Blessings and Curses of Covariate Shifts: Adversarial Learning Dynamics, Directional Convergence, and Equilibria

Blessings and curses of covariate shifts, directional convergece, and the connection to experimental design.

December 2022 · Tengyuan Liang

Universal Prediction Band via Semi-Definite Programming

This paper proposes a computationally efficient method to construct nonparametric, heteroscedastic prediction bands for uncertainty quantification.

March 2021 · Tengyuan Liang

Interpolating Classifiers Make Few Mistakes

This paper provides elementary analyses of the regret and generalization of minimum-norm interpolating classifiers.

January 2021 · Tengyuan Liang, Benjamin Recht

A Precise High-Dimensional Asymptotic Theory for Boosting and Minimum-L1-Norm Interpolated Classifiers

This paper establishes a precise high-dimensional asymptotic theory for boosting on separable data, taking statistical and computational perspectives.

February 2020 · Tengyuan Liang, Pragya Sur

On the Multiple Descent of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels

We study the risk of minimum-norm interpolants of data in Reproducing Kernel Hilbert Spaces. Our upper bounds on the risk are of a multiple-descent shape. Empirical evidence supports our finding that minimum-norm interpolants in RKHS can exhibit this unusual non-monotonicity in sample size.

August 2019 · Tengyuan Liang, Alexander Rakhlin, Xiyu Zhai

Training Neural Networks as Learning Data-adaptive Kernels: Provable Representation and Approximation Benefits

What are the provable benefits of the adaptive representation by neural networks compared to the pre-specified fixed basis representation in the classical nonparametric literature? We answer the above questions via a dynamic reproducing kernel Hilbert space (RKHS) approach indexed by the training process of neural networks.

January 2019 · Xialiang Dou, Tengyuan Liang

Just Interpolate: Kernel Ridgeless Regression Can Generalize

In the absence of explicit regularization, interpolating kernel machine has the potential to fit the training data perfectly, at the same time, still generalizes well on test data. We isolate a phenomenon of implicit regularization for minimum-norm interpolated solutions.

August 2018 · Tengyuan Liang, Alexander Rakhlin