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Abstract

We study Langevin dynamics for recovering the planted signal in the spiked matrix model.
We provide a “path-wise” characterization of the overlap between the output of the Langevin
algorithm and the planted signal. This overlap is characterized in terms of a self-consistent
system of integro-differential equations, usually referred to as the Crisanti-Horner-Sommers-
Cugliandolo-Kurchan (CHSCK) equations in the spin glass literature. As a second contribution,
we derive an explicit formula for the limiting overlap in terms of the signal-to-noise ratio and
the injected noise in the diffusion. As an upshot, this uncovers a sharp phase transition—in one
regime, the limiting overlap is strictly positive, while in the other, the injected noise overcomes
the signal, and the limiting overlap is zero.

Keywords— Langevin dynamics, high-dimensional asymptotics, spiked matrices, spin-glasses

1 Introduction

Gradient descent based methods and their noisy counterparts are routinely used in modern Machine Learning.
For a host of learning problems, it has now been established that gradient based methods converge to special
estimators with attractive generalization properties ([SHN+18], [CB20], [GLSS18b], [GLSS18a], [MWCC18],
[MBB18], [JT19], [NLG+19], [ACHL19], [JM20], [ZBH+21], [CLB21]). Thus the limiting performance of
gradient descent and its variants can often be characterized via careful analyses of these special limiting
estimators (c.f. [MRSY19], [BRT19], [DKT19], [LRZ20], , [LS20] , [CL21] and the references cited therein.)
However, an understanding of “path-wise” properties of these algorithms still lies in its infancy. In this
paper, we consider Langevin dynamics as a proxy for stochastic gradient descent, and a simple recovery
problem with a non-convex objective function—that of recovering a planted rank 1 matrix under additive
Gaussian noise.

Formally, we observe a symmetric matrix J ∈ RN×N , given by

J = V V > + Z, (1.1)
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where V ∈ RN . We assume Z = G>DG where D is diagonal and G is Haar distributed. Denote D =
Diag(σ1, . . . , σN ) to be a sequence of deterministic diagonal matrices. As N increases, assume that µDN =
1
N

∑N
i=1 δσi converges weakly to a probability measure µD with compact support. Let d+, d− denote the

upper and lower edges respectively of µD. We assume throughout that max1≤i≤N σ
i and min1≤i≤N σ

i

converge to d+ and d− respectively. We assume that the entries of V = (V i) are iid N (0, λN ) for some λ > 0.
We seek to recover the planted truth V , given the observation J. The natural estimator in this setting
is derived from PCA—one computes the eigenvector v̂ corresponding to the largest eigenvalue of J, and
uses v̂v̂> as an estimator for the latent subspace V V >. The performance of this estimator can be precisely
characterized using recent advances in Random Matrix Theory ([BAP05, BGN11]). In particular, assume
that the empirical spectral measure µDN converges weakly to a limiting measure µD supported on [d−, d+].
Define GµD : R\[d−, d+]→ R,

GµD (z) = EX∼µD
[ 1

z −X

]
as the Cauchy transform of µD. Further, define

GµD (d+) = lim
z↓d+

GµD (z), GµD (d−) = lim
z↑d−

GµD (z).

The BBP phase transition establishes that if λ > 1
GµD (d+) , there exists an “outlier” eigenvalue at G−1

µD (1/λ);

otherwise, the largest sample eigenvalue sticks to the spectral edge d+. In the first case, the eigenvector v̂
corresponding to the outlying eigenvalue has a non-trivial overlap with the planted signal V , i.e. with high

probability, |V >v̂| > 0. In the latter case, V >v̂
P→ 0.

To study the Langevin dynamics in this setting, we introduce the following system of Stochastic Differ-
ential Equations

dXi
t =

N∑
j=1

JijX
j
t dt − f ′

( 1

N

N∑
j=1

(Xj
t )2
)
Xi
tdt + β−1/2dW i

t . (1.2)

We assume that f : [0,∞)→ R satisfies f ′ to be non-negative and Lipschitz. Eventually, we will apply our
results to the special case f(x) = x2/2. Note that this SDE can be looked upon as a penalized version of
the PCA problem on taking β → ∞. The function f acts as a “confining” potential, so that we can work
without a norm constraint on the diffusion. For any N ≥ 1 and T ≥ 0, the SDE (1.2) has a strong solution,
which we denote by Xt ≡ {Xi

t : 1 ≤ i ≤ N, t ∈ [0, T ]} (see [BADG01, Lemma 6.7] for a proof).
The strong solution to the Langevin diffusion (1.2) defines a natural collection of estimators indexed by

t ∈ [0,∞). We track the statistical performance of these estimators via the normalized “overlap” RN (t) =
1
N

∑N
i=1

√
NV iXi

t . We note that the entries of V are typically of order 1/
√
N ; the multiplicative factor√

N normalizes these entries so that the resultant is of order 1. Armed with these notations, we can pose a
natural question of interest:

How does the overlap RN (t) evolve over time?

In this paper, we provide sharp asymptotics for the evolution of RN (t) under a high-dimensional asymp-
totic limit where we send N → ∞ with t ≥ 0 fixed. In practice, one should interpret these limits as
approximate characterizers of the overlap when the dimension N is large, while the diffusion has been run
for a “short time”. In particular, we emphasize that the time scales involved are significantly shorter than
those involved for “mixing” of these diffusion processes. We believe that these asymptotics are particu-
larly relevant for Statistics and Machine Learning. In particular, it allows one to explicitly characterize the
statistical effect of “early stopping” in this problem.

Our first result characterizes the limiting behavior of RN (t). We will see that the behavior of RN is

intricately tied to that of the “auto-correlation” function KN (t, s) = 1
N

∑N
i=1X

i
tX

i
s. Note that for any
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T ≥ 0, RN and KN are sequences of (random) continuous functions on [0, T ] and [0, T ]2 respectively. In
subsequent discussions, we equip these metric spaces with the sup-norm topology.

In addition, we need to specify the initial conditions for the Langevin diffusion {Xt : t ≥ 0}. We work
under the following two sets of initial conditions.
Initial Conditions:

(i) (I.I.D. initial conditions) Assume that {(
√
NV i, Xi

0) : 1 ≤ i ≤ N} are i.i.d., independent of G and

{Wt : t ≥ 0}. Assume furthermore that E[(Xi
0)2] = 1, E[V iXi

0] = ρ
√
λ√
N

for some ρ ∈ [0, 1].

(ii) (I.I.D. under rotated basis) Define Yt = GXt, U = GV , Bt = GWt. Assume that {(Y i0 ,
√
NU i) : 1 ≤

i ≤ N} are i.i.d., independent of {Bt : t ≥ 0}. Assume in addition that, Y i0 ∼ F i.i.d, E[(Y i0 )2] = 1,

E[U iY i0 ] = ρ
√
λ√
N

for some ρ ∈ [0, 1].

Remark 1. Note that the parameter ρ governs the correlation between the initialization and the spike
direction. For concreteness, we assume that ρ ≥ 0. The results generalize directly to ρ < 0 if we replace V
by −V . In addition, we require the second moments of X0 and Y0 to be finite. The precise value 1 is chosen
merely for convenience.

Remark 2. The I.I.D. initial condition is arguably the most natural initialization in Statistics and Machine
Learning. The I.I.D. under rotated basis condition, although a bit less natural from this perspective, is
simpler to analyze with the same theoretical tools. We think of the second initialization throughout as a
warm-up, with the first initialization being of principal interest.

Theorem 1.1. Assume one of the Initial Conditions specified above. Fix T ≥ 0. As N → ∞, RN and
KN converge almost surely to deterministic limits R and K respectively. Furthermore, these limits are the
unique solutions to the following system of integro-differential equations:

R(t) = exp

{
−
∫ t

0

f ′(K(s))ds

}
· E

(u,σ,Y0)∼π∞
[exp(σt)Y0u]

+

∫ t

0

exp

{
−
∫ t

s

f ′(K(r))dr

}
R(s) E

(u,σ,Y0)∼π∞

[
exp(σ(t− s))u2

]
ds . (1.3)

K(t, s) = β−1

∫ s∧t

0

exp

{
−
∫ t

r

f ′(K(w))dw −
∫ s

r

f ′(K(w))dw

}
E

(u,σ,Y0)∼π∞
[exp(σ(t+ s− 2r))] dr

+ exp

{
−
∫ t

0

f ′(K(r))dr −
∫ s

0

f ′(K(r))dr

}
· E

(u,σ,Y0)∼π∞

[
exp(σ(t+ s))Y2

0

]
+ exp

{
−
∫ t

0

f ′(K(r))dr

}
·
∫ s

0

exp

{
−
∫ s

r

f ′(K(w))dw

}
R(r) E

(u,σ,Y0)∼π∞
[exp(σ(t+ s− r))Y0u] dr

+ exp

{
−
∫ s

0

f ′(K(r))dr

}
·
∫ t

0

exp

{
−
∫ t

r

f ′(K(w))dw

}
R(r) E

(u,σ,Y0)∼π∞
[exp(σ(t+ s− r))Y0u] dr

+

∫ t

0

dr1

∫ s

0

dr2

{
exp

{
−
∫ t

r1

f ′(K(w))dw −
∫ s

r2

f ′(K(w))dw

}
R(r1)R(r2) E

(u,σ,Y0)∼π∞

[
exp(σ(t+ s− r1 − r2))u2

]}
.

(1.4)

Here we use the abbreviated notation K(t) := K(t, t). It remains to specify the distribution π∞; this limit
depends on the initial condition:

(i) Under I.I.D. initial conditions, π∞ = N (0, 1)⊗ µD ⊗N (0, 1).

(ii) Under I.I.D. under rotated basis initialization, π∞ = N (0, 1)⊗ µD ⊗ F .
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Theorem (1.1) holds for any t ∈ [0, T ]. This allows one to characterize the overlap at any time t, for
sufficiently large N . In this light, Theorem (1.1) may be interpreted as a quantification of the effects of
early stopping on Langevin dynamics. However, though the theorem provides a precise characterization
of RN (t) under a high-dimensional limit, it is a priori unclear whether this description yields an explicit
understanding regarding the behavior of RN (t). This is primarily due to the mathematically involved nature
of the fixed point equations (1.3)-(1.4). To gain a better understanding of the CHSCK equations, our next
theorem illustrates that Theorem (1.1) can yield explicit results on the correlation between the output Xt

and the latent vector
√
NV under the double limit t → ∞, following N → ∞. To this end, first note that

this correlation can be captured through the ratio R2(t)/(λK(t, t)), since(∑N
i=1

√
NV iXi

t

)2

[
∑N
i=1(Xi

t)
2][N

∑N
i=1(V i)2]

=
(RN (t))2

[KN (t, t)][
∑N
i=1(V i)2]

.

and ‖V ‖22 → λ almost surely under our initial conditions.
To precisely characterize the limiting correlation, we specialize to the following setting: consider f(x) =

x2/2 and µD to be the scaled semi-circle distribution, supported on [−σ?, σ?], for some σ? > 0. This
corresponds to a setting where the additive noise Z in (1.1) is a symmetric Gaussian matrix. Note that
f(x) = x2/2 satisfies the regularity conditions required in Theorem 1.1. Formally, the semi-circle law on
[−σ?, σ?] has a density

dµD
dx

=
2

πσ2
?

√
σ2
? − x2, −σ? ≤ x ≤ σ?. (1.5)

Let S : R\[−σ?, σ?]→ R denote the Stieljes transform of µD, i.e.,

S(z) = E
σ∼µD

[ 1

z − σ
]

=
2

z +
√
z2 − σ2

?

. (1.6)

Theorem 1.2. Assume λ > σ?/2, and set λ̃ = λ+
σ2
?

4λ . If β < 1
σ2
?

, the equation z = β−1S(z/2) has two real

roots. Set sβ to be the largest real root of this equation if β < 1
σ2
?

, otherwise set sβ = 2σ?.

(i) If 2λ̃ < sβ or ρ = 0, limt→∞
R(t)2

λK(t,t) = 0.

(ii) If 2λ̃ > sβ and ρ > 0,

lim
t→∞

R(t)2

λK(t, t)
=

(
1− β−1

2λ(λ+ σ2
?/4λ)

)(
1− σ2

?

4λ2

)
. (1.7)

Several remarks are in order regarding Theorem 1.2. First, note that R2(t)/(λK(t, t)) captures the
limiting correlation between the output Xt and the latent vector

√
NV , since(∑N

i=1

√
NV iXi

t

)2

[
∑N
i=1(Xi

t)
2][N

∑N
i=1(V i)2]

=
(RN (t))2

[KN (t, t)][
∑N
i=1(V i)2]

.

and ‖V ‖22 → λ almost surely under our initial conditions. Further, it is information theoretically impossible
to recover the planted vector V below the BBP threshold (i.e., when λ < σ?/2). Thus we focus on the
interesting regime λ > σ?/2. In this setting, Theorem 1.2 can be interpreted as follows: first, if ρ = 0
i.e., if the initialization has o(1) correlation, then the limiting correlation stays at zero. We note that our
asymptotics is different from non-asymptotic results (in N) which allow vanishing (in N) overlap of the
initialization with the truth. This is specifically the notion considered in [AGJ21], [AGJ20]. We defer a
detailed comparison of our results with this recent line of work to Section 1.1. Our result establishes that
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if the diffusive noise is large (2λ̃ < sβ), the initial correlation washes off, and the correlation converges to

zero in the limit t→∞. On the other hand, if the diffusive noise is small (2λ̃ > sβ), we obtain a non-trivial
correlation in the limit. While our setup is quite simple, we can precisely quantify the tradeoff between the
SNR (captured by λ) and the strength of the injected noise (captured by β−1) in the limiting correlation—we
consider this to be one of the main contributions of our work. In particular, the limiting correlation increases
as a function of λ, as well as β−1, as one would naturally expect.

1.1 Related literature

(i) Dynamical Mean Field Theory and Crisanti-Horner-Sommers-Cugliandolo-Kurchan (CHSCK) equa-
tions: Dynamical Mean-Field Theory originated in the theory of spin glasses in the 80’s [SZ82, SZ81].
In this approach, dynamics are characterized in terms of the “correlation” and “response” functions.
In special cases, these functions satisfy a system of integro-differential equations [CK93, CS92] (we
refer to such systems as CHSCK equations henceforth for simplicity). In general settings, the effective
dynamics is described in terms of a non-Markovian stochastic process with long-term memory.

Recently, this framework has been employed in the statistical physics literature to study high-dimensional
inference problems such as Gaussian mixture models, max-margin classification, and tensor PCA
[MKUZ19, MBC+20, CBS+20, MZ20, MKUZ20, SMU21, ABUZ18]. In these papers, versions of
CHSCK equations have been proposed, and analyzed numerically to track the performance of specific
algorithms. Our work differs from these earlier inquiries in some crucial ways—first, the derivations of
the CHSCK equations in these works are non-rigorous, and the subsequent analysis is also numerical.
In sharp contrast, our results are fully rigorous, furthermore, we characterize the precise tradeoff be-
tween the SNR and the injected noise in the Langevin algorithm. However, it should be noted that our
model is, in some sense simpler than the other models described above. The main technical difference
is that the spiked matrix model does not require a “response function”—this considerably simplifies
the CHSCK system, and the subsequent analysis.

(ii) Prior rigorous results: Dynamical Mean-field Theory for mean-field spin glasses was established on
rigorous footing in the works of [BADG01], [AG98, AG97], [Gru96], [Gru98], among others. The
CHSCK equations were formally derived in [BADG04]. While some useful information could be
extracted from these equations under special settings (e.g. Langevin dynamics for matrix models
[BADG01] and at high-temperature [DGM07]), a general analysis of these equations has been quite
challenging.

Recently, there has been renewed interest in this area. [DS20] derived the CHSCK equations for
spherical spin glasses starting from disorder dependent initial conditions. [DLZ21] examined the
universality of these equations to the law of the disorder variables. [DG21] also introduced alternative
techniques for establishing universality of such dynamical algorithms.

We note that in sharp contrast to our setting, the models analyzed in this line of work correspond to
“null” models, i.e. without any planted signal. As a result, our analysis is not directly comparable
to the aforementioned papers. Despite this difference, our derivation of the CHSCK equations and
its subsequent analysis relies partially on techniques from [BADG01], which studies the Langevin
dynamics in matrix models in the absence of a spike. That said, we emphasize that planted models
are closer to models typically observed in Statistics and Machine Learning problems. Thus, despite
the simplicity of (1.1), Theorem (1.2) provides useful insights regarding the interplay between the
SNR and the noise magnitude in determining the exact value of the limiting correlation. To the best
of our knowledge, our work is the first to characterize this tradeoff for a planted model. We hope that
this precise analysis would spark further investigations into Langevin-type dynamics for more complex
planted models, as seen in contemporary Statistics and Machine Learning problems.

(iii) Recent flow-based analyses: There has been considerable interest in understanding gradient descent
algorithms (i.e. β = ∞ dynamics) in Statistics and Machine Learning. [BM21a], [BM21b] derive
novel systems of integro-differential equations for gradient descent dynamics for certain spiked models.
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Although the equations are similar in spirit, there are crucial differences between these results, and
the ones proved in this paper. First, for the spiked matrix model, the result in [BM21b] applies
only to the β = ∞ case, and recovers the BBP phase transition. In contrast, we discover additional
phase transitions depending on the strength of the injected noise. Further, the proof techniques are
also completely different—[BM21a, BM21b] use recent advances in the random matrix literature on
Green functions to derive their results. In a different line of work, [AKT19], [ADT20] have also used
random matrix asymptotics to study the role of “early stopping” for gradient descent algorithms for
linear regression. In this problem, the solution at any fixed time is available in closed form, which
considerably simplifies the analysis.

Recently, [CCM21] derived the CHSCK equations for gradient descent (i.e. β = ∞) for empirical
risk minimization. The approaches in these two papers are completely different—[CCM21] first use
Approximate Message Passing (AMP) style algorithms to study first order methods, and subsequently
take a continuous time limit. Our approach, on the other hand, is grounded in random matrix theory.

(iv) We note that our results assume a “warm-start”, i.e. an O(1)-correlation between the initialization
and the planted signal. This situation is different from a random initialization, where the initialization
has O(1/

√
N) correlation with the planted signal. The approach pursued in this paper does not seem

suited to analyze the evolution of the correlation in this regime. Some answers are provided by the
recent theory of “bounding flows” [BAGJ20] and the subsequent applications of this machinery to
planted models [AGJ21], [AGJ20]. The main restriction of this approach is that it yields “non-sharp”
answers, in constrast to the approach outlined in our paper.

Outline: The rest of the paper is structured as follows: we prove Theorem 1.2 in Section 2, while the proof
of the CHSCK equations Theorem 1.1 is deferred to Section 3.
Acknowledgements Liang was supported by NSF CAREER Grant DMS-2042473. Sur was supported by
NSF DMS-2113426. Sen was supported by a Harvard Dean’s Competitive Fund Award.

2 Proof of Theorem 1.2

Throughout this section, for notational convenience, we use the shorthand K(t) = K(t, t). Let E(t) :=

exp{
∫ t

0
f ′(K(s))ds }. For our subsequent analysis, it will be convenient to transform the functions R(t),

K(t) into a new set of functions g(t), h(t), defined as follows:

g(t) := E(t)R(t)

h(t) := E2(t)K(t). (2.1)

Observe that (R(t))2/K(t) = (g(t))2/h(t), and thus it suffices to track g(t), h(t). In turn, we observe that
(1.3),(1.4) imply that g(t), h(t) are uniquely specified as the solutions to the following fixed-point system.

g(t) = E[Y0u] · E[etσ] + E[u2] ·
∫ t

0

g(s)E[e(t−s)σ]ds , (2.2)

h(t) = β−1

∫ t

0

E2(s)E[e(2t−2s)σ]ds + E[Y2
0] · E[e2tσ] (2.3)

+ 2E[Y0u] ·
∫ t

0

g(s)E[e(2t−s)σ]ds + E[u2] ·
∫ t

0

∫ t

0

g(s1)g(s2)E[e(2t−s1−s2)σ]ds1 ds2 . (2.4)

Our first lemma characterizes the behavior of g(·).

Lemma 2.1. With σ drawn from the semi-circle distribution with parameter σ?, the function g(·) defined
in (2.1) satisfies the following

g(t) =
√
λρ

{(
1− σ2

?

4λ2

)
+

exp
{

(λ+
σ2
?

4λ
)t
}

+
1

2πλ

∫ σ?

−σ?

ext
√
σ2
? − x2

(λ+
σ2
?

4λ )− x
dx

}
, (2.5)
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Figure 1: The contour integral for evaluating the Fourier-Mellin formula.

where x+ = max{x, 0}.

Proof of Lemma 2.1 . Note that the last term in the RHS of (2.2) contains a convolution, suggesting that
the Laplace transform of g(·) should provide useful information. For Re(z) > σ?, recall that the Laplace
transform of g is given by

Lg(z) :=

∫ ∞
0

e−ztg(t)dt , (2.6)

and the Stieltjes transform of µD is given by

S(z) = E
[ 1

z − σ
]
. (2.7)

Evaluating Laplace transforms, Eqn. (2.6) can be transformed as

Lg(z) =
E[Y0u] · S(z)

1− E[u2] · S(z)
. (2.8)

By the Fourier-Mellin formula (inverse Laplace transform), we know that

g(t) =
1

2πi
lim

T→+∞

∫ γ+iT

γ−iT
eztLg(z)dz. (2.9)

When µD follows a semi-circle law, using (1.6), we have

Lg(z) =
2
√
λρ

z +
√
z2 − σ2

? − 2λ
. (2.10)
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Fix γ ∈ R with γ > λ+
σ2
?

4λ , we need to evaluate the Fourier-Mellin integral of the form

gR(t) :=
1

2πi

∫ γ+iR

γ−iR
eztLg(z) dz

=
1

2πi

∫
S1

eztLg(z) dz .

In other words, we need to know the integral along the line segment S1 in Fig 1. First, we observe that the
function

ft(z) := eztLg(z) = ezt
2
√
λρ

z +
√
z2 − σ2

? − 2λ
(2.11)

= ezt
2
√
λρ

4λ

√
z2 − σ2

? − (z − 2λ)

z − (λ+
σ2
?

4λ )
(2.12)

has a simple pole at z = λ+
σ2
?

4λ . Therefore using the Cauchy Residue Theorem, we have,

1

2πi

∮
S1+S2+S3

ft(z) dz =
√
λρ ·

(
1− σ2

?

4λ2

)
+
e(λ+

σ2?
4λ )t . (2.13)

Second, we evaluate the integral over the arc Sε2. Parametrize the z(θ) ∈ S2 by z(θ) = γ − (R cos θ +
iR sin θ) with θ ∈ [π2 + ε, 3π

2 − ε], therefore∣∣∣∣∣ 1

2πi

∫
Sε2

ft(z) dz

∣∣∣∣∣ ≤ R

2
et(γ−R cos(ε)) sup

θ∈[π2 +ε, 3π2 −ε]

2
√
λρ

|γ +Reiθ +
√

(γ +Reiθ)2 − σ2
? − 2λ|

(2.14)

and thus for any fixed ε

lim
R→∞

1

2πi

∫
Sε2

ft(z) dz = 0 . (2.15)

For the part of the integral S2\Sε2, one can show that∣∣∣∣∣ 1

2πi

∫
S2\Sε2

ft(z) dz

∣∣∣∣∣ ≤ εRπ etγ sup
θ∈[π2 ,

π
2 +ε]

2
√
λρ

|γ +Reiθ +
√

(γ +Reiθ)2 − σ2
? − 2λ|

(2.16)

and thus with some universal constant C(λ, σ?, ρ, γ)

lim
R→∞

1

2πi

∫
Sε2

ft(z) dz = C(λ, σ?, ρ, γ) · ε . (2.17)

Putting these estimates together and sending ε→ 0, we have shown

lim
R→∞

1

2πi

∫
S2

ft(z) dz = 0 (2.18)

Third, we evaluate the integral over the segment S3 (corresponding to the branch point of
√
z2 − σ2

?),
with z = x+iε where x ∈ [−σ?, σ?]. We consider this since the function z 7→

√
z is a well-defined single-valued
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function only on z ∈ C\(−∞, 0). One can show that

lim
ε→0

1

2πi

∫
Sε3

ft(z) dz (2.19)

=
1

2πi

∫ σ?

−σ?
ext

2
√
λρ

(x− 2λ) + i
√
σ2
? − x2

dx− 1

2πi

∫ σ?

−σ?
ext

2
√
λρ

(x− 2λ)− i
√
σ2
? − x2

dx (2.20)

=
2
√
λρ

2πi

∫ σ?

−σ?
ext

−2i
√
σ2
? − x2

−4λx+ 4λ2 + σ2
?

dx (2.21)

= −
√
λρ

1

2πλ

∫ σ?

−σ?
ext

√
σ2
? − x2

(λ+
σ2
?

4λ )− x
dx . (2.22)

Finally, we integrate over the semi-circular arc in S3. Parametrizing z = σ? + εeiθ, we have, dz = εieiθdθ .
In turn, the integral reduces to∫ −π/2

π/2

e(σ?+εeiθ)t 2
√
λρ

σ? + εeiθ +
√

(σ? + εeiθ)2 − σ2
? − 2λ

εieiθdθ .

We note that this integral converges to zero as ε → 0. Putting three pieces together, we conclude the
proof. �

We next turn our attention to h. Recall E(t) = exp{
∫ t

0
K(s)ds}, and set F (t) = E2(t). Differentiating,

we obtain that F ′(t) = 2K(t)F (t) = 2h(t), defined in (2.1). Coupled with (2.4), we have, F satisfies the
integro-differential equation,

F ′(t) = 2β−1

∫ t

0

F (s)E
[

exp(2(t− s)σ)
]
ds+ Φ(t),

Φ(t) = 2E[Y 2
0 ]E[exp(2tσ)] + 4E[Y0u]

∫ t

0

g(s)E[exp(σ(2t− s))]ds (2.23)

+2E[u2]

∫ t

0

∫ t

0

g(s1)g(s2)E
[

exp
(
σ(2t− s1 − s2)

)]
ds1ds2.

Lemma 2.2. The function h has Laplace transform

Lh(z) =
1

2

[zLΦ(z) + β−1S(z/2)

z − β−1S(z/2)

]
.

Proof of Lemma 2.2. Taking Laplace transforms in (2.23), we obtain,

zLF (z)− 1 = 2β−1LF (z)LM (z) + LΦ(z),

where we set M(t) = E[exp(2tσ)]. Transposing, we obtain,

LF (z) =
1 + LΦ(z)

z − 2β−1LM (z)
.

Recall that F ′(t) = 2h(t), and thus Lh(z) = 1
2 [zLF (z)− 1]. This allows us to obtain the Laplace transform

of h. Finally we note that by direct computation, LM (z) = 1
2S(z/2). This completes the calculation.

�

We set λ̃ = λ+
σ2
?

4λ . Let sβ denote the largest real solution to the equation z = β−1S(z/2).
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Lemma 2.3. If 2λ̃ > sβ, we have that

lim
z→0

∣∣∣zLΦ(2λ̃+ z)− 2λ2ρ2
(

1− σ2
?

4λ2

)2

+
E
[

1

(λ̃− σ)2

] ∣∣∣ = 0.

Proof. By definition,

LΦ(2λ̃+ z) =

∫ ∞
0

exp(−(2λ̃+ z)t)Φ(t)dt := T1 + T2 + T3,

T1 := 2E[Y 2
0 ]

∫ ∞
0

exp(−(2λ̃+ z)t)E[exp(2tσ)]dt,

T2 := 4E[Y0u]

∫ ∞
0

∫ t

0

exp(−(2λ̃+ z)t)g(s)E[exp(σ(2t− s))]dsdt,

T3 := 2E[u2]

∫ ∞
0

∫ t

0

∫ t

0

exp(−(2λ̃+ z)t)g(s1)g(s2)E
[

exp
(
σ(2t− s1 − s2)

)]
ds1ds2dt.

We first claim that there exists a constant C > 0 such that∣∣∣ ∫ ∞
0

exp(−(2λ̃+ z)t)E[exp(2tσ)]dt
∣∣∣ ≤ C, ∣∣∣ ∫ ∞

0

∫ t

0

exp(−(2λ̃+ z)t)g(s)E[exp(σ(2t− s))]dsdt
∣∣∣ ≤ C.

We establish each bound in turn. Set z = z1 + iz2 with z1, z2 ∈ R, and note that z1, z2 → 0. Choose z1 small
enough so that 2λ̃+ z1 > 4σ? , since 2λ̃ > 4σ? by assumption. Thus we have,∣∣∣ ∫ ∞

0

exp(−(2λ̃+ z)t)E[exp(2tσ)]dt
∣∣∣ ≤ ∫ ∞

0

exp(−(2λ̃+ z1)t)E[exp(2tσ)]dt

≤
∫ ∞

0

exp
(
− (2λ̃− 2σ? + z1)t

)
dt

≤ 1

2λ̃− 2σ? + z1

.

This remains bounded as z1 → 0. To analyze the second term, first observe from Lemma 2.1 that

lim
t→∞

exp(−λ̃t)g(t) =
√
λρ
(

1− σ2
?

4λ2

)
+
.

Thus for any ε > 0, there exists t0 large enough such that for all t ≥ t0,

(1− ε)
√
λρ
(

1− σ2
?

4λ2

)
+

exp(λ̃t) ≤ g(t) ≤ (1 + ε)
√
λρ
(

1− σ2
?

4λ2

)
+

exp(λ̃t).

Then we have, setting z = z1 + iz2 with z1 small enough,∣∣∣ ∫ ∞
0

∫ t

0

exp(−(2λ̃+ z)t)g(s)E[exp(σ(2t− s))]dsdt
∣∣∣

≤
∫ ∞

0

∫ t

0

exp(−(2λ̃+ z1)t)g(s)E[exp(σ(2t− s))]dsdt

≤ C1 +

∫ ∞
t0

[ ∫ t0

0

exp(−(2λ̃+ z1)t)g(s)E[exp(σ(2t− s))]ds+

∫ t

t0

exp(−(2λ̃+ z1)t)g(s)E[exp(σ(2t− s))]ds
]
dt.
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The control of this term is complete once we control the two integrals above. To this end,∫ ∞
t0

∫ t0

0

exp
(
− (2λ̃+ z1)t

)
g(s)E[exp(σ(2t− s))]dsdt

≤
(

max
0≤s≤t0

g(s)
)∫ ∞

t0

exp
(
− (2λ̃+ z1 − 2σ?)t

)
dt

≤
(

max
0≤s≤t0

g(s)
)exp(−t0(2λ̃+ z1 − 2σ?))

2λ̃+ z1 − 2σ?

which remains bounded as z1 → 0. Finally,∫ ∞
t0

∫ t

t0

exp
(
− (2λ̃+ z1)t)g(s)E[exp(σ(2t− s))]

)
dsdt

≤ (1 + ε)
√
λρ
(

1− σ2
?

4λ2

)
+

∫ ∞
t0

∫ t

t0

exp
(
− (2λ̃+ z1)t)

)
exp(λ̃s+ σ?(2t− s))dsdt

≤ (1 + ε)

λ̃− σ?

√
λρ
(

1− σ2
?

4λ2

)
+

∫ ∞
t0

exp
(
− (λ̃+ z1 − σ?)t)dt

which remains bounded as z1 → 0.

Finally, we turn to the term T3. Recall that, using (2.5), g(s) =
√
λρ(1− σ2

?

4λ2 )+ exp(λ̃s) + g1(s), where

g1(s) =
σ2
?

4λ
Ex∼µD

[
exs

λ̃− x

]
.

Further recalling that E[u2] = λ, we have

T3 =2E[u2]

∫ ∞
0

∫ t

0

∫ t

0

exp(−(2λ̃+ z)t)g(s1)g(s2)E
[

exp
(
σ(2t− s1 − s2)

)]
ds1ds2dt

= 2λ2ρ2
(

1− σ2
?

4λ2

)2

+

∫ ∞
0

∫ t

0

∫ t

0

exp(−(2λ̃+ z)t+ λ̃(s1 + s2))E
[

exp
(
σ(2t− s1 − s2)

)]
ds1ds2dt+ Rem

(2.24)

where Rem is the remainder term which we will later show to be bounded as z → 0. Computing the first
term, we obtain,∫ ∞

0

∫ t

0

∫ t

0

exp(−(2λ̃+ z)t+ λ̃(s1 + s2))E
[

exp
(
σ(2t− s1 − s2)

)]
ds1ds2dt

= E
[ ∫ ∞

0

∫ t

0

∫ t

0

exp
(
− (2λ̃+ z − 2σ)t+ (λ̃− σ)s1 + (λ̃− σ)s2

)
ds1ds2dt

]

= E
[ ∫ ∞

0

exp(−(2λ̃+ z − 2σ)t)

(
exp(t(λ̃− σ))− 1

)2

(λ̃− σ)2
dt
]

= E
[ ∫ ∞

0

exp(−(2λ̃+ z − 2σ)t)

(
exp(2t(λ̃− σ))− 2 exp(t(λ̃− σ)) + 1

)
(λ̃− σ)2

dt
]

=
1

z
E
[

1

(λ̃− σ)2

]
+ Rem1. (2.25)

Note that Rem1 involves two terms and remains bounded when z → 0 since
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Rem1 = −2E
[

1

(λ̃− σ)2

∫ ∞
0

exp((−λ̃− z + σ)t)

]
+ E

[
1

(λ̃− σ)2

∫ ∞
0

exp((−2λ̃− z + 2σ)t)

]
= −2E

[
1

(λ̃− σ)2(λ̃+ z − σ)

]
+ E

[
1

(λ̃− σ)2(2λ̃+ z − 2σ)

]
Thus, the proof is complete on establishing that Rem remains bounded as z → 0.

We note that Rem may be expressed as the sum of three terms, denoted as RemTj , j = 1, . . . 3, where

RemT1
= 2
√
λρ(1− σ2

?

4λ2
)+
σ2
?

4λ

∫ ∞
0

∫ t

0

∫ t

0

exp(−(2λ̃+ z)t+ λ̃s1)Ex∼µD
[

exp(xs2)

λ̃− x

]
E
[

exp
(
σ(2t− s1 − s2)

)]
ds1ds2dt,

RemT2
is the same as above except the roles of s1 and s2 are reversed, and the third term is defined as below:

RemT3
=

2σ4
?

16λ

∫ ∞
0

∫ t

0

∫ t

0

exp(−(2λ̃+ z)tEx1∼µD

[
exp(x1s1)

(λ̃− x1)

]
Ex2∼µD

[
exp(x2s2)

(λ̃− x2)

]
E
[

exp
(
σ(2t− s1 − s2)

)]
ds1ds2dt

Now the support of x,σ is upper bounded by σ? and 2t−s1−s2 ≥ 0, s1, s2 ≤ t in the range of integration.
Thus, we may upper bound RemT1

by

RemT1
≤ 2
√
λρ(1− σ2

?

4λ2
)+E(x,σ)∼µ⊗2

D

[
1

λ̃− x

∫ ∞
0

∫ t

0

∫ t

0

exp(−(2λ̃+ z − 2σ?)t+ (λ̃− σ?)t)ds1ds2dt

]
= 2
√
λρ(1− σ2

?

4λ2
)+Ex∼µD

[
1

(λ̃− x)

∫ ∞
0

t2 exp(−(λ̃+ z − σ?)t)
]

= 2
√
λρ(1− σ2

?

4λ2
)+

Γ(3)

(λ̃+ z − σ?)3
Ex∼µD

[
1

(λ̃− x)

]
,

which remains bounded when z → 0. Similarly, RemT2 can be bounded. Applying a similar trick, RemT3

can be bounded by

2σ4
?

16λ
E(x1,x2)∼µ⊗2

D

[
1

(λ̃− x1)(λ̃− x2)

] ∫ ∞
0

t2 exp(−(2λ̃+ z − 2σ?)t)dt =

2σ4
?

16λ

Γ(3)

(2λ̃+ z − 2σ?)3
E(x1,x2)∼µ⊗2

D

[
1

(λ̃− x1)(λ̃− x2)

]
,

and this once again remains bounded as z → 0. Putting everything together and from (2.25), we have the
desired result.

�

We now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. First, using (1.6), we have,

lim
z↓σ?
S(z) =

2

σ?
, lim

z↑−σ?
S(z) = − 2

σ?
.

If z∗ is a real root of z = β−1S(z/2), y = 2z∗ is a real root of the fixed point equation 2βy = S(y). In turn,
such a root exists if and only if 2βσ∗ < 2/σ∗, which immediately gives us the desired conclusion.
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Consider first the regime 2λ̃ > sβ . Observe that (2.5) implies,

lim
t→∞

exp(−2λ̃t)g2(t) = λρ2
(

1− σ2
?

4λ2

)2

+
.

Further, Lemma 2.3 implies that as z → 0 along a sector,

zLΦ(2λ̃+ z)→ 2λ2ρ2
(

1− σ2
?

4λ2

)2

+
E
[

1

(λ̃− σ)2

]
Thus Lemma 2.2 implies

lim
z→0

zLh(2λ̃+ z) =
2λ̃

2λ̃− β−1S(λ̃)
E
[

1

(λ̃− σ)2

]
λ2ρ2

(
1− σ2

?

4λ2

)2

+
.

Thus using [BADG01, Lemma 7.2],

lim
t↑∞

exp(−2λ̃t)h(t) =
2λ̃

2λ̃− β−1S(λ̃)
E
[

1

(λ̃− σ)2

]
λ2ρ2

(
1− σ2

?

4λ2

)2

+
.

Noting that ρ > 0, we have,

lim
t↑∞

g2(t)

h(t)
=

2λ̃− β−1S(λ̃)

2λ̃λ

[
E
(

1

(λ̃− σ)2

)]−1

.

To simplify this, first note that S ′(z) = −E
(

1
(z−σ)2

)
. Calculating the exact value of this derivative we

obtain that

−E
(

1

(z − σ)2

)
=

2
√
z2 − σ2

? − z
σ2
?

√
z2 − σ2

?

.

Equating these for z = λ̃ yields that[
E
(

1

(λ̃− σ)2

)]−1

= λ2(1− σ2
?

4λ2
).

Putting things together,

lim
t↑∞

g2(t)

λh(t)
=

(
1− β−1S(λ̃)

2λ̃

)(
1− σ2

?

4λ2

)
.

Now note that S(λ̃) = 1/λ, so the final limit becomes

lim
t→∞

g2(t)

λh(t)
=

(
1− β−1

2λ(λ+ σ2
?/4λ)

)(
1− σ2

?

4λ2

)
.

It remains to analyze the sub-critical regime 2λ̃ < sβ . Using Lemma 2.2, we note that Lh(·) has a simple
pole at sβ . Thus there exists C1 > 0 such that

lim
z→0

zLh(sβ + z) = C1 6= 0. (2.26)

In turn, this implies

lim
t↑∞

exp(−sβt)h(t) = C1.

This completes the proof in this sub-case, as limt→∞ g2(t)/h(t) = 0 immediately in this case.
Finally, we focus on the case ρ = 0. Lemma 2.1 implies that g = 0 in this case. On the other hand, in

this case Φ(t) = 2E[Y 2
0 ]E[exp(2tσ)]. Thus using Lemma 2.2, we note that the leading asymptotics of h(·) is

determined by the pole at sβ . Specifically, limt↑∞ h(t) 6= 0, which concludes the proof.
�
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3 Proof of Theorem 1.1

Setting U = GV ∈ RN , the dynamics under the rotated coordinate system Yt := GXt can be expressed as

dY it = U i〈U, Yt〉dt + σiY it dt − f ′
(
‖Yt‖2/N

)
Y it dt + β−1/2dBit . (3.1)

Setting ui =
√
NU i, we note that Eqn. (3.1) reduces to

dY it = uiRN (t)dt +
(
σi − f ′(KN (u))

)
Y it dt + β−1/2dBit . (3.2)

Utilizing this expression, one can verify that Y it takes the following integral form

Y it = exp

{∫ t

0

[
σi − f ′(KN (s))

]
ds

}{
Y i0 + ui

∫ t

0

exp

{
−
∫ s

0

[
σi − f ′(KN (r))

]
dr

}
RN (s)ds

}
(3.3)

+ β−1/2

∫ t

0

exp

{∫ t

s

[
σi − f ′(KN (r))

]
dr

}
dBis . (3.4)

We first re-express the solution of our SDE.

Lemma 3.1. Define Ft(K,λ) = f ′(K(t, t))− λ. Then we have,

Y it =Y i0 exp
[
−
∫ t

0

Fs(K
N , σi)ds

]
+

∫ t

0

exp
[
−
∫ t

s

Fs1(KN , σi)ds1

]
uiR

N (s)ds + β−1/2Bit−

β−1/2

∫ t

0

BisFs(K
N , σi) exp

[
−
∫ t

s

Fs1(KN , σi)ds1

]
ds . (3.5)

Proof. The proof follows by an application of the integration by parts formula
∫ t

0
fsdBs = ftBt−

∫ t
0
Bsf

′
sds

on the solution (3.3). �

Definition 3.2. We define the empirical measure

ν =
1

N

∑
i

δY i0 ,ui,σi,Bi• , (3.6)

where the fourth marginal is an empirical distribution on the path space C[0, T ].

Consider the following collections of functions, with domain space R3 × C[0, T ] and range space one of
C[0, T ]j for j = 1, 2, 3:

Fj ⊂ {f : R3 × C[0, T ]→ C([0, T ]j)}, j = 1, 2, 3, with

F1 = {fj , j = 1 . . . 5 : f1(Y0, u, σ,B•)(w) = uY0 exp(wσ), f2(·)(w) = u2 exp(wσ), f3(·)(t) = uBt,

f4(·)(w) = Y 2
0 exp(wσ), f5(·)(w) = σY0 exp(wσ)},

F2 = {f6, . . . , f9 : f6(Y0, u, σ,B•)(t, w) = uBt exp(wσ), f7(·)(t, w) = uBtσ exp(wσ),

f8(·)(t, s) = BtBs, f9(·)(s, w) = Y0Bs exp(wσ)},

F3 = {f10, f11, f12 : f10(Y, u, σ,B•)(s1, s2, w) = Bs1Bs2 exp(wσ),

f11(·)(s1, s2, w) = σBs1Bs2 exp(wσ), f12(·)(s1, s2, w) = σ2Bs1Bs2 exp(wσ)}

Finally, define

F = F1 ∪ F2 ∪ F3. (3.7)
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All functions in F have the same domain. To simplify notation, for elements in F1, we use f(·)(w) to mean
f(Y0, u, σ,B•) evaluated at w for a generic point (Y0, u, σ,B•) ∈ R3 × C[0, T ]. Similarly for elements in F2

and F3.
Define CN = {

∫
fdν : f ∈ F} and note that for f ∈ Fj ,

∫
fdν ∈ C[0, T ]j , j = 1, 2, 3. We introduce the

following convention: for a discrete set S = {s1, . . . , sk} and a function f(·), f(S) = f(s1, . . . , sk). The next
result establishes that for all N ≥ 1, (RN ,KN ) depend on ν through the statistics CN .

Lemma 3.3. There exist functions

Φ(1) : C[0, T ]× C([0, T ]2)× C[0, T ]|F1| × C([0, T ]2)|F2| × C([0, T ]3)|F3| → C[0, T ],

Φ(2) : C[0, T ]× C([0, T ]2)× C[0, T ]|F1| × C([0, T ]2)|F2| × C([0, T ]3)|F3| → C([0, T ]2),

such that

RN = Φ(1)(RN ,KN , CN ), KN = Φ(2)(RN ,KN , CN ). (3.8)

Proof. To this end, we combine (3.5) with the definition of RN to get a fixed point equation

RN (t) =
1

N

N∑
i=1

uiY i0 exp
[
−
∫ t

0

(f ′(KN (s))− σi)ds
]

+
1

N

N∑
i=1

(ui)2

∫ t

0

exp
[
−
∫ t

s

(f ′(KN (s1))− σi)ds1

]
RN (s)ds

+
β−1/2

N

N∑
i=1

uiBit −
1

N

N∑
i=1

ui
∫ t

0

Bis(f
′(KN (s))− σi) exp

[
−
∫ t

s

(f ′(KN (s1))− σi)ds1

]
ds . (3.9)

This implicitly specifies the function Φ(1). The corresponding equation for KN is more involved. To track
this representation systematically, we recall the representation of the solution Y it from (3.5), and denote

Y it :=
∑5
j=1 T

i
j (t), where the T ij (t) represent the respective terms in the RHS of (3.5). Now, recall that

KN (t, s) = 1
N

∑N
i=1 Y

i
t Y

i
s , and therefore

KN (t, s) =

5∑
j=1

1

N

N∑
i=1

T ij (t)T
i
j (s) +

∑
1≤j1<j2≤5

[ 1

N

N∑
i=1

T ij1(t)T ij2(s) +
1

N

N∑
i=1

T ij1(s)T ij2(t)
]
. (3.10)

We argue that the RHS above is a continuous function of RN , KN and ν. To this end, we record these terms
explicitly. Define

Hθ
τ (K) = exp

[
−
∫ θ

τ

f ′(K(ξ))dξ
]
, DHθ

τ =
dHθ

τ (K)

dτ
= f ′(K(τ)) exp

[
−
∫ θ

τ

f ′(K(ξ)dξ
]
. (3.11)

First, we present the “diagonal” terms.

1

N

N∑
i=1

T i1(t)T i1(s) =
1

N

N∑
i=1

(Y i0 )2 exp(σi(t+ s))Ht
0(KN )Hs

0(KN ),

1

N

N∑
i=1

T i2(t)T i2(s) =

∫ t

0

∫ s

0

1

N

N∑
i=1

(ui)2 exp(σi(t+ s− s1 − s2))Ht
s1(KN )Hs

s2(KN )RN (s1)RN (s2)ds1 ds2 ,
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1

N

N∑
i=1

T i3(t)T i3(s) =
β−1

N

N∑
i=1

BitB
i
s,

1

N

N∑
i=1

T i4(t)T i4(s) =
β−1

N

N∑
i=1

∫ t

0

∫ s

0

Bis1B
i
s2DH

t
s1(KN )DHt

s2(KN ) exp(σi(t+ s− s1 − s2))ds1 ds2 ,

1

N

N∑
i=1

T i5(t)T i5(s) =
β−1

N

N∑
i=1

(σi)2

∫ t

0

∫ s

0

Bis1B
i
s2 exp(σi(t+ s− s1 − s2))ds1 ds2 .

Next, we present the “off-diagonal” terms.

1

N

N∑
i=1

[T i1(t)T i2(s) + T i1(s)T i2(t)] =Ht
0(KN )

∫ s

0

1

N

N∑
i=1

uiY i0 exp(σi(t+ s− s1))Hs
s1(KN )RN (s1)ds1

+Hs
0(KN )

∫ t

0

1

N

N∑
i=1

uiY i0 exp(σi(t+ s− s1))Ht
s1(KN )RN (s1)ds1 ,

1

N

N∑
i=1

[T i1(t)T i3(s) + T i1(s)T i3(t)] =Ht
0(KN )

β−1/2

N

N∑
i=1

Y i0B
i
s exp(σit) +Hs

0(KN )
β−1/2

N

N∑
i=1

Y i0B
i
t exp(σis),

1

N

N∑
i=1

[T i1(t)T i4(s) + T i1(s)T i4(t)] =− β−1/2Ht
0(KN )

∫ s

0

1

N

N∑
i=1

Y i0B
i
s1 exp(σi(t+ s− s1))DHs

s1(KN )ds1

− β−1/2Hs
0(KN )

∫ t

0

1

N

N∑
i=1

Y i0B
i
s1 exp(σi(t+ s− s1))DHt

s1(KN )ds1

1

N

N∑
i=1

[T i1(t)T i5(s) + T i1(s)T i5(t)] =β−1/2Ht
0(KN )

∫ s

0

1

N

N∑
i=1

σiY i0 exp(σi(t+ s− s1))ds1

+ β−1/2Hs
0(KN )

∫ t

0

1

N

N∑
i=1

σiY i0 exp(σi(t+ s− s1))ds1 ,

1

N

N∑
i=1

[T i2(t)T i3(s) + T i2(s)T i3(t)] =β−1/2

∫ t

0

1

N

N∑
i=1

uiBis exp(σi(t− s1))Ht
s1(KN )RN (s1)ds1

+ β−1/2

∫ s

0

1

N

N∑
i=1

uiBit exp(σi(s− s1))Ht
s1(KN )RN (s1)ds1

1

N

N∑
i=1

[T i2(t)T i4(s) + T i2(s)T i4(t)] =− β−1/2

∫ t

0

∫ s

0

1

N

N∑
i=1

uiBis2 exp(σi(t+ s− s1 − s2))Ht
s1(KN )RN (s1)DHs

s2(KN )ds1 ds2

−β−1/2

∫ t

0

∫ s

0

1

N

N∑
i=1

uiBis1 exp(σi(t+ s− s1 − s2))Hs
s2(KN )RN (s2)DHt

s1(KN )ds1 ds2 ,
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1

N

N∑
i=1

[T i2(t)T i5(s) + T i2(s)T i5(t)] =β−1/2

∫ t

0

∫ s

0

1

N

N∑
i=1

uiσiBis2 exp(σi(t+ s− s1 − s2))Ht
s1(KN )RN (s1)ds1 ds2

+β−1/2

∫ t

0

∫ s

0

1

N

N∑
i=1

uiσiBis1 exp(σi(t+ s− s1 − s2))Hs
s2(KN )RN (s2)ds1 ds2 ,

1

N

N∑
i=1

[T i3(t)T i4(s) + T i3(s)T i4(t)] =− β−1

N

N∑
i=1

∫ s

0

BitB
i
s1 exp(σi(s− s1))DHs

s1(KN )ds1

− β−1

N

N∑
i=1

∫ t

0

BisB
i
s1 exp(σi(t− s1))DHt

s1(KN )ds1

1

N

N∑
i=1

[T i3(t)T i5(s) + T i3(s)T i5(t)] =β−1

∫ s

0

1

N

N∑
i=1

σiBitB
i
s1 exp(σi(s− s1))ds1 + β−1

∫ t

0

1

N

N∑
i=1

σiBisB
i
s1 exp(σi(t− s1))ds1 ,

1

N

N∑
i=1

[T i4(t)T i5(s) + T i4(s)T i5(t)] =− β−1

N

N∑
i=1

σi
∫ t

0

∫ s

0

Bis1B
i
s2 exp(σi(t+ s− s1 − s2))DHt

s1(KN )ds1 ds2

− β−1

N

N∑
i=1

σi
∫ t

0

∫ s

0

Bis1B
i
s2 exp(σi(t+ s− s1 − s2))DHs

s2(KN )ds1 ds2 .

This specifies the function Φ(2) implicitly.
�

Given Lemma 3.3, we next establish that RN , KN are, in fact, functions of the low-dimensional statistics
CN .

Lemma 3.4. There exist functions

Ψ(1) : C[0, T ]|F1| × C([0, T ]2)|F2| × C([0, T ]3)|F3| → C[0, T ],

Ψ(2) : C[0, T ]|F1| × C([0, T ]2)|F2| × C([0, T ]3)|F3| → C([0, T ]2)

such that
RN = Ψ(1)(CN ), KN = Ψ(2)(CN ).

To this end, our main strategy is to apply a Picard iteration scheme on the fixed point equations (3.8).
We start with some initial guess RN0 , KN

0 , and carry out the iterative updates

RNm+1 = Φ(1)(RNm,K
N
m , CN ), KN

m+1 = Φ(2)(RNm,K
N
m , CN ). (3.12)

We will show that this iteration system is contractive, and thus identify RN , KN as the unique fixed
points of this system. In this endeavor, we will utilize the precise form of the functions Φ(1), Φ(2) as described
in the proof of Lemma 3.3. First, we need some preliminary estimates.

Lemma 3.5. Recall that f ′, defined in (1.2), is non-negative and Lipschitz. Then we have that

(i) for any m,N ≥ 1, 0 ≤ Hθ
τ (KN

m ) ≤ 1.

(ii) For any 0 ≤ t ≤ T , N,m ≥ 1,
∫ t

0
|DHt

u(KN
m )|du ≤ 1.

17



(iii) For any θ ≤ T ,

sup
τ≤θ
|Hθ

τ (KN
m+1)−Hθ

τ (KN
m )| ≤ ‖f ′‖L

∫ θ

0

|KN
m+1(s, s)−KN

m (s, s)|ds . (3.13)

(iv) For any N,m ≥ 1, 0 ≤ τ ≤ θ ≤ T ,

|DHθ
τ (KN

m+1)−DHθ
τ (KN

m )| ≤ ‖f ′‖L
[
|KN

m+1(τ, τ)−KN
m (τ, τ)|+ (DHθ

τ (KN
m+1)

+DHθ
τ (KN

m ))

∫ θ

0

|KN
m+1(s, s)−KN

m (s, s)|ds
]
.

(v) With probability 1, there exist C0, C1 (possibly random), depending on T such that

sup
m≥1
‖RNm‖∞ ≤ C0 exp (C1T ). (3.14)

Proof of Lemma 3.5. The parts (i)-(iv) are directly adapted from [BADG01], and are just collected here for
the convenience of the reader. We prove (v). Note that

RNm+1(t) = Ht
0(KN

m )
1

N

N∑
i=1

uiY i0 exp (σit) +
1

N

N∑
i=1

(ui)2

∫ t

0

exp (σi(t− s))RNm(s)Ht
s(K

N
m )ds

+
β−1/2

N

N∑
i=1

uiBit −
1

N

N∑
i=1

ui
∫ t

0

Bis exp (σi(t− s))DHt
s(K

N
m )ds +

1

N

N∑
i=1

uiσi
∫ t

0

Bis exp(σi(t− s))Ht
s(K

N
m )ds .

This implies

|RNm+1(t)| ≤|Ht
0(KN

m )| · | 1

N

N∑
i=1

uiY i0 exp(σit)|+
∫ t

0

| 1

N

N∑
i=1

(ui)2 exp(σi(t− s))| · |Ht
s(K

N
(m)| · |R

N
(m)(s)|ds +

β−1/2

N
|
N∑
i=1

uiBit|

+

∫ t

0

| 1

N

N∑
i=1

uiBis exp(σi(t− s))| · |DHt
s(K

N
(m))|ds +

∫ t

0

| 1

N

N∑
i=1

uiσiBis exp(σi(t− s))| · |Ht
s(K

N
(m))|ds .

Thus there exists C0, C1 > 0 (possibly random), independent of m, such that

sup
0≤t≤T

|RNm+1(t)| ≤ C0 + C1

∫ T

0

|RNm(s)|ds .

Iterating this bound in m, we obtain

sup
0≤t≤T

|RNm+1(t)| ≤ C0 exp(C1T ).

This completes the proof. �

Armed with Lemma 3.5, we turn to a proof of Lemma 3.4.
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Proof of Lemma 3.4. First observe that for any m ≥ 1,(3.9) implies

RNm+1(t)−RNm(t) =
1

N

N∑
i=1

uiY i0 exp(σit)(Ht
0(KN

m )−Ht
0(KN

m−1))

+

∫ t

0

1

N

N∑
i=1

(ui)2 exp(σi(t− s))(RNm(s)Ht
s(K

N
m )−RNm−1(s)Ht

s(K
N
m−1))ds

−
∫ t

0

1

N

N∑
i=1

uiBis exp(σi(t− s))(DHt
s(K

N
m )−DHt

s(K
N
m−1))ds

+

∫ t

0

1

N

N∑
i=1

uiσiBis exp(σi(t− s))(Ht
s(K

N
m )−Ht

s(K
N
m−1))ds .

This implies, using Lemma 3.5, there exists a constant C > 0 such that

sup
0≤t≤T

|RNm+1(t)−RNm(t)|

≤ C
[ ∫ T

0

|KN
m (τ, τ)−KN

m−1(τ, τ)|dτ + sup
[0,T ]

∫ t

0

|RNm(s)Ht
s(K

N
m )−RNm−1(s)Ht

s(K
N
m−1)|ds

]
. (3.15)

To control the second term, we observe,

|RNm(s)Ht
s(K

N
m )−RNm−1(s)Ht

s(K
N
m−1)|

≤ |RNm(s)| · |Ht
s(K

N
m )−Ht

s(K
N
m−1)|+ |Ht

s(K
N
m−1)| · |RNm(s)−RNm−1(s)|,

which directly implies

sup
[0,T ]

∫ t

0

|RNm(s)Ht
s(K

N
m )−RNm−1(s)Ht

s(K
N
m−1)|ds

.
∫ T

0

|KN
m (s, s)−KN

m−1(s, s)|ds +

∫ T

0

|RNm(s)−RNm−1(s)|ds .

Plugging this back into (3.15), there exists C > 0 (independent of m) such that

‖RNm+1 −RNm‖∞ := sup
t∈[0,T ]

|RNm+1(t)−RNm(t)|

≤ C
[ ∫ T

0

|KN
m (s, s)−KN

m−1(s, s)|ds +

∫ T

0

|RNm(s)−RNm−1(s)|ds
]
.

Analyzing the iterative update equation for KN
m , one can derive a similar bound.

‖KN
m+1 −KN

m‖∞ := sup
s,t∈[0,T ]2

|KN
m (s, t)−KN

m−1(s, t)|

≤ C
[ ∫ T

0

|KN
m (s, s)−KN

m−1(s, s)|ds +

∫ T

0

|RNm(s)−RNm−1(s)|ds
]
. (3.16)

Iterating these bounds, it follows that there exists C1 > 0 such that

max{‖RNm+1 −RNm‖∞, ‖KN
m+1 −KN

m‖∞} ≤ 2mCmC1
Tm

m!
.

Thus the iteration is contractive, and the fixed point system (3.8) has a unique fixed point for each N ≥ 1.
This completes the proof. �
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Finally, we will establish that Ψ(1),Ψ(2) derived in Lemma 3.4 are continuous functions. To this end,
recall that

Ψ(1) : C[0, T ]|F1| × C([0, T ]2)|F2| × C([0, T ]3)|F3| → C[0, T ],

Ψ(2) : C[0, T ]|F1| × C([0, T ]2)|F2| × C([0, T ]3)|F3| → C([0, T ]2)

We equip C([0, T ]j), j = 1, 2, 3, with the sup-norm topology. Further, we equip C[0, T ]|F1|×C([0, T ]2)|F2|×
C([0, T ]3)|F3| with the product topology. With this notion of convergence, we can establish the following
continuity properties of Ψ(1) and Ψ(2).

Lemma 3.6. The maps C 7→ Ψ(1)(C ) and C 7→ Ψ(2)(C ) are continuous.

Proof. We measure the discrepancy between C and C̃ using the uniform topology on this space, and denote
d(C , C̃ ) = ‖C − C̃ ‖∞. Define R,K, R̃, K̃ via the fixed point equations

R = Φ(1)(R,K,C ), K = Φ(2)(R,K,C ),

R̃ = Φ(1)(R̃, K̃, C̃ ), K̃ = Φ(2)(R̃, K̃, C̃ ).

Observe that

‖R− R̃‖∞ = ‖Φ(1)(R,K,C )− Φ(1)(R̃, K̃, C̃ )‖∞
≤ ‖Φ(1)(R,K,C )− Φ(1)(R̃, K̃,C )‖∞ + ‖Φ(1)(R̃, K̃,C )− Φ(1)(R̃, K̃, C̃ )‖∞.

Controlling the second term, we note from (3.9) that

‖Φ(1)(R̃, K̃,C )− Φ(1)(R̃, K̃, C̃ )‖∞ ≤ ‖C − C̃ ‖∞.

On the other hand, using the same argument as in the proof of Lemma 3.4, we have that

‖Φ(1)(R,K,C )− Φ(1)(R̃, K̃,C )‖∞ ≤ C
[ ∫ T

0

|K(s, s)− K̃(s, s)|ds +

∫ T

0

|R(s)− R̃(s)|ds
]
.

Combining, we obtain,

‖R− R̃‖∞ ≤ ‖C − C̃ ‖∞ + C
[ ∫ T

0

|K(s, s)− K̃(s, s)|ds +

∫ T

0

|R(s)− R̃(s)|ds
]
.

Thus there exists C ′ > 0 such that

‖R− R̃‖∞ ≤ ‖C − C̃ ‖∞ exp(C ′T ).

Thus C → Ψ(1)(C ) is Lipschitz. The argument for Ψ(2) is analogous, and thus omitted. This completes the
proof. �

Our next lemma establishes that under the two initial conditions introduced in Section 1, the low-
dimensional statistics CN converge almost surely to deterministic limits. We defer the proof of this lemma
to Section 3.1.

Lemma 3.7. Under the i.i.d. and i.i.d. under rotated basis initial conditions, each element in CN converges
to deterministic limits almost surely.

Finally, we complete the proof of Theorem 1.1, assuming Lemma 3.4, 3.6 and Lemma 3.7.
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Proof of Theorem 1.1. Fix T > 0. Lemma 3.4, 3.6 and 3.7 together imply that RN , KN converge to
deterministic functions R and K respectively. It remains to characterize these limits. Note that from (3.3),

Y it = exp

{∫ t

0

[
σi − f ′(KN (s))

]
ds

}{
Y i0 + ui

∫ t

0

exp

{
−
∫ s

0

[
σi − f ′(KN (r))

]
dr

}
RN (s)ds

}
(3.17)

+ β−1/2

∫ t

0

exp

{∫ t

s

[
σi − f ′(KN (r))

]
dr

}
dBis . (3.18)

We recall that RN (t) = 1
N

∑N
i=1 u

iY it and KN (t, s) = 1
N

∑N
i=1 Y

i
t Y

i
s , and that RN → R, KN → K uniformly.

Thus calculating RN , KN and setting N → ∞, we obtain the desired fixed point equations in the limit.
Note that the final limit operation requires that ν = 1

N

∑N
i=1 δY i0 ,ui,σi,Bi• converges to the claimed limits

under the i.i.d. and rotated i.i.d. initial conditions. This completes the proof. �

3.1 Proof of Lemma 3.7

We prove Lemma 3.7 in this section. Note that for f ∈ Fj , j = 1, 2, 3,
∫
fdν ∈ C([0, T ]j). Thus in

the lemma above, we mean specifically that
∫
fdν converges almost surely as a C([0, T ]j)-valued random

variable. Throughout, we equip C([0, T ]j) with a sup-norm.

Proof. Before embarking on a formal proof, we summarize our general proof strategy. The proof follows in
two stages–first, we establish that for any fixed x ∈ [0, T ]j ,

∫
fdν (x) converges almost surely. We next prove

an additional Holder continuity property of
∫
fdν , uniformly in n, that allows us to bootstrap the above

pointwise a.s. convergence to a functional a.s. convergence statement.
We first consider the case of the initial condition (ii). Here, almost sure convergence of

∫
fdν (x) for any

fixed x ∈ [0, T ]j follows immediately from the Strong Law of Large Numbers. We next establish that for
sufficiently large n, the following holds for each element of CN : there exists C,α > 0, independent of n, such
that almost surely, for any x, y ∈ [0, 1]j ,

|
∫
fdν (x)−

∫
fdν (y)| ≤ C‖x− y‖α. (3.19)

Before we delve into the proof, we argue that (3.19) suffices to establish convergence of
∫
fdν to E

∫
fdν in

sup-norm.
To see this, first observe that for every f ∈ Fj , j = 1, 2, 3, E[

∫
fdν ] ∈ C([0, T ]j), by the explicit form of

these functions. Thus E[
∫
fdν ](·) is uniformly continuous on [0, T ]j . This implies that if we fix ε > 0, there

exists δf > 0 such that whenever |t1 − t2| ≤ δf , we have that∣∣∣E[ ∫ fdν
]
(t1)− E

[ ∫
fdν

]
(t2)

∣∣∣ ≤ ε.
Define δ = min{δf : f ∈ F} and fix any 0 < δ′ < δ. Let {x1, · · · , x`} denote a δ′-net of [0, 1]j . For any
y ∈ [0, T ]j , if we denote xt to be the nearest point in the net, we know that for sufficiently large n,

∣∣∣[ ∫ fdν
]
(y)− E

[ ∫
fdν

]
(y)
∣∣∣ ≤ ∣∣∣[ ∫ fdν

]
(y)−

[ ∫
fdν

]
(xt)

∣∣∣ (3.20)

+
∣∣∣[ ∫ fdν

]
(xt)− E

[ ∫
fdν

]
(xt)

∣∣∣+
∣∣∣E[ ∫ fdν

]
(xt)− E

[ ∫
fdν

]
(y)
∣∣∣

≤ C(δ′)α + 2ε.

Since the RHS does not depend on y, and ε, δ′ > 0 can be arbitrary as long as δ′ < δ, we have the required
sup-norm convergence of

∫
fdν as a function on C([0, T ]j). We shall next establish Holder continuity of∫

fdν (uniformly in n), that is, property (3.19) for each f ∈ F .
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To begin, let us consider f1. Observe that∣∣∣ 1

N

N∑
i=1

uiY i0 exp(w1σ
i)− 1

N

N∑
i=1

uiY i0 exp(w2σ
i)
∣∣∣ ≤ exp(‖σ‖∞T )

( 1

N

N∑
i=1

|ui||Y i0 |
)
|w1 − w2| (3.21)

≤ C|w1 − w2|,

where the last inequality is true a.s. with C independent of N only for sufficiently large n on using the SLLN.
Thus f1 is Lipschitz almost surely for sufficiently large n. For the above upper bound, recall that we always
have ‖σi‖∞ ≤ 2 max{|d+|, |d−|} for n sufficiently large. Similar arguments work for f2, f4, f5, so we skip
presenting those details here.

We next turn to f3. Recall that

1

N

N∑
i=1

uiBit =
1√
N

N∑
i=1

U iBit =
1√
N

N∑
i=1

V iW i
t ,

where the last equality follows from the orthogonality of the matrix G. Recall that V i ∼ N (0, λN ). This
implies

P
[

sup
0≤t≤T

∣∣∣ N∑
i=1

V iW i
t

∣∣∣ > √Nε] ≤ P
[

sup
0≤t≤T

∣∣∣ N∑
i=1

V iW i
t

∣∣∣ > √Nε, N∑
i=1

(V i)2 ≤ C ′
]

+ P
[ N∑
i=1

(V i)2 ≥ C ′
]

≤ 10 exp(−CN) (3.22)

using standard deviation bounds for the supremum of a Brownian motion and a Chernoff bound on
∑N
i=1(V i)2.

This completes the proof for f3.
Next, we move to functions in F2. First note that for f8, we have that

∫
f8dν → E

∫
f8dν on

C([0, T ]2), by the Uniform Law of Large Numbers and properties of Brownian Motion. Next, we present
the proof for f6—the proofs for f7 and f9 are similar. To show Holder continuity of f6, set Dw =
diag(exp(wσ1) · · · , exp(wσN )). Then we have,

1

N

N∑
i=1

uiBit exp(wσi) =
1√
N
V >G>DwGWt.

Thus for any (t1, w1), (t2, w2) ∈ [0, T ]2,∣∣∣ 1√
N
V >G>Dw1

GWt1 −
1√
N
V >G>Dw2

GWt2

∣∣∣
≤ 1√

N

∣∣∣V >G>Dw1G(Wt1 −Wt2)
∣∣∣+

1√
N
|V >G>(Dw1 −Dw2)GWt2 |

≤ ‖GV ‖2‖Dw1
‖2

1√
N
‖Wt1 −Wt2‖2 + ‖GV ‖2‖Dw1

−Dw2
‖2

1√
N
‖Wt2‖2.

There exists C > 0 such that almost surely, ‖GV ‖2 = ‖V ‖2 < C , supw∈[0,T ] ‖Dw1‖2 ≤ exp(‖σ‖∞T ).
Further, ‖Dw1 −Dw2‖2 ≤ C|w1 − w2|, and

sup
t1,t2∈[0,T ]

∣∣∣ 1

N

N∑
i=1

(W i
t1 −W

i
t2)2 − |t1 − t2|

∣∣∣ as→ 0.

Thus there exists constants C,C ′ > 0 such that almost surely,∣∣∣ 1√
N
V >G>Dw1

GWt1 −
1√
N
V >G>Dw2

GWt2

∣∣∣
≤ C(

√
|t1 − t2|+ |w1 − w2|) ≤ C ′(

√
|t1 − t2|+

√
|w1 − w2|),
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where the last inequality follows from the fact that w1, w2 ∈ [0, T ], so that we always have
√
|w1 − w2| ≤√

2T . The other functions in F2 may be controlled using analogous arguments.
Finally, we move onto the functions in F3. We sketch the proof for f12; the same proof works for f10,

f11. Set D̃w = diag((σi)2 exp(wσi)). Thus we have, for (w, s1, s2), (w′, s′1, s
′
2) ∈ [0, T ]3,

∣∣∣ 1

N

N∑
i=1

(σi)2 exp(wσi)Bis1B
i
s2 −

1

N

N∑
i=1

(σi)2 exp(w′σi)Bis′1B
i
s′2

∣∣∣
=

1

N

∣∣∣B>s1D̃wBs2 −B>s′1D̃w′Bs′2

∣∣∣ ≤ C(
√
|s1 − s′1|+ |w − w′|+

√
|s2 − s′2|) (3.23)

≤ C ′(
√
|s1 − s′1|+

√
|w − w′|+

√
|s2 − s′2|)

almost surely for some universal constants C,C ′ > 0. This completes the proof for initial condition (ii).
Next, we turn to the initial condition (i). The main difference now lies in the fact that the pointwise

almost sure convergence no longer follows directly from SLLN for all choices of F . First, we observe that the
difference in initial conditions only affects f1, f4, f5 and f9—thus we can restrict to these specific functions.
We will use the same strategy to establish functional almost sure convergence, starting from the pointwise
a.s. convergence, thus we omit those details. We present the proof for f1–the proofs for f4, f5, f9 are similar.
Fix w ∈ [0, T ]. We have,

1

N

N∑
i=1

uiY i0 exp(wσi) =
1√
N
V >G>DwGX0, (3.24)

where we use Dw = diag(exp(wσi)). We observe that

E
[ 1

N

N∑
i=1

uiY i0 exp(wσi)
]

= E
[
E[

1√
N
V >G>DwGX0|G,X0]

]
= 0.

since entries of V are i.i.d. with mean 0. Now, there exists M0 > 0 such that En = {
∑N
i=1(Xi

0)2 <
N ·M0} occurs eventually almost surely. Given G and X0, V >G>DwGX0 ∼ N (0, λ(X>0 G

>DwGX0)/N).
Moreover,

X>0 G
>DwGX0

N
≤ ‖Dw‖2

∑N
i=1(Xi

0)2

N
.

Thus on the event En, for any ε > 0,

P
[∣∣∣ 1√

N
V >G>DwGX0

∣∣∣ > ε|G,X0

]
≤ 2 exp(−Nε

2

2M ′
)

for some universal constant M ′ > 0. The proof is complete on using the Borel Cantelli lemma.
�
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