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This paper establishes a precise high-dimensional asymptotic theory for
boosting on separable data, taking statistical and computational perspectives.
We consider a high-dimensional setting where the number of features (weak
learners) p scales with the sample size n, in an overparametrized regime.
Under a class of statistical models, we provide an exact analysis of the gen-
eralization error of boosting when the algorithm interpolates the training data
and maximizes the empirical �1-margin. Further, we explicitly pin down the
relation between the boosting test error and the optimal Bayes error, as well as
the proportion of active features at interpolation (with zero initialization). In
turn, these precise characterizations answer certain questions raised in (Neu-
ral Comput. 11 (1999) 1493–1517; Ann. Statist. 26 (1998) 1651–1686) sur-
rounding boosting, under assumed data generating processes. At the heart
of our theory lies an in-depth study of the maximum-�1-margin, which can
be accurately described by a new system of nonlinear equations; to analyze
this margin, we rely on Gaussian comparison techniques and develop a novel
uniform deviation argument. Our statistical and computational arguments can
handle (1) any finite-rank spiked covariance model for the feature distribution
and (2) variants of boosting corresponding to general �q -geometry, q ∈ [1,2].
As a final component, via the Lindeberg principle, we establish a universal-
ity result showcasing that the scaled �1-margin (asymptotically) remains the
same, whether the covariates used for boosting arise from a nonlinear random
feature model or an appropriately linearized model with matching moments.

1. Introduction. Modern machine learning methods are regularly used for classification
tasks. Typically, these algorithms are complex, and often produce solutions with zero training
error, even for random labels. Prominent examples include ensemble learning, neural net-
works and kernel machines. However, among the many solutions that interpolate the training
data, not all exhibit superior generalization. Empirically, it has been commonly observed that
practical algorithms—running even on large overparametrized models—favor minimal ways
of interpolating the training data, which has been conjectured to be crucial for good general-
ization. Different problem formulations and optimization algorithms favor distinct notions of
minimalism, typically measured by specific norms of the classifier. This paper focuses on the
celebrated boosting/AdaBoost algorithm in this minimum-norm interpolation regime, where
we conduct a precise analysis of its statistical and computational properties under specific
data-generating mechanisms.

Ensemble learning algorithms, recognized as powerful toolkits at the disposal of a data
scientist, have found widespread usage across domains. Boosting is arguably one of the
most powerful ensemble learning algorithms that combines weak learners using intelligent
schemes and exhibits remarkable generalization performance. The groundbreaking AdaBoost
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paper, Freund and Schapire [41], is widely regarded as the milestone in the boosting litera-
ture, which can be traced back even earlier [40, 87]. AdaBoost is an iterative algorithm that
updates the weights on the training examples adaptively based on the errors incurred at prior
iterations. AdaBoost demonstrated preferable generalization capabilities over existing algo-
rithms such as bagging [88], which led to decades of research activities devoted to a better
understanding of this algorithm and its variants.

The seminal papers [15, 34, 77] observed that AdaBoost achieves zero error on the training
data within a few iterations, whereas the generalization error continues to decrease well be-
yond this interpolation timepoint. Recently, similar phenomena and puzzles resurfaced in the
context of neural networks [106], and motivated the study of interpolation and implicit reg-
ularization [5, 8, 10, 51, 63, 64]. This peculiar and seemingly counterintuitive phenomenon
naturally piqued the interest of a broad community of statisticians and machine learners.
Several explanations emerged over the past two decades.

Margin-based analyses. In a breakthrough work, Schapire, Freund, Bartlett and Lee [88]
proposed that the generalization performance of the algorithm is crucially tied to a measure of
confidence in classification, that can be captured through the (normalized) empirical margin
of the training examples. [88] observed that over the course of iterations, AdaBoost creates
classifiers such that the fraction of training examples with a large margin increases, and the
empirical margin distribution stabilizes to a limiting one rapidly. In particular, given any mar-
gin level κ > 0, they discovered upper bounds on the prediction error that reveal interesting
tradeoffs between two terms: (i) the fraction of training examples with margin below κ , and
(ii) the term κ−1C(H)/

√
n that involves the complexity of the class C(H) and the sample size

n scaled by κ . A large empirical margin distribution was then conjectured to be a key fac-
tor behind the superior generalization performance of certain classifiers. These upper bounds
provided extremely useful insights, nonetheless, [88] commented that the proposed upper
bounds can be suboptimal in general, and that “an important open problem is to derive more
careful and precise bounds . . . Besides paying closer attention to constant factors, such an
analysis might also involve the measurement of more sophisticated statistics.” Breiman [16]
subsequently contended these empirical margin distribution based explanations, using exten-
sive simulations, and proposed to bound the generalization error using the minimum value of
the margin over the training set. Later, Koltchinskii and Panchenko [59] improved the earlier
bounds from [88]. Despite significant progress in this direction, since these results involved
upper bounds, the qualitative question regarding key quantities that precisely determine the
generalization behavior of AdaBoost remained unanswered.

Consistency and early stopping. In conjunction with the generalization error, statisticians
and learning theorists deeply care about the consistency of AdaBoost, and in particular, about
the precise relationship between the test error and the optimal Bayes error. The problem of
consistency was posed by Breiman [17], who studied convergence properties of the algo-
rithm in the population case. The seminal papers Jiang [56], Lugosi and Vayatis [69], Zhang
[107], Koltchinskii and Besnozova [58] considered different function classes and variants of
boosting, and furthered this direction of research. [56] established that AdaBoost is process
consistent, in the sense that, there exists a stopping time at which the prediction error approxi-
mates the optimal Bayes error in the limit of large samples. A parallel understanding emerged
from empirical studies conducted in [44, 49, 73, 79]—AdaBoost may overfit, particularly in
complex model classes and high noise settings, when left to run for an arbitrary large number
of steps. On the one hand, these naturally inspired subsequent work on appropriate regular-
ization strategies for “early stopping” as in Zhang and Yu [108], Bartlett and Traskin [6]. On
the other hand, as the model classes become complex and overparametrized, the test error of
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Boosting Algorithms may deviate from the optimal Bayes error. Despite an extensive bulk
of work, a precise characterization of the test error and its relation to the Bayes error for the
overparametrized case is still missing in the current literature.

Connections with min-�1-norm interpolation (and implications). In a venture to under-
stand the path of boosting iterates better, Rosset, Zhu and Hastie [82], Zhang and Yu [108]
established that for linearly separable data, AdaBoost with infinitesimal step size converges
to the minimum-�1-norm interpolated classifier (equation (1.2)) when left to run forever.
This interpolant is crucially related to the maximum �1-margin on the data, κn,�1 (equation
(1.3)). In fact, expressed differently, these results establish that the number of optimization
steps necessary for AdaBoost to reach zero training error can be upper bounded by O(κ−2

n,�1
).

Together with the earlier results Breiman [16], this leads to a plausible conjecture that the
max-�1-margin is a crucial quantity that determines both generalization and optimization
behaviors of Boosting Algorithms. (See also [98], for methods to shrink step sizes so that
AdaBoost produces approximate maximum margin classifiers.) Thus, understanding the pre-
cise value of this margin, and the iteration time necessary for convergence to the min-�1-norm
interpolant (on separable data) is crucial for settling such a conjecture. Furthermore, refined
analyses of such quantities for various overparametrized models is expected to shed light on
the effects of overparametrization on optimization, an understanding that has so far eluded
the literature.

Rosset et al. [82] further discussed that the aforementioned convergence to min-�1-norm
interpolated classifiers indicates the following: boosting potentially converges (in direction)
to a sparse classifier. It would then be of interest to understand properties of the limiting
solution better, for example, the analyst may wish to understand the number of weak learn-
ers deemed important by the boosting solution. This is particularly crucial in today’s context
where producing interpretable classifiers in high-stakes decision making has critical social
consequences [27, 57, 68, 83, 105]. Boosting has subsequently witnessed widespread devel-
opment, and varying perspectives have emerged through several seminal works, for example,
[18, 21, 39, 44, 45, 84]; see Section 4 for further discussions.

This paper. Prior literature suggested that the min-�1-norm interpolated classifier and the
max-�1-margin may form central characters behind Boosting Algorithms on linearly separa-
ble data. However, a thorough understanding of their exact relations with the boosting solu-
tion, whether these are key quantities, and how these objects behave, have so far been lacking.
When there is label noise in y, conditional on the features x, linear separability only happens
in an overparametrized regime where the number of features p grows with the sample size n;
to see this, note that a fixed p-dimensional linear model class, cannot shatter n-points with
all possible signs when n grows.

Furthermore, boosting has empirically demonstrated exceptional performance with many
weak-learners. Therefore, to study properties of boosting on separable data, it is both the-
oretically necessary and empirically natural to analyze the algorithm in a high-dimensional
(overparametrized) setting. This paper studies these crucial questions surrounding AdaBoost,
in high dimensions, focusing on the case of binary classifications. Our theoretical contribu-
tions apply under specific data generating schemes detailed in Sections 2 and 3.5. Throughout
the paper, boosting/Boosting Algorithms loosely refers to the version of AdaBoost described
in Section 2.

To describe our contributions, imagine that we observe n i.i.d. samples (xi, yi) drawn
from some joint distribution, with xi ∈ R

p abstracting the vector of weak-learners, and labels
yi ∈ {+1,−1}. We seek to characterize various properties of boosting in a high-dimensional
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setting, and to capture a regime where p is comparable to n, assume that p diverges with n

at some fixed ratio

(1.1) p/n → ψ > 0.

This is a natural high-dimensional setting for analyzing separable data [24, 75], as argued
above; this regime has also been investigated for regression problems and other contexts (see,
for instance, [31, 32, 35–37, 95, 96, 104], and the references cited therein) and is well known
to produce asymptotic predictions with accurate finite sample performance. Since we are
primarily interested in overparametrized settings, we assume that the data is (asymptotically)
linearly separable in the sense of equation (2.6). This is equivalent to the dimensionality ψ

lying above a threshold that depends on the underlying signal strength of the problem [24,
29, 75]; see Section 2 for further details. Define the min-�1-norm interpolated classifier to be

θ̂n,�1 ∈ arg min
θ

‖θ‖1, s.t. yix
�
i θ ≥ 1,1 ≤ i ≤ n.(1.2)

Note that at a finite sample level the min-�1-norm interpolants may not be unique, and our
asymptotic theory works for any such θ̂n,�1 . It is not hard to see that the θ̂n,�1 direction solves
the following max-�1-margin problem

κn,�1 := max‖θ‖1≤1
min

1≤i≤n
yix

�
i θ,(1.3)

whenever κn,�1 is positive. We first study a stylized model where each row of the design ma-
trix follows a Gaussian distribution with a diagonal covariance, the response is binary and
the distribution of the response conditional on the covariates is given by a generalized linear
model as in (2.1) (see Section 2 for further details). Later, Section 3.5 presents extensions
to showcase that the precise asymptotic theory carries over to spiked covariance models and
random feature models. In the aforementioned setting, this paper provides the following con-
tributions to the statistical and computational understanding of boosting:

(i) We provide a precise characterization of the value of the max-�1-margin (Theo-
rem 3.1) in the high-dimensional regime (1.1). Informally, we show that

√
pκn,�1 converges

almost surely to a constant κ� that depends on ψ and other problem parameters, such as
the signal-to-noise ratio in the data generating model. Theorem 3.1 explicitly pins down the
limiting constant κ�; in fact, this can be entirely described by the fixed points of a compli-
cated yet easy to solve nonlinear system of equations that we will introduce in (3.9). This
limiting characterization will prove crucial for understanding the properties of boosting on
(asymptotically) separable data.

(ii) We establish a precise formula for the generalization error of the min-�1-norm inter-
polant θ̂n,�1 (Theorem 3.2), once again in the regime (1.1). The formula illuminates that the
generalization error is completely governed by the dimensionality parameter ψ and the limit
κ� characterized in the preceding step. The consequences of this result for boosting will be
discussed soon; notably, the min-�1-norm interpolant has been conjectured to be crucial in
other contexts (see Section 4) and, therefore, we expect Theorem 3.2 to be of wider impor-
tance beyond boosting.

(iii) Turning to boosting, we develop an exact characterization of a threshold T such that
for all iterations t ≥ T , the boosting iterates (with a properly scaled step size) stay arbitrar-
ily close to θ̂n,�1 , in the large n, p limit (1.1) (Theorem 3.3). This characterization builds
upon existing works on margin maximization that provide a 1/

√
t rate [38, 98], and uses

the well-known rescaling technique, shrinkage technique and mirror descent connections of
boosting (see [26, 38, 50, 54, 89, 108] for a nonexhaustive set of related works). Together with
Theorems 3.1–3.2, this result provides an exact characterization of the generalization error of
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boosting, and improves upon the existing upper bounds [59, 88], in our setting. Crucially, this
formula involves κ� (through an implicit nonlinear function) and, therefore, our results imply
that, at least under the aforementioned data-generation scheme, the max-�1-margin drives the
generalization performance of boosting. Furthermore, the formula encodes a concrete recipe
for comparing the test error of boosting with the Bayes error in high dimensions.

As an aside, we remark that the aforementioned 1/
√

t margin maximization rate has been
improved for gradient descent and �2 margin maximization [54]. The argument here relies on
the smoothness of the dual objective function (also an �2 norm), which is absent in our case.
This suggests an interesting difference between the �1 and �2 cases.

(iv) The iteration threshold T from the prior step can be described through a formula
(in the large n, p limit) that involves the limit of the max-�1-margin κ�. Utilizing this, we
demonstrate two curious phenomena regarding overparametrization: (1) Keeping other prob-
lem parameters fixed, T decreases with an increase in ψ , suggesting that overparametrization
helps in optimization. (2) We establish bounds on the fraction of activated coordinates in the
boosting solution (with zero initialization) when it first interpolates the training data.

(v) Finally, we introduce a new class of Boosting Algorithms that converge to the max-
�q -margin direction (Section 3.4) for q > 1. [82] discussed the importance of studying such
notions of margins, since it is unclear which geometry induces a better solution (see also
[50]). Here, we construct such algorithms and provide precise analyses of their generalization
(for the case q ∈ [1,2]) and optimization properties (for all q > 1) in a spirit similar to that
for boosting done above.

On the theoretical end, our analyses for the above contributions build upon classical re-
sults in Gaussian comparison inequalities [47, 48] that have been strengthened relatively
recently [91, 100, 101], leading to the Convex Gaussian Min-Max Theorem (CGMT) (see
Section 4 for a discussion). The topic of max-�2-margin has received considerable attention,
dating back to [46, 90], and has more recently been analyzed in [29, 75]. Our proofs begin
from these existing theory surrounding the max-�2-margin, particularly [29, 75], however, the
�2 (coordinate invariant) and �q (q 	= 2, coordinate specific) geometries differ significantly.
Therefore, considerable theoretical work is necessary to obtain the precise characterizations
outlined above; our key contributions in this regard are highlighted in Appendix A (see Sup-
plementary Material [66]). Specifically, we introduce a novel uniform deviation argument,
which later (Section 3.5) allows us to extend our results to settings with nondiagonal covari-
ance between features. Further elaboration on the difference between the �1 and �2 cases can
be found in Appendix B.

The aforementioned contributions rely on a specific data-generating scheme that might
appear stylized. However, the qualitative message remains the same in several settings beyond
this specific scheme. Section 3.5 explores this in further detail. In particular, we establish
similar characterization for the max-�1-margin and the min-�1-norm interpolant for a class of
models with feature covariances given by spiked covariance matrices (see Section 3.5.1 and
Appendix D.1). Our result can be utilized to establish boosting properties analogous to point
(iii) above, for these other data generation schemes. We remark that the simplest model in
this class—the rank-one perturbation model—corresponds to the standard Gaussian mixture
model, for which precise asymptotics for the max-�2 margin was established in [29].

In Section 3.5.2, we prove a universality result of the following form: the value of the
max-�1-margin remains the same (asymptotically) under two different settings where the dis-
tribution of the features entered in the boosting algorithm vary. To describe in detail, suppose
the observed data {xi, yi} still arises from the data-generating distribution considered for our
aforementioned point-by-point contributions. However, the features feeding to the boosting
algorithm (and thus in calculating the margin) are more complicated than the raw features
xi ’s. We consider two different kinds of boosting features: (i) features ai that take the form of
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a random feature model ai = σ(F�xi) [53, 74, 78], (ii) features bi = μ01 +μ1F
�xi +μ2zi ,

where the constants μ0, μ1, μ2 are calibrated appropriately to match moments of ai ’s
and bi ’s. Here, F is a random matrix in R

p×d and zi has i.i.d. N (0,1) entries, indepen-
dent of everything else. In each case, the max-�1-margin is calculated using the formula
κn,�1({ri, yi}1≤i≤n) := max‖θ‖1≤1 min1≤i≤n yir

�
i θ , where ri = ai (resp., bi ) in Case (i) (resp.,

Case (ii)). Section 3.5.2 establishes that, when p, d both scale linearly with n, the (scaled)
max-�1-margin has the same limiting value under both settings.

The aforementioned result holds under certain assumptions on the random feature matrix
F and the nonlinearity σ(·). (See Section 3.5.2 for details). But note that, conditional on F ,
bi is Gaussian whereas ai is not. This universality result suggests that the margin value is
asymptotically insensitive, at least under some settings, to nuanced properties of the feature
distribution. Thus, results that apply for the Gaussian case might be relevant for certain non-
Gaussian feature distributions as well. We further validate this through empirical observations
in Section 3.5.2. On the technical front, our universality result starts with a leave-one-out ar-
gument from [53]. However, [53] considered loss functions satisfying smoothness and strong-
convexity assumptions that are violated in our setting. This leads to technical challenges that
we handle by establishing new analytic results (Section 3.5.2 and Appendix D.2).

Finite sample performance. Our results are asymptotic in nature, and here we test their
finite sample accuracy via a simple simulation. Consider a grid of values for the over-
parametrization ratio ψ ∈ � ⊂ [0,6], and a data-generating process where the covariates

xi
i.i.d.∼ N (0, Ip), and the response yi |xi = +1 with probability σ(x�

i θ�) where σ(t) =
1/(1 + e−t ), and yi |xi = −1 otherwise. Each coordinate of θ� is drawn i.i.d. from a Gaussian
N (0,1/p). For each ψ ∈ � , we generate multiple samples of size n = 400, and calculate the
max-�1-margin by two methods: (i) the numerical solution κn,�1 to the corresponding linear
program (LP) in (1.3); the blue points in Figure 1(a) depict these values (appropriately scaled)
and (ii) the asymptotic value κ�(ψ,μ) predicted by our analytic formula in Theorem 3.1; the
red points labeled as CGMT in Figure 1(a) represent these values. Calculating our theoretical
predictions involves solving a complex nonlinear system of equations defined in (3.9). This
involved computing integrals, which we approximate via Monte-Carlo sums (5000 samples).
Figure 1(b) compares the corresponding out-of-sample prediction error: the blue points show
the generalization error Px,y(y · x�θ̂n,�1 < 0), when θ̂n,�1 is calculated from the LP, whereas
the red points depict the asymptotic value predicted by our theory (Theorem 3.2). In both

FIG. 1. x-axis: Ratio p/n. y-axis: (a) Left: max-�1-margin (as in equation (3.2)), the blue points are obtained
by solving the LP in (1.3) and averaging its solution over 10 independent simulation runs. The red points are
obtained by numerically evaluating the formula in RHS of (3.2). (b) Right: Generalization error, the blue points
are obtained by calculating the generalization error of θ̂n,�1 that forms the solution in θ of the LP (1.3), and this
is averaged over 10 simulation runs. The red points are obtained by numerically evaluating the formula in RHS
of (3.2).
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cases, the points align well, demonstrating that our theory, albeit asymptotic, shows satisfac-
tory finite sample accuracy. In this example, the threshold for separability was around 0.43
[24]. This is also evidenced in the plot—the max-�1-margin is positive (resp., zero) above
(resp., below) this threshold, and as expected, our theory matches the numerics accurately
above the threshold.

Organization. The rest of the paper is organized as follows. Section 2 introduces some
crucial preliminaries that are heavily used through the rest of the paper. Section 3 presents
our main results, whereas a proof sketch and description of our technical contributions is
presented in Section A (details are deferred to the Appendix). Section 4 discusses relevant
literature that has been omitted from this Introduction. Finally, Section 5 concludes with a
discussion on possible directions for future work.

2. Formal setup and preliminaries. This section introduces our formal setup. Unless
otherwise mentioned, we consider a sequence of problems {y(n),X(n), θ�(n)}n≥1, such that
y(n) ∈ R

n, θ�(n) ∈ R
p(n) and X(n) ∈ R

n×p(n), where the ith row xi ∼ N (0,	(n)), and the
ith entry of y(n) satisfies

(2.1) yi |xi
i.i.d.∼

{+1, w.p. f
(〈
θ�(n), xi

〉)
,

−1, w.p. 1 − f
(〈
θ�(n), xi

〉)
.

Above, 	(n) ∈ R
p(n)×p(n) is a diagonal covariance matrix and f is any nondecreasing con-

tinuous function bounded between 0 and 1. Recall that we consider the asymptotic regime
(1.1), that is, p(n)/n → ψ ∈ (0,∞). We require certain structural assumptions on the covari-
ate distributions and the regression vector sequence that is described below. Conceptually,
four factors determine the structure of the problem: overparametrization ψ , signal strength
ρ, link function f and a limiting measure μ defined in Assumption 2. Later, Section 3.5 will
investigate models beyond (2.1).

ASSUMPTION 1. Let λi(n) denote the eigenvalues of 	(n). Assume that there exists a
positive constant 0 < c < 1 such that c ≤ λi(n) ≤ 1/c, ∀1 ≤ i ≤ p(n) and for all n and p.

ASSUMPTION 2. Define ρ(n) ∈ R and w̄(n) ∈ R
p(n) such that

ρ(n) := (
θ�(n)�	(n)θ�(n)

)1/2 and w̄i(n) := √
p

√
λi(n)〈θ�(n), ei,p〉

ρ(n)
,(2.2)

where ei,p denotes the canonical vector in R
p with 1 in the ith entry and 0 elsewhere. Assume

(2.3) ρ(n) → ρ

with 0 < ρ < ∞. Assume in addition that the empirical distribution of {(λi(n), w̄i(n))}p(n)
i=1

converges to a probability distribution μ on R>0 ×R, in the Wasserstein-2 distance, that is,

1

p

p∑
i=1

δ(λi,w̄i )
W2⇒ μ.(2.4)

REMARK 2.1. Note that Assumption 1 and (2.3) together imply that
∑p

j=1 θ�(n)2
j =

O(1). If all the entries of θ� are of the same order, this yields θ�,i = O(1/
√

p). This also
justifies why we include

√
p in the numerator of w̄i . The convergence in W2 equivalently

means weak convergence and convergence of the second moments (see, for instance, [75,
103]). In particular, this implies that

∫
w2μ(dλ, dw) = 1.
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ASSUMPTION 3. Finally, assume that∥∥w̄(n)
∥∥∞ ≤ C′, and

∥∥w̄(n)
∥∥

1/p > C′′(2.5)

for all n and p, for some constants C′,C′′ > 0.

Linear separability. We assume that our sequence of problem instances is (asymptoti-
cally) linearly separable in the following sense:

lim
n,p(n)→∞P

(∃θ ∈ R
p, yix

�
i θ > 0 for 1 ≤ i ≤ n

) = 1.(2.6)

For the model specified in (2.1), it turns out that (2.6) is satisfied if and only if the over-
parametrization ratio exceeds a phase transition threshold ψ > ψ�(ρ,f ). It is well known
that the separability event is equivalent to the event that the maximum likelihood estimate is
attained at infinity [2], and this has been a problem of intense study in classical statistics
and information theory [28, 61, 86]. More recently, [24] derived the separability thresh-
old ψ�(ρ,f ) for a logistic regression model (when f is the sigmoid function). A sim-
ilar phenomenon extends to other functions f as well, as subsequently characterized by
[75]. To describe this phase transition threshold, consider the following bivariate function
Fκ :R×R≥0 →R≥0 defined for any κ ≥ 0:

Fκ(c1, c2) := (
E

[
(κ − c1YZ1 − c2Z2)

2+
]) 1

2 where⎧⎪⎪⎨
⎪⎪⎩

Z2 ⊥ (Y,Z1),

Zi ∼N (0,1), i = 1,2,

P(Y = +1|Z1) = 1 − P(Y = −1|Z1) = f (ρ · Z1).

(2.7)

Then

(2.8) ψ�(ρ,f ) = min
c∈R F 2

0 (c,1).

As an example, recall that ψ�(ρ,f ) ≈ 0.43 in the setting of Figure 1. The above function
Fκ :R×R≥0 →R≥0 will prove crucial in our subsequent theory.

Boosting Algorithm. For the convenience of the readers, we describe here the gen-
eral Boosting Algorithms we work with. We begin by briefing the steps in AdaBoost [42,
43]. Suppose that each weak learner outputs a continuous decision Xij = xi[j ] ∈ R and
yi ∈ {−1,+1}. Let n be the standard probability simplex given by n := {p ∈ [0,1]n :∑n

i=1 pi = 1}. Suppose Z = y ◦ X ∈ R
n×p denotes multiplying each element in the ith row

of X by yi , i ∈ [n]. At each step, AdaBoost adaptively chooses the best feature as follows:

1. Initialize: data weight η0 = 1/n · 1n ∈ n, parameter θ0 = 0.
2. At time t ≥ 0:

(a) Feature selection: vt+1 := arg maxv∈{ej }j∈[p] |η�
t Zv|;

(b) Adaptive stepsize αt : αt := η�
t Zvt+1;

(c) Coordinate update: θt+1 = θt + αt · vt+1;
(d) Weight update: ηt+1[i] ∝ ηt [i] exp(−αtyix

�
i vt+1), normalized such that

ηt+1 ∈ n.

3. Terminate after T steps, and output the vector θT .

3. Main results. This section will provide precise analyses of the max-�1-margin κn,�1

and the min-�1-norm interpolant θ̂n,�1 , as well as the generalization and optimization perfor-
mance of Boosting Algorithms, in terms of the problem parameters (ψ,ρ,μ,f ) introduced
in Section 2.
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3.1. Max-�1-margin and min-�1-norm interpolant. Recall the definition of the max-�1-
margin from (1.3). We establish that κn,�1 , when appropriately scaled, converges almost
surely to a limit that can be explicitly characterized in terms of ψ , μ and f . To describe
this limit, consider the following function first introduced in [75]: for any (ψ, κ) pair that
satisfies ψ > ψ↓(κ) (see equation (3.12)), define T : (ψ, κ) →R to be

T (ψ,κ) := ψ−1/2[
Fκ(c1, c2) − c1∂1Fκ(c1, c2) − c2∂2Fκ(c1, c2)

] − s.(3.1)

Above, c1 ≡ c1(ψ,ρ,μ, κ), c2 ≡ c2(ψ,ρ,μ, κ), s ≡ s(ψ,ρ,μ, κ) form the unique solution
to the nonlinear system of equations introduced in (3.9) (Proposition 3.1 establishes unique-
ness of the solution). A detailed description of this system is deferred until Section 3.2; the
key point is that the system takes as input the quantities ψ , ρ, μ, κ and solves three equations
in three unknowns, producing a triplet c1, c2, s. Throughout, μ and ρ will be defined via
(2.4) and (2.3), respectively, and if these are fixed, c1, c2, s then simply form functions of
ψ , κ . Note that we drop the dependence on f for simplicity of the exposition; however, it
is important to emphasize that f enters the definition of Fκ(·, ·), which in turn affects the
equation system.

THEOREM 3.1. Suppose Assumptions 1–3 hold and that our sequence of problem in-
stances obeys (2.6), that is, ψ > ψ�(ρ,f ). Then, under the asymptotic regime (1.1), the
max-�1-margin admits the limiting characterization

lim
n→∞p1/2 · κn,�1

a.s.= κ�(ψ,ρ,μ),(3.2)

where

κ�(ψ,ρ,μ) = inf
{
κ ≥ 0 : T (ψ,κ) = 0

}
.(3.3)

The max-�1-margin was conjectured to be a central quantity for boosting [16]. Theo-
rem 3.1 provides a precise high-dimensional characterization of this object under our data-
generating scheme. For typical data instances, it is crucial to understand how such margin
scales with the overparametrization, both theoretically and empirically, which is answered
by the above theorem. This limiting result will lead to precise characterizations of statistical
and computational properties of Boosting Algorithms in our setting, as we shall shortly see in
Section 3.3. Although the result is asymptotic, the empirical margin (scaled)

√
pκn,�1 agrees

well with the limiting value κ�(ψ,ρ,μ), even for data sets with moderate dimensions (e.g.,
n = 400), as demonstrated by Figure 1.

Some comments regarding the limit κ�(ψ,ρ,μ) are in order. First, the limit is well defined,
owing to properties of T (ψ,κ): Section 3.2 presents an argument toward this claim. Next,
(3.3) clearly demonstrates the dependence of κ�(ψ,ρ,μ) on the overparametrization ratio ψ .
Its dependence on the signal strength ρ and the distribution μ is encoded through Fκ(·, ·),
and the parameters c1 ≡ c1(ψ,ρ,μ, κ), c2 ≡ c2(ψ,ρ,μ, κ), s ≡ s(ψ,ρ,μ, κ), which appear
in the definition of T (ψ,κ) (3.1).

We now proceed to study the min-�1-norm interpolated classifier (1.2), and its precise
generalization behavior in our asymptotic regime (1.1). Define

Err�(ψ,ρ,μ) = P
(
c�

1YZ1 + c�
2Z2 < 0

)
,(3.4)

where c�
i := ci(ψ,ρ,μ, κ�(ψ,ρ,μ)), i = 1,2. Together with a third parameter s� ≡

s(ψ,ρ,μ, κ�(ψ,ρ,μ)), c�
1, c�

2, s� form the unique solution to the system of equations (3.9),
when the inputs to the system are ψ , ρ, μ and κ�(ψ,ρ,μ), (3.2). Furthermore, (Y,Z1,Z2)

follows the joint distribution specified in (2.7); note that this depends on the problem param-
eters through ρ.
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THEOREM 3.2. Under the assumptions of Theorem 3.1, the generalization error of any
min-�1-interpolated classifier θ̂n,�1 , defined in (1.2), converges almost surely to Err�(ψ,ρ,μ),
that is, for a new data point (x,y) drawn from the data-generating distribution specified in
Section 2,

lim
n→∞P(x,y)

(
y · x�θ̂n,�1 < 0

) a.s.= Err�(ψ,ρ,μ).(3.5)

Theorem 3.2 provides an exact quantification of the generalization behavior of the min-�1-
norm interpolant under our data-generating scheme. Earlier works [82, 108] already charac-
terized the long time and infinitesimal step size limit of AdaBoost on separable data. Later,
Section 3.3 will establish a slightly more refined connection between θ̂n,�1 and the AdaBoost
iterates (with suitably chosen learning rates). Informally, the AdaBoost iterates arrive ar-
bitrarily close to the min-�1-norm interpolant, beyond a certain time threshold. Therefore,
Theorem 3.2 provides two important contributions to the boosting literature, described as
follows.

First, Schapire et al. [88], Breiman [16] posed a general question regarding which quan-
tity truly governs the generalization performance of AdaBoost. Observe that in Theorem 3.2,
Err�(ψ,ρ,μ) crucially depends on κ�(ψ,ρ,μ) (3.2) through the constants c�

i . Therefore, the
asymptotic max-�1-margin precisely determines the generalization error in our setting. Since
our result is asymptotically exact, Theorem 3.2 provides an answer to the question posed in
[16, 88] under our assumed model. To contrast, the existing margin-based generalization up-
per bounds [59, 88] (that do not assume strong conditions on the data-generating distribution)
scale as

1√
nκn,�1

Poly(logn) �
√

ψ

κ�(ψ,ρ,μ)
Poly(logn) � Err�(ψ,ρ,μ).(3.6)

In fact, note that the inverse of the y-axis in Figure 2 corresponds to the classical upper bound
(
√

nκn,�1)
−1 on the generalization error, as given by equation (3.6), but this upper bound is

vacuous in our setting (even overlooking the log factors) since it is worse than 0.5. As a side
remark, note that Theorem 3.2 also exhibits accurate finite sample performance, as already
seen in Figure 1.

Second, the constants c�
1, c�

2 carry elegant geometric and statistical interpretations. Toward
establishing Theorem 3.2, it can be shown that the angle between the interpolated solution
θ̂n,�1 and the target θ� converges in the following sense:

(3.7)
〈θ̂n,�1, θ�〉	

‖θ̂n,�1‖	‖θ�‖	

a.s.→ c�
1√

(c�
1)

2 + (c�
2)

2
,

FIG. 2. x-axis: varying ratio ψ := p/n. y-axis: κ�(ψ,ρ,μ)/
√

ψ (as in equation (3.6)). The setting is the same
as in Figure 1. See Figure 1(a) for details on calculation of the blue and red points.
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where 〈θ1, θ2〉	 := θ�
1 	θ2. Furthermore, c�

2 can be interpreted as the orthogonal projection,

in the sense that, ‖�(	1/2θ�)⊥(	1/2θ̂n,�1)‖ a.s.→ c�
2.

Finally, recall the Bayes error formula, and contrast it with the test error formula (3.4)
proved in Theorem 3.2,

ErrBayes(ρ) = P(YZ1 < 0), Err�(ψ,ρ,μ) = P
((

c�
2
)−1

c�
1YZ1 + Z2 < 0

)
.(3.8)

Then it is clear to see that (c�
2)

−1c�
1 determines how the test error of θ̂n,�1 differs from the

optimal Bayes error. Therefore, Theorem 3.2 advances the literature on how the test error of
boosting relates to the Bayes error [17, 56, 69, 107]: the optimality of boosting (w.r.t. the
optimal Bayes classifier) is entirely determined by the magnitude of (c�

2)
−1c�

1.
The curious reader may wonder about the accuracy of our asymptotic theory for design ma-

trices excluded from our assumptions. We investigate this sensitivity along few directions—
violation of independence between the features, violation of Gaussianity of the covariates
used for boosting and misspecification in the model due to missing a fraction of the relevant
variables. We defer the readers to Section 3.5 for more details on these.

3.2. The nonlinear system of equations. We will now introduce a nonlinear system of
equations that is key to the study of the max-�1-margin and the min-�1-norm interpolant in
high dimensions, as delineated in Theorems 3.1–3.2.

DEFINITION 1. For any ψ > 0 and κ ≥ 0, define the following system of equations in
variables (c1, c2, s) ∈R

3,

c1 = −E(	,W,G)∼Q

(
	−1/2W · T

ψ−1/2c−1
2 ∂2Fκ(c1, c2)

)
,

c2
1 + c2

2 = E(	,W,G)∼Q

(
	−1/2T

ψ−1/2c−1
2 ∂2Fκ(c1, c2)

)2
,(3.9)

1 = E(	,W,G)∼Q

∣∣∣∣ 	−1T
ψ−1/2c−1

2 ∂2Fκ(c1, c2)

∣∣∣∣,
where

proxλ(t) = arg min
s

{
λ|s| + 1

2
(s − t)2

}
= sign(t)

(|t | − λ
)
+,

T = proxs

(
	1/2G + ψ−1/2[

∂1Fκ(c1, c2) − c1c
−1
2 ∂2Fκ(c1, c2)

]
	1/2W

)
,

(3.10)

and the expectation is over (	,W,G) ∼ μ ⊗N (0,1) =: Q with μ and Fκ(·, ·) defined as in
(2.4) and (2.7) respectively.

Note that 	 denotes both the random variable in (3.9) and the covariance matrix in As-
sumption 1. Such overload of notation will prove useful in the technical derivations.

This equation system is fundamental in characterizing all of the limiting results in Sec-
tion 3.1. At this point, the system may seem mysterious to the readers, but it arises rather
naturally in the analysis of (1.2)–(1.3); this will be detailed in Appendix A. The max-�2-
margin has received considerable attention in the past [46, 75, 90], however, (3.9) differs
significantly from the equation system considered in case of the �2 geometry. This is nat-
ural, due to the intrinsic differences between the �2 and �1 geometries, and this also leads
to significant technical challenges in our setting (Appendix A). Analogous systems arise in
the study of high-dimensional statistical models in the proportional regime (1.1); here, the
most relevant ones are the analysis of the Lasso under nonlinear measurement models [99],
and that of the MLE, LRT [95, 109] and convex regularized estimators [85, 94] for logistic
regression.
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Uniqueness. Theorems 3.1–3.2 expressed our limiting results in terms of the solution to
the system (3.9). It is, therefore, crucial to establish that the solution will indeed be unique.
To this end, introduce the constants ζ and ω as follows:

ζ := (
E(	,W)∼μ

∣∣	−1/2W
∣∣)−1

,

ω := (
E(	,W)∼μ

(
W − ζ	−1/2 sign

(
ζ	−1/2W

))2)1/2
.

(3.11)

Define the functions ψ+(κ) : R>0 →R, ψ− :R>0 →R and ψ↓(κ) :R>0 →R≥0 as follows:

ψ+(κ) =
{

0 if ∂1Fκ(ζ,0) > 0,

∂2
2Fκ(ζ,0) − ω2∂2

1Fκ(ζ,0) if otherwise,

ψ−(κ) =
{

0 if ∂1Fκ(−ζ,0) < 0,

∂2
2Fκ(−ζ,0) − ω2∂2

1Fκ(−ζ,0), if otherwise,
(3.12)

ψ↓(κ) = max
{
ψ�(ρ,f ),ψ+(κ),ψ−(κ)

}
,

where ψ�(ρ,f ) is given by (2.8).

PROPOSITION 3.1. For any (ψ, κ) pair satisfying ψ > ψ↓(κ), under Assumptions 1–3,
the system of equations (3.9) admits a unique solution that satisfies (c1, c2, s) ∈ R× R>0 ×
R>0.

Our proof for Proposition 3.1 adapts insights from [75] to the case of �1 geometry, how-
ever, the definition of ω, ζ in the threshold ψ↓(κ), (3.12), differs from the �2 case. Now, it can
be shown that Fκ(·, ·) satisfies: (i) (ψ, κ) �→ T (ψ,κ) is continuous on its domain, (ii) for any
fixed κ > 0, T (ψ,κ) is strictly decreasing in ψ , (iii) for any fixed ψ > 0, T (ψ,κ) is strictly
increasing in κ ([75], Section B.5, Proposition 4.1). Further, using the definition of ψ↓(κ),
and once again properties of Fκ(·, ·), one can establish that limψ→∞ T (ψ,κ) < 0, whereas
limψ↓ψ↓(κ) T (ψ, κ) > 0 and, moreover, limκ→∞ T (ψ,κ) = ∞. Putting all of these together
yields that the region {(ψ, κ) : ψ > ψ↓(κ)} contains the region {(ψ, κ) : T (ψ,κ) = 0}. This
ensures (3.3) is well defined, and that c�

1, c�
2, s� are unique. We defer to the Appendix for

proof of Proposition 3.1.

3.3. Boosting in high dimensions. We turn our attention to the Boosting Algorithm de-
scribed in Section 2. The path of boosting iterates was studied in infinite time and infinites-
imal stepsize in [82, 108]. Here, we establish a sharp analysis of the number of iterations
necessary for the AdaBoost iterates to approximately maximize the �1-margin with arbitrary
accuracy.

THEOREM 3.3. Under the assumptions of Theorem 3.1, with a suitably chosen learn-
ing rate (specified in Corollary A.1), the sequence of iterates {θ̂ t }t∈N obtained from the
Boosting Algorithm obeys the following property: for any 0 < ε < 1, when the number of
iterations t satisfies

t ≥ Tε(n) with lim
n→∞

Tε(n)

n log2 n

a.s.= 12ψ

κ2
� (ψ,ρ,μ)

ε−2,(3.13)

the solution θ̂ t /‖θ̂ t‖1 forms (1 − ε)-approximation to the Min-�1-interpolated classifier, that
is, almost surely,

(1 − ε) · κ�(ψ,ρ,μ) ≤ lim inf
n→∞

(
p1/2 · min

i∈[n]
yix

�
i θ̂ t

‖θ̂ t‖1

)
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≤ lim sup
n→∞

(
p1/2 · min

i∈[n]
yix

�
i θ̂ t

‖θ̂ t‖1

)

≤ κ�(ψ,ρ,μ).

The above result is obtained by combining our Theorem 3.1 with a careful nonasymptotic
analysis of AdaBoost allowing for an explicitly-specified learning rate that builds upon exist-
ing works on margin maximization rates, rescaling and shrinkage techniques, and the mirror
descent connections of AdaBoost (see [26, 38, 50, 54, 98, 108] and references cited therein).
Together with Theorem 3.2, this result establishes a precise characterization of the computa-
tional and statistical behavior of AdaBoost for all iterations above the threshold Tε(n), and
complements the classical margin upper bounds [59, 88]. Thus, Theorem 3.3 reinforces a
crucial conclusion from Section 3.1—the max-�1-margin is the key quantity governing the
generalization error of AdaBoost in our setting.

Aside from strengthening this conclusion, for separable data with a large and comparable
number of samples and features, the theorem informs a stopping rule for Boosting Algorithms
that ensures good generalization behavior. Note that, for any numerical accuracy ε, the
stopping time Tε(n) has an asymptotic characterization that contributes new insights to the
computational properties of AdaBoost. To see this, Figure 2 plots the scaled margin limit
ψ−1/2κ�(ψ,ρ,μ) as a function of ψ , in the setting of Figure 1. The increase in this (scaled)
limit as a function of ψ , together with (3.13), implies that the larger the overparametrization
ratio, the smaller the threshold Tε(n). Therefore, overparametrization leads to faster opti-
mization. Furthermore, even in terms of the optimization performance, the max-�1-margin is
once again the central quantity in our setting, as elucidated by (3.13).

REMARK 3.1. A natural question may arise at this point: does the max-�1-margin stud-
ied here, when appropriately scaled, differ significantly from the �2-margin [75]? Note that
the rescaled �1-margin is always larger than the �2-margin, denoted by κn,�2 , since

κn,�2 ≤ √
p · κn,�1, where κn,�2 := max‖θ‖2≤1

min
1≤i≤n

yix
�
i θ.(3.14)

A comparison of Figure 2 with [75], Figure 1, shows that the range for the �1-margin is
roughly twice that for the �2 case, demonstrating that these behave differently, even after
appropriate scaling.

Proportion of activated features for AdaBoost. The connection between the boosting so-
lution and max-�1-margin suggests that AdaBoost effectively converges to a sparse classifier.
Motivated to understand the geometry of the solution better, the following theorem studies
the proportion of active features when the training error vanishes along the path of AdaBoost.

COROLLARY 3.1. Let S0(p) denote the number of features selected the first time t when
the Boosting Algorithm achieves zero training error (with an initialization of θ̂0 = 0), in the
sense that

S0(p) := #
{
j ∈ [p] : θ̂ t

j 	= 0
}
, where

1

n

n∑
i=1

I
yix

�
i θ̂ t≤0 = 0.(3.15)

Under the assumptions of Theorem 3.3, S0(p), scaled appropriately, is asymptotically
bounded by

lim sup
p→∞

S0(p)

p log2 p
≤ 12

κ2
� (ψ,ρ,μ)

, a.s.(3.16)
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This corollary provides specific insights into the geometry of the boosting solution, by
quantifying the maximum number of coordinates that may be nonzero. Note once again that
the bound involves the max-�1-margin limit, and suggests that the larger the margin, the
sparser the solution (with zero training error). Thus, our limit κ�(ψ,ρ,μ) may even be central
for determining the geometric structure of the boosting solution (at least under our data-
generating scheme), beyond its foregoing roles in terms of generalization and optimization.
Note also that the margin grows as a function of ψ (Figure 1). This further suggests that larger
the overparametrization, less the number of activated coordinates for certain data-generating
processes.

3.4. A new class of Boosting Algorithms. This section studies variants of AdaBoost that
converge to the max-�q -margin direction for general q ≥ 1. We also characterize the gener-
alization error and optimization performance of a class of such algorithms, through a study
of the max-�q -margin and the min-�q -norm interpolant beyond the case of q = 1. This com-
plements the study of general �q constraints, that was initiated by [82] (see also [50] and
references therein). To this end, define the max-�q -margin to be

κn,�q := max‖θ‖q≤1
min

1≤i≤n
yix

�
i θ,(3.17)

and the corresponding min-�q -norm interpolant to be

θ̂n,�q ∈ arg min
θ

‖θ‖q, s.t. yix
�
i θ ≥ 1,1 ≤ i ≤ n.(3.18)

Denote q� ≥ 1 to be the conjugate index of q , with 1/q�+1/q = 1, and consider the following
algorithm.

AdaBoost variant corresponding to �q geometry:

1. Initialize: η0 = 1/n · 1n ∈ n, and parameter θ0 = 0.
2. At time t ≥ 0:

(a) Update direction: vt+1 := arg maxv∈Rp,‖v‖q=1〈Z�ηt , v〉;
(b) Adaptive stepsize: αt(β) = β · ‖Z�ηt‖q� , with 0 < β < 1 being a shrinkage factor.
(c) Parameter update: θt+1 = θt + αt · vt+1;
(d) Weight update: ηt+1[i] ∝ ηt [i] exp(−αtyix

�
i vt+1), normalized such that

ηt+1 ∈ n.

3. Terminate after T steps, and output the vector θT .

This algorithm converges to the max-�q -margin direction, as indicated by the following corol-
lary.

COROLLARY 3.2 (Boosting converges to max-�q -margin direction). Let q ≥ 1. Consider
the aforementioned boosting algorithm with learning rate αt(β) := β · η�

t Zvt+1, where β <

1. Assume that |Xij | ≤ M for i ∈ [n], j ∈ [p]. Then after T iterations, the boosting iterates
θT converge to the max-�q -margin direction in the following sense: for any 0 < ε < 1,

κn,�q ≥ min
i∈[n]

yix
�
i θT

‖θT ‖q

> κn,�q · (1 − ε),(3.19)

where T ≥ log(1.01ne) · 2p
2
q� M2ε−2

κ2
n,�q

. The shrinkage factor is chosen as β = ε

p
2
q� M2

.
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Utilizing arguments similar to that for Theorems 3.1–3.2, it can be shown that the max-
�q -margin and the corresponding min-�q -norm interpolant admit analogous characterizations
with a system of equations that differs from (3.9), all else remaining the same. To introduce
the equation system corresponding to general �q geometry, define the proximal mapping
operator of the function fλ(t) = λ|t |q , for λ > 0, q ≥ 1, to be

prox(q)
λ (t) := arg min

s

{
λ|s|q + 1

2
(s − t)2

}
.(3.20)

With

t� := −	−1/2G + ψ−1/2[∂1Fκ(c1, c2) − c1c
−1
2 ∂2Fκ(c1, c2)]	−1/2W

ψ−1/2c−1
2 ∂2Fκ(c1, c2)

,

λ� := 	−1s

ψ−1/2c−1
2 ∂2Fκ(c1, c2)

define

h� = prox(q)
λ�

(
t�

)
.

Consider the system of equations

c1 = 〈
	1/2h�,W

〉
L2(Q), c2

1 + c2
2 = ∥∥	1/2h�

∥∥2
L2(Q),

∥∥h�
∥∥
Lq(Q) = 1,(3.21)

where, recall from Definition 1 that Q = μ × N (0,1). It is not hard to see that this system
reduces to (1) for q = 1.

COROLLARY 3.3. Under the assumptions of Theorem 3.1 and for 1 ≤ q ≤ 2, the max-
�q -margin obeys

(3.22) p
1
q
− 1

2 κn,�q

a.s.→ κ(q)
� (ψ,ρ,μ),

where κ
(q)
� (ψ,ρ,μ) satisfies (3.3), with T (ψ,κ) of the same form as in (3.1), but with c1, c2,

s given by the solution to (3.21). Simultaneously, the generalization error of the min-�q -norm
interpolant can be characterized using (3.5), but when c�

1, c�
2, s� is replaced by the solution

to (3.21), when κ
(q)
� (ψ,ρ,μ) is input instead of κ�(ψ,ρ,μ).

Corollary 3.2 then establishes that all properties of AdaBoost presented in Section 3.3
continue to hold (after appropriate scalings) for the generalized versions of AdaBoost con-
sidered here for 1 ≤ q ≤ 2, with (3.9) swapped for (3.21). Once again, observe that the max-
�q -margin is crucial for understanding properties of these variants of AdaBoost. In terms
of proofs, our technical contributions in the context of the max-�1-margin are sufficiently
general, and can be adapted to establish the results in this section. Extensions to the case
of q > 2 may be feasible if one imposes a condition stronger than convergence in W2 (in
Assumption 2).

The curious reader might wonder how the interpolant behavior changes as a function of q .
Recall (Section 3) that the term (c�

2)
−1c�

1 governs the difference between the generalization
error and the optimal Bayes error. Characterizing the minimizer of this quantity requires a re-
fined analysis of the system of equations (3.21). Analogous calculations have been carried out
elsewhere, for example, for choosing optimal loss functions for inference [1, 7, 97] and op-
timal bridge penalty [104] for variable selection. Our initial simulations suggest that, for our
problem, there may not be a universally optimal choice of q . Instead, the optimal value may
depend on subtle properties of the data-generating process. We defer further investigations
along this line to future work.
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REMARK 3.2. Note that Corollary 3.3 assumes the data is asymptotically linearly sep-
arable, that is, ψ > ψ�(ρ,f ). This separability threshold is an inherent property of the se-
quence of problem instances, and does not depend on the geometry under which the max-
margin is considered in (3.22).

3.5. Robustness to assumptions. The theory presented so far provides precise character-
izations of the �1 margin, interpolant and in turn AdaBoost, but relies, nonetheless, upon
assumptions on the data generating process (2.1). This section explores relaxations of these
assumptions along a few natural directions: (a) going beyond the assumption of independence
between the covariates, (b) analyzing sensitivity to the Gaussianity assumption, (c) under-
standing implications of certain model misspecification. For the latter, we explore a common
source of misspecification that occurs when the model misses a fraction of relevant variables.
Studying AdaBoost and the max-�1-margin under such varied settings, we will uncover that
the general insights underlying our proposed theory persist across the board, suggesting the
possibility of extending our analyses to a broader class of data generation schemes.

3.5.1. Beyond independent covariates. This section will focus on data-generation sche-
mes with dependent covariates. Our exact asymptotics continue to hold for a class of such
design matrices. We present results in the context of two models in an increasing order of
complexity the first (resp., second) involves a feature covariance matrix that is a rank-one
(resp., rank-two) perturbation of a diagonal. Extensions to rank-� perturbations are feasible
(see Appendix D.1). The reader should take this section as a proof of concept that our results
can be extended to dependent covariates in certain settings.

As a first step toward understanding dependent covariates, consider a simple Gaussian
mixture model:

P(yi = +1) = 1 − P(yi = −1) = υ ∈ (0,1),(3.23)

xi |yi ∼ N (yi · θ�,	),(3.24)

where 	 ∈ R
p×p is a diagonal matrix. By the Bayes formula, the conditional distribu-

tion of yi |xi can be captured through a logistic model, with P(yi = +1|xi) = f (log v
1−v

+
〈	−1θ�, xi〉) and f (t) = 1/(1+e−t ). The covariate distribution obeys a mixture of Gaussians
but the marginal covariance is given by Cov(xi) = 4v(1−v)θ�θ

�
� +	 (thus called the spiked

covariance model). Compared to the diagonal covariance as in (2.1), the setting considered
here therefore goes beyond independent covariates by introducing a rank-one spike to the
diagonal covariance 	.

Similar to Assumption 2, let p(n)/n = ψ and denote

1

p

p∑
i=1

δ(λi,
√

pθ�
� ei )

W2⇒ μ.(3.25)

Define a new function F̄κ :R×R≥0 →R≥0 with parameter κ ≥ 0,

F̄κ(c1, c2) := (
E

[
(κ − c1 − c2Z)2+

]) 1
2 where Z ∼ N (0,1).(3.26)

Denote a triplet of random variables (	,�,G) ∼ μ ⊗N (0,1) =: Q with μ given by (3.25),
and for any ψ > 0, define the following system of equations in variables (c1, c2, s) ∈ R

3:

c1 = −E(	,�,G)∼Q

(
	−1� · proxs(	

1/2G + ψ−1/2∂1F̄κ(c1, c2)�)

ψ−1/2c−1
2 ∂2Fκ(c1, c2)

)
,

c2
2 = E(	,�,G)∼Q

(
	−1/2 proxs(	

1/2G + ψ−1/2∂1F̄κ(c1, c2)�)

ψ−1/2c−1
2 ∂2F̄κ(c1, c2)

)2
,(3.27)
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1 = E(	,�,G)∼Q

∣∣∣∣	
−1 proxs(	

1/2G + ψ−1/2∂1F̄κ(c1, c2)�)

ψ−1/2c−1
2 ∂2F̄κ(c1, c2)

∣∣∣∣.
Then, in the regime where the data is asymptotically linearly separable (see [29], Proposi-
tion 3.1, for the linear separability threshold for this problem), the max-�1-margin and min-
�1-norm interpolant obey the limiting characterizations from Theorems 3.1–3.2, with the
system of equations given by (3.27), and Fκ(c1, c2) substituted by (3.26). Note that [29] ana-
lyzed the max-�2-margin for a (misspecified) logistic model and the Gaussian mixture model
(3.23)–(3.24) through a unified CGMT based analysis. Due to crucial differences between �1
and �2 geometries, the �1 case, (or for that matter, any �q with q 	= 2) does not follow directly
from these results. We will elaborate on this point in Appendix A.

We can further this characterization to analogous settings where the marginal covariance
between features contains a finite rank perturbation of a diagonal matrix. To provide a precise
description, consider an extension of (3.23)–(3.24), where (3.23) remains the same but (3.24)
changes to

(3.28) xi = yiθ� + miθ̃ + x̃i ,

with (yi,mi, x̃i) independent of each other, mi any random variable symmetric around
zero, x̃i ∼ N (0,	) with 	 diagonal. The observed data contains only (yi, xi), and thus,
the mi ’s may be thought of as latent random variables. Note in this case, Cov(xi) =
4v(1 − v)θ�θ

�
� + Var(mi)θ̃ θ̃� + 	, a rank-two perturbation of a diagonal covariance matrix.

The aforementioned characterization can be naturally extended with appropriate analogues of
(3.25)–(3.27). We assume that the Wasserstein-2 limit of the empirical distribution sequence∑p

j=1 δ(λi ,
√

pθ�
� ei ,

√
pθ̃�ei )

/p exists, denote it by μ̃, and let (	,h�, h̃,G) ∼ Q̃ = μ̃⊗N (0,1).
Define the following analogue of (3.26):

(3.29) F̃κ(c1, c2, c3) =
√
E

[
(κ − c1 − c2Z̃ − c3M)2+

]
,

where M
d= mi, Z̃ ∼ N (0,1), independent of M . Then, our Theorems 3.1–3.2 once again

characterize the max-�1-margin and min-�1-norm interpolant behavior (see Appendix D.1
for further details) on substituting Fκ(c1, c2) for F̃κ(c1, c2, c3) and (3.9) for the following
system of four equations:

c1 = E
(	,h�,h̃,G)∼Q̃

[h�hsol], c2
2 = E

(	,h�,h̃,G)∼Q̃

[(
	1/2hsol

)2]
,

c3 = E
(	,h�,h̃,G)∼Q̃

[h̃hsol], 1 = E
(	,h�,h̃,G)∼Q̃

[|hsol|], where

hsol = −proxs(	
1/2G + ψ−1/2(∂1F̃κ(c1, c2, c3)h� + ∂3F̃κ(c1, c2, c3)h̃))

	ψ−1/2c−1
2 ∂2F̃κ(c1, c2, c3)

.

(3.30)

Conceptually, adding an extra spike to Cov(xi) increases the complexity of the equation
system by introducing a new variable c3. We will observe a similar phenomenon if we were
to look at more complicated analogues of (3.28) with a higher rank perturbation. In general,
a rank-� perturbation leads to an (� + 2)-dimensional equation system analogous to (3.30).
Due to space constraints, we defer the general treatment to Appendix D.1.

For both the aforementioned models, the boosting algorithm satisfies Theorem 3.3 with
the respective limiting characterization of the max-�1-margin. A common theme across these
settings is that the behavior of the margin and interpolant can be accurately characterized
by a fixed-point equation system, the solution to which possesses precise physical meanings
(see (3.7) and the discussion thereafter). The form of the systems vary from one model to
another; however, principles underlying its origin and key proof steps remain essentially the



1686 T. LIANG AND P. SUR

FIG. 3. x-axis: Ratio p/n, y-axis: Signal-to-noise ratio ρ = (‖√pθ�‖2/Tr(	))1/2. The top row shows
max-�1-margin and bottom row the prediction error of the corresponding interpolant. The left panel plots the
limits of these objects, as characterized by our asymptotic theory, while the right panel shows the correspond-
ing finite sample values obtained by solving (1.3) using linear programming (averaged over two independent
simulation runs to reduce noise).

same (Appendix A). Once again, this is the power of our theoretical analysis in the �1 case:
we introduce a new uniform deviation argument with sufficient generality so that our proof
can be adapted across several modeling schemes, as illustrated through this section.

To conclude this section, we showcase the numerical accuracy of our results for the rank-
one spike case (3.23)–(3.24). The example is illustrated in Figures 3–4. Here, 	 is always
taken to be the identity matrix. The x-axis denotes the overparametrization ratio ψ = p(n)/n,
y-axis the signal-to-noise ratio ρ = (‖√pθ�‖2/Tr(	))1/2 and the color encodes the value of
the max-�1-margin (top row) or prediction error of the corresponding min-�1-norm inter-
polant (bottom row), respectively. Thus, for each value on the y-axis, we choose a different
signal θ� so that the signal-to-noise ratio matches the given value of ρ. The left panel nu-
merically solves the fixed-point equation (3.27) and presents the limits of the margin and
prediction error from Theorems 3.1–3.2, obtained upon replacing (3.9) for the equation sys-
tem in this rank-one spike case, (3.27). The right panel presents the max-�1-margin in finite
samples, obtained by solving the LP (1.3), along with the corresponding prediction error, and
these are averaged over two independent simulation runs. As Figure 3 illustrates the finite-
sample results conform to our asymptotic characterization remarkably well. Figure 4 plots the
excess error, and we observe the following phenomenon: if ψ stays fixed and ρ increases, the
excess error first increases and then decreases. Such a phenomenon indicates a hardest signal
strength ρ for any fixed ψ , where the excess error is maximized. We defer further extensions
to general feature covariance matrices not covered here or in Appendix D.1 for future work.
Note that the �1 and �2 max-margin problems differ significantly in terms of the classes of
feature covariances that yield neat asymptotic limiting expressions. Appendix B explains this
difference in detail.
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FIG. 4. x-axis: Ratio p/n, y-axis: Signal-to-noise ratio ρ = (‖√pθ�‖2/Tr(	))1/2. The values plotted in col-

ored-scale are the excess errors, namely P(yx�θ̂n,�1 < 0) −P(yx�θ� < 0). The left panel plots the limits of these
objects, as characterized by our asymptotic theory, while the right panel shows the corresponding finite sample
values obtained by solving (1.3) using linear programming (averaged over two independent simulation runs to
reduce noise). In this specific setting, if ψ stays fixed and ρ increases, an interesting nonmonotonic phenomenon
occurs, as the excess error first increases and then decreases.

3.5.2. Beyond Gaussian covariates. This section investigates the universality of the max-
�1-margin when the boosting covariates are nonlinear random features. These models are
widely used in machine learning practice due to its connection to one-hidden-layer neural net-
works. To make the presentation clear, let us distinguish two concepts: the observed covariate-
response pair (xi, yi), and the boosting covariate-response pair (ai, yi). To this end, consider
the covariate-response pair {ai ∈ R

d, yi}ni=1 fed into the boosting algorithm as stated in (2)
(with the substitution Z := [y1a1, . . . , ynan]� ∈ R

n×d therein). Here, we take these “actual
covariates for boosting” to be of the form ai = σ(F�xi), with a nonlinear activation func-
tion σ(·) applied entrywise, and a random weight matrix F ∈ R

p×d sampled independent of
the observed xi ’s; thus, we call this random features. Note due to the nonlinearity of σ , the
boosting features ai ’s are non-Gaussian even when xi ’s are Gaussian.

This section will show that the max-�1-margin for the above nonlinear random features
model, in the asymptotic sense, equals that of an analogous Gaussian features model, condi-
tioned on F . To be concrete, we show the asymptotic equivalence of the max-�1-margin for
two models: (i) random features ai = σ(F�xi) ∈ R

d , and (ii) analogous Gaussian features
bi = μ01 + μ1F

�xi + μ2zi ∈ R
d , where zi ∼ N (0, Id), μ0 = E[σ(Z)], μ1 = E[Zσ(Z)],

μ2 =
√
E(σ 2(Z)) − μ2

0 − μ2
1, with Z ∼ N (0,1) independent of everything else. Here, μ0, μ1

are the top two Hermite coefficients of σ(·), and μ2 is the �2 norm of the remaining Hermite
coefficients. The max-�1-margin under each model is calculated using κn,�1({ri, yi}1≤i≤n) :=
max‖θ‖1≤1 min1≤i≤n yir

�
i θ , where ri equals ai or bi depending on the model. We establish

that the asymptotic value of the margin (scaled by
√

p) remains the same irrespective of the
choice of the features included in the calculation.

To formalize this result, we consider a sequence of problem instances {y(n),X(n),

θ�(n)}n≥1 satisfying the conditions in Section 2, and in addition consider feature matrices
A(n), B(n) with the ith row of A(n) (resp., B(n)) given by ai (resp., bi ) described above.
The sequence of random feature matrices F(n) in the definition of A(n) are taken to be of
the form F(n) = [f1, . . . , fd(n)], where fi ∼ N (0, Ip/p), and both p(n), d(n) scale linearly
with n. In the sequel, we suppress the dependence on n, whenever clear from context.

THEOREM 3.4. Under the aforementioned conditions, if the nonlinear function σ(·)
is odd, compactly supported, and has bounded first, second and third derivatives, then the
(rescaled) max-�1-margin under both fitting procedures (i) and (ii) admit the same limit in
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probability, that is,

(3.31) p1/2 · κn,�1

({ai, yi}1≤i≤n

) − p1/2 · κn,�1

({bi, yi}1≤i≤n

) P→ 0.

The above theorem asserts that, asymptotically, both the nonlinear feature matrix A(n) and
its Gaussian counterpart B(n) yield the same margin value. We next provide a brief outline
of the proof. In Appendix A.1, we mention that studying the limiting value of the margin is
equivalent to studying whether ξ

(n,p)
ψ,κ (R) = min‖θ‖1≤√

p
1√
p
‖(κ1 − (y � R)θ)+‖2 is strictly

positive or not, where R denotes the feature matrix used in the margin definition. This is
equivalent to studying {ξ (n,p)

ψ,κ (R)}2 = min‖θ̃‖1≤p
1
p

∑n
i=1(κ − 1√

p
yir

�
i θ̃ )2+, where we apply

the change of variable θ̃ = √
pθ . Denote the Lagrange form for this problem with multiplier

λ to be �n(R,λ). We claim that to show (3.31), it suffices to show that for all λ

(3.32) �n(A,λ) − �n(B,λ)
P→ 0,

where A, B are the feature matrices defined under the fitting procedures (i) and (ii), respec-
tively. To see this, denote λA to be the solution to the optimization problem

(3.33)
1

p
min

‖θ̃‖1≤p

sup
λ≥0

n∑
i=1

(
κ − 1√

p
yia

�
i θ̃

)2

+
+ λ

p∑
j=1

(|θ̃j | − 1
)
.

Then, by duality of convex programs, we have that {ξ (n,p)
ψ,κ (A)}2 = �n(A,λA). Furthermore,

�n(B,λA) ≤ 1
p

min‖θ̃‖1≤p

∑n
i=1(κ − 1√

p
yib

�
i θ̃ )2+ + λA

∑p
j=1(|θ̃j | − 1) ≤ {ξ (n,p)

ψ,κ (B)}2. So

far we have proved {ξ (n,p)
ψ,κ (A)}2 ≤ {ξ (n,p)

ψ,κ (B)}2 + oP(1). Analogously, denoting λB to be the
solution to the optimization problem in (3.33) with ai replaced by bi , and applying (3.32)

with λ = λB , we obtain that {ξ (n,p)
ψ,κ (A)}2 − {ξ (n,p)

ψ,κ (B)}2 P→ 0.
To prove (3.32), we start with a leave-one-out argument adapted from [53], which in turn

builds upon [35]. In [53], the authors prove that the training and generalization errors are
asymptotically equivalent in a random features model and a corresponding linearized model,
where the covariates have matching moments and are Gaussian conditional on the random
features. However, [53] defined the training error to be based on the objective function of a
penalized empirical risk minimization problem, where the loss admits derivatives up to the
third order and the regularizer is strongly convex. In our setting, neither of these proper-
ties hold, and this leads to several technical challenges. To handle these, we use a specific
smoothing argument and develop certain new analytic results (Appendix D.2).

To supplement our universality result, Theorem 3.4, we empirically check universality of
our result across different covariate distributions used for the data-generation process. Note
that this is different from the premise of Theorem 3.4. For that theorem, we considered the
same data-generating distribution but different feature distribution for the covariates used in
boosting, and established universality of the (asymptotic) max-�1-margin across these set-
tings. Now, we consider the setting of Figure 1, where the data is generated using a logistic
model, and calculate the max-�1-margin based on the linear program (1.3) (left subfigure), as
well as difference between the test error and Bayes error (right subfigure), under two different
settings shown in Figure 5. In the setting titled “Rademacher,” each entry of the observed de-
sign is taken to be ±1 with probability 1/2, independently of each other. In the setting titled
“Gaussian,” the corresponding entries are i.i.d. draws from a Gaussian distribution with first
and second moments matching that of the Rademacher. In both cases, the margin values from
the linear program are averaged over 10 independent runs. Observe the close match between
the two settings, suggesting the applicability of our theory for a broader class of covariate
distributions, beyond our theoretical results.
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FIG. 5. x-axis: Ratio p/n. y-axis: (Left subfigure) max-�1-margin, (Right subfigure) Test error minus the Bayes
error. The figure has the same setting as in Figure 1, except the covariate distribution. Here, the observed design
matrix has i.i.d. entries drawn either from a Rademacher distribution or a Gaussian with matching first and
second moments. The figure demonstrates universality of the margin value and the test error across these settings.

3.5.3. Model misspecification. Consider the following data generating process: denote
x̃i = (x�

i , z�
i )� where xi ∈ R

p and zi ∈ R
q , with xi ∼ N (0,	x) and zi ∼ N (0,�z) inde-

pendent Gaussian vectors. Here, we assume that 	x is a diagonal matrix. Suppose that y

arises from the following conditional distribution:

P(yi = +1|x̃i ) = f
(
x̃�
i θ�

)
, with θ� := (

θ�
x,�, θ

�
z,�

)�
.(3.34)

The observed data contains n i.i.d. samples (xi ∈ R
p, yi ∈ R), 1 ≤ i ≤ n, that is, only a

part of the features x̃i that generate yi are included. Assume that both the seen and unseen
components of the features have dimension that is large and comparable to the sample size.
To model this, we assume that

p(n)/n = ψ > 0, q(n)/n = φ > 0.

Consider that both components of θ�, (3.34), contribute a nontrivial signal strength, in the
sense that

lim
n→∞

(
θ�
x,�	xθx,�

)1/2 = ρ, lim
n→∞

(
θ�
z,��zθz,�

)1/2 = γ,

where 0 < ρ, γ < ∞. For any κ ≥ 0, define a new function F̃κ :R×R≥0 →R≥0,

F̃κ(c1, c2) := (
E

[
(κ − c1YZ1 − c2Z3)

2+
]) 1

2 ,

where

⎧⎪⎪⎨
⎪⎪⎩

Z3 ⊥ (Y,Z1,Z2),

Zi
i.i.d.∼ N (0,1), i = 1,2,3,

P(Y = +1|Z1,Z2) = 1 − P(Y = −1|Z1,Z2) = f (ρ · Z1 + γ · Z2).

(3.35)

Consider the regime where the observed data is asymptotically linearly separable, that is, ψ +
φ lies above the separability threshold for this problem. We do not describe the threshold here
in detail, the interested reader may find its characterization in [29], Proposition 3.1. Then the
max-�1-margin and min-�1-norm interpolant, computed using the observed data {(xi, yi)}ni=1
obey the same limiting characterizations as in Theorems 3.1–3.2, with the system of equations
remaining the same as in (3.9), but with Fκ(c1, c2) substituted by the new function (3.35).
Thus, the form of the equation system (3.9) once again remains unchanged, once we pin down
the right analogue of Fκ(c1, c2) in this new setting.

4. Related literature. This section discusses prior literature that is relevant to our prob-
lem, but were omitted from Section 1.
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Boosting. Since its introduction in [42, 43], there has been a vast and expansive literature
on boosting. [14] studied bias and variance of general arcing classifiers. A wonderful survey
of early works on generalization performance of boosting, and comparisons to the optimal
Bayes error can be found in [55]. Margin-based analyses were furthered in [60, 79–81]. For
analysis of Boosting Algorithms based on smooth margin functions, see [84] and the refer-
ences cited therein. Consistency properties were extensively studied in [12, 70–72]. Aside
AdaBoost, several variants of boosting emerged over the years, accompanied by many other
perspectives. Boosting for two class classifications may be viewed as additive modeling on
the logistic scale [44]. Subsequently, [45] developed a general gradient boosting framework.
The rate of convergence of regularized boosting classifiers was explored in [13], where the
authors uncovered that some versions of boosting work especially well in high-dimensional
logistic additive models. �2-boosting, sparse boosting, twin boosting and their properties in
high dimensions were extensively studied in [18–22]. We remark that our setting is different
in nature from this high-dimensional Boosting literature, where a notion of sparsity (often in
�1 geometry) is typically assumed on the unknown parameter θ�. On the contrary, the �1 con-
nection arises naturally in our setting, due to the nature of the AdaBoost/boosting algorithm.
The rate of convergence of AdaBoost to the minimum of the exponential loss was investi-
gated in [76]. Robust versions of boosting were proposed and extensively explored in [62].
In recent times, [39] developed novel insights into boosting, by connecting classic Boosting
Algorithms for linear regression to subgradient optimization and its siblings, which might be
more amenable to mathematical analysis in several settings.

Convex Gaussian minmax theorem. The convex Gaussian min-max theorem is a gen-
eralized and tight version of the classical Gaussian comparison inequalities [47, 48], and
is obtained by extending Gordon’s inequalities with the presence of convexity. The idea of
merging these seemingly disparate threads dates back to [91–93], where it was used to an-
alyze the performance of the constrained LASSO in high signal-to-noise ratio regimes. The
seminal works [100–102] built and significantly extended on this idea to arrive at the CGMT,
which was extremely useful for studying mean-squared errors of regularized M-estimators
in high-dimensional linear models. As discussed earlier, [75] studied the asymptotic proper-
ties of the max-�2-margin in binary classification settings, building upon CGMT-based tech-
niques and furthered the work by [46]. In a similar setting, [29] studied the excess risk ob-
tained by running gradient descent, and explored the double descent phenomenon with a peak
around the separability threshold. The CGMT has been used in several other contexts, both
in high-dimensional statistics and information theory, for example, to characterize the per-
formance of the SLOPE estimator in sparse linear regression [52], to study high-dimensional
regularized estimators in logistic regression [85], and to establish performance guarantees
for PhaseMax [30]. The CGMT has proved useful in the study of high-dimensional convex
problems, since it decouples a complex Gaussian process defined by a min-max objective
function to a much simpler Gaussian process with essentially the same limit, yet much eas-
ier to analyze. However, this is merely a starting point or a basic building block. The study
of the reduced optimization problem is problem-specific and is usually rather challenging in
most high-dimensional settings, often requiring the development of nontrivial probabilistic
analysis (see Appendix A for specific details in our case).

Min-norm interpolation. This paper investigates the min-�1-norm interpolated classifier,
which characterizes the limit of the Boosting solution on separable data. In recent years, min-
norm interpolated solutions and their statistical properties have been extensively studied;
see [5, 9–11, 23, 51, 63, 64, 67] for the regression problem, and [25, 29, 65, 75] for the
classification problem. It has been conjectured that the implicit “min-norm” regularization, a
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version of the Occam’s razor principle, is responsible for the superior statistical behavior of
complex over-parametrized models [10, 63, 106]. To the best of our knowledge, the current
paper is the first to provide sharp statistical results for interpolated classifiers induced by the
�1 geometry (rather than the �2), which has been argued to be a more suitable geometry [3,
4, 26, 33, 50] for the limit of gradient flow on shallow neural networks with 2-homogenous
activations. In this light, we expect our results to be of much broader utility beyond the context
of boosting.

5. Discussion. This paper establishes a high-dimensional asymptotic theory for Ad-
aBoost and develops precise characterizations for both its generalization and optimization
properties. This is achieved through an in-depth study of the max-�1-margin, the min-�1-
norm interpolant and a sharp analysis of the time necessary for AdaBoost to approximate
this interpolant arbitrarily well. In doing so, this work identifies the exact quantities that gov-
ern the generalization behavior of AdaBoost for a class of data-generation models, and the
relationship between this test error and the optimal Bayes error. On the optimization front,
we further uncover how overparametrization leads to faster optimization. The proposed the-
ory demonstrates commendable finite sample behavior, applies for a broad class of statistical
models, and is empirically robust to violations of certain assumptions. Natural variants of
AdaBoost that correspond to max-�q -margins for q > 1, are further analyzed.

We conclude with a couple of directions of future research: it would be of interest (a)
to rigorously characterize analogous properties of AdaBoost for covariate distributions with
arbitrary correlations; this is a particularly challenging task for general �q geometry when
q 	= 2, as explained in Appendix B, and (b) to complement such characterizations via data-
driven schemes for estimating the parameters c�

1, c�
2 that govern properties of the �1 margin

and interpolant, as well as the generalization performance of AdaBoost. Such estimation
schemes are expected to be useful for providing recommendations regarding algorithm choice
to practitioners.
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Supplement to “A precise high-dimensional asymptotic theory for boosting and
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