard Err¢  t Stat P-value Lower 95% Upper 95%
Intercept -7.014316  0.81991 -8.554984 3.60968E-09 -8.69663241 -5.332
OBP 27.59287 4.003208 6.892689 2.09112E-07 19.37896463 35.80677
SLG 6.031124 2.021542 2.983428 0.005983713 1.883262806 10.17899

R/G = Bo + f1OBP + BaSLG + ¢

What about now? Is SLG any good
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Back to Baseball

Correlations
AVG 1

OBP | 077 1
SLG | 0.75 083 1

» When AVG is added to the model with OBP, no additional
information is conveyed. AVG does nothing “on its own" to
help predict Runs per Game. ..

» SLG however, measures something that OBP doesn’t (power!)
and by doing something “on its own" it is relevant to help
predict Runs per Game. (Okay, but not much...)



Things to remember:

» Intervals are your friend! Understanding uncertainty is a key
element for sound business decisions.

» Correlation is NOT causation!

» When presented with a analysis from a regression model or any
analysis that implies a causal relationship, skepticism is always
a good first response! Ask question... “is there an alternative
explanation for this result”?

» Simple models are often better than very complex
alternatives. .. remember the trade-off between complexity and
generalization (more on this later)
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